/* $Id: sock.c,v 1.17 2001-11-23 01:18:43 rjkaes Exp $ * * Sockets are created and destroyed here. When a new connection comes in from * a client, we need to copy the socket and the create a second socket to the * remote server the client is trying to connect to. Also, the listening * socket is created and destroyed here. Sounds more impressive than it * actually is. * * Copyright (C) 1998 Steven Young * Copyright (C) 1999 Robert James Kaes (rjkaes@flarenet.com) * Copyright (C) 2000 Chris Lightfoot (chris@ex-parrot.com) * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include "tinyproxy.h" #include "dnscache.h" #include "log.h" #include "sock.h" #include "utils.h" /* * The mutex is used for locking around any calls which access global * variables. * - rjkaes */ static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; #define LOCK() pthread_mutex_lock(&mutex); #define UNLOCK() pthread_mutex_unlock(&mutex); /* This routine is so old I can't even remember writing it. But I do * remember that it was an .h file because I didn't know putting code in a * header was bad magic yet. anyway, this routine opens a connection to a * system and returns the fd. * - steve * * Cleaned up some of the code to use memory routines which are now the * default. Also, the routine first checks to see if the address is in * dotted-decimal form before it does a name lookup. * - rjkaes */ int opensock(char *ip_addr, uint16_t port) { int sock_fd; struct sockaddr_in port_info; int ret; assert(ip_addr != NULL); assert(port > 0); memset((struct sockaddr *) &port_info, 0, sizeof(port_info)); port_info.sin_family = AF_INET; /* Lookup and return the address if possible */ ret = dnscache(&port_info.sin_addr, ip_addr); if (ret < 0) { log_message(LOG_ERR, "opensock: Could not lookup address \"%s\".", ip_addr); return -1; } port_info.sin_port = htons(port); if ((sock_fd = socket(AF_INET, SOCK_STREAM, 0)) == -1) { log_message(LOG_ERR, "opensock: socket() error \"%s\".", strerror(errno)); return -1; } if (connect(sock_fd, (struct sockaddr *) &port_info, sizeof(port_info)) < 0) { log_message(LOG_ERR, "opensock: connect() error \"%s\".", strerror(errno)); return -1; } return sock_fd; } /* * Set the socket to non blocking -rjkaes */ int socket_nonblocking(int sock) { int flags; assert(sock >= 0); flags = fcntl(sock, F_GETFL, 0); return fcntl(sock, F_SETFL, flags | O_NONBLOCK); } /* * Set the socket to blocking -rjkaes */ int socket_blocking(int sock) { int flags; assert(sock >= 0); flags = fcntl(sock, F_GETFL, 0); return fcntl(sock, F_SETFL, flags & ~O_NONBLOCK); } /* * Start listening to a socket. Create a socket with the selected port. * The size of the socket address will be returned to the caller through * the pointer, while the socket is returned as a default return. * - rjkaes */ int listen_sock(uint16_t port, socklen_t * addrlen) { int listenfd; const int on = 1; struct sockaddr_in addr; assert(port > 0); assert(addrlen != NULL); listenfd = socket(AF_INET, SOCK_STREAM, 0); setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on)); memset(&addr, 0, sizeof(addr)); addr.sin_family = AF_INET; addr.sin_port = htons(port); if (config.ipAddr) { addr.sin_addr.s_addr = inet_addr(config.ipAddr); } else { addr.sin_addr.s_addr = inet_addr("0.0.0.0"); } bind(listenfd, (struct sockaddr *) &addr, sizeof(addr)); listen(listenfd, MAXLISTEN); *addrlen = sizeof(addr); return listenfd; } /* * Takes a socket descriptor and returns the string contain the peer's * IP address. */ char * getpeer_ip(int fd, char *ipaddr) { struct sockaddr_in name; size_t namelen = sizeof(name); assert(fd >= 0); assert(ipaddr != NULL); /* * Make sure the user's buffer is initialized to an empty string. */ *ipaddr = '\0'; if (getpeername(fd, (struct sockaddr *) &name, &namelen) != 0) { log_message(LOG_ERR, "getpeer_ip: getpeername() error \"%s\".", strerror(errno)); } else { strlcpy(ipaddr, inet_ntoa(*(struct in_addr *) &name.sin_addr.s_addr), PEER_IP_LENGTH); } return ipaddr; } /* * Takes a socket descriptor and returns the string containing the peer's * address. */ char * getpeer_string(int fd, char *string) { struct sockaddr_in name; size_t namelen = sizeof(name); struct hostent *peername; assert(fd >= 0); assert(string != NULL); /* * Make sure the user's buffer is initialized to an empty string. */ *string = '\0'; if (getpeername(fd, (struct sockaddr *) &name, &namelen) != 0) { log_message(LOG_ERR, "getpeer_string: getpeername() error \"%s\".", strerror(errno)); } else { LOCK(); peername = gethostbyaddr((char *) &name.sin_addr.s_addr, sizeof(name.sin_addr.s_addr), AF_INET); if (peername) strlcpy(string, peername->h_name, PEER_STRING_LENGTH); else log_message(LOG_ERR, "getpeer_string: gethostbyaddr() error \"%s\".", hstrerror(h_errno)); UNLOCK(); } return string; } /* * Write the buffer to the socket. If an EINTR occurs, pick up and try * again. */ ssize_t safe_write(int fd, const void *buffer, size_t count) { ssize_t len; do { len = write(fd, buffer, count); } while (len < 0 && errno == EINTR); return len; } /* * Matched pair for safe_write(). If an EINTR occurs, pick up and try * again. */ ssize_t safe_read(int fd, void *buffer, size_t count) { ssize_t len; do { len = read(fd, buffer, count); } while (len < 0 && errno == EINTR); return len; } /* * Read in a "line" from the socket. It might take a few loops through * the read sequence. The full string is allocate off the heap and stored * at the whole_buffer pointer. The caller needs to free the memory when * it is no longer in use. The returned line is NULL terminated. * * Returns the length of the buffer on success (not including the NULL * termination), 0 if the socket was closed, and -1 on all other errors. */ #define SEGMENT_LEN (512) ssize_t readline(int fd, char **whole_buffer) { ssize_t whole_buffer_len; char buffer[SEGMENT_LEN]; char *ptr; ssize_t ret; ssize_t diff; struct read_lines_s { char *data; size_t len; struct read_lines_s *next; }; struct read_lines_s *first_line, *line_ptr; first_line = safecalloc(sizeof(struct read_lines_s), 1); if (!first_line) return -ENOMEMORY; line_ptr = first_line; whole_buffer_len = 0; for (;;) { ret = recv(fd, buffer, SEGMENT_LEN, MSG_PEEK); if (ret <= 0) goto CLEANUP; ptr = memchr(buffer, '\n', ret); if (ptr) diff = ptr - buffer + 1; else diff = ret; whole_buffer_len += diff; line_ptr->data = safemalloc(diff); if (!line_ptr->data) { ret = -ENOMEMORY; goto CLEANUP; } recv(fd, line_ptr->data, diff, 0); line_ptr->len = diff; if (ptr) { line_ptr->next = NULL; break; } line_ptr->next = safecalloc(sizeof(struct read_lines_s), 1); if (!line_ptr->next) { ret = -ENOMEMORY; goto CLEANUP; } line_ptr = line_ptr->next; } *whole_buffer = safemalloc(whole_buffer_len + 1); if (!*whole_buffer) return -ENOMEMORY; *(*whole_buffer + whole_buffer_len) = '\0'; whole_buffer_len = 0; line_ptr = first_line; while (line_ptr) { memcpy(*whole_buffer + whole_buffer_len, line_ptr->data, line_ptr->len); whole_buffer_len += line_ptr->len; line_ptr = line_ptr->next; } ret = whole_buffer_len; CLEANUP: do { line_ptr = first_line->next; safefree(first_line->data); safefree(first_line); first_line = line_ptr; } while (first_line); return ret; }