/* $Id: child.c,v 1.3 2002-06-05 17:02:15 rjkaes Exp $ * * Handles the creation/destruction of the various children required for * processing incoming connections. * * Copyright (C) 2000 Robert James Kaes (rjkaes@flarenet.com) * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include "tinyproxy.h" #include "child.h" #include "heap.h" #include "log.h" #include "reqs.h" #include "sock.h" #include "utils.h" static int listenfd; static socklen_t addrlen; /* * Stores the internal data needed for each child (connection) */ struct child_s { pid_t tid; unsigned int connects; enum { T_EMPTY, T_WAITING, T_CONNECTED } status; }; /* * A pointer to an array of children. A certain number of children are * created when the program is started. */ static struct child_s *child_ptr; static struct child_config_s { unsigned int maxclients, maxrequestsperchild; unsigned int maxspareservers, minspareservers, startservers; } child_config; static int* servers_waiting; /* servers waiting for a connection */ /* * Lock/Unlock the "servers_waiting" variable so that two children cannot * modify it at the same time. */ #define SERVER_COUNT_LOCK() _child_lock_wait() #define SERVER_COUNT_UNLOCK() _child_lock_release() /* START OF LOCKING SECTION */ /* * These variables are required for the locking mechanism. Also included * are the "private" functions for locking/unlocking. */ static struct flock lock_it, unlock_it; static int lock_fd = -1; static void _child_lock_init(void) { char lock_file[] = "/tmp/tinyproxy.servers.lock.XXXXXX"; lock_fd = mkstemp(lock_file); unlink(lock_file); lock_it.l_type = F_WRLCK; lock_it.l_whence = SEEK_SET; lock_it.l_start = 0; lock_it.l_len = 0; unlock_it.l_type = F_UNLCK; unlock_it.l_whence = SEEK_SET; unlock_it.l_start = 0; unlock_it.l_len = 0; } static void _child_lock_wait(void) { int rc; while ((rc = fcntl(lock_fd, F_SETLKW, &lock_it)) < 0) { if (errno == EINTR) continue; else return; } } static void _child_lock_release(void) { if (fcntl(lock_fd, F_SETLKW, &unlock_it) < 0) return; } /* END OF LOCKING SECTION */ #define SERVER_INC() do { \ SERVER_COUNT_LOCK(); \ ++(*servers_waiting); \ DEBUG2("INC: servers_waiting: %d", *servers_waiting); \ SERVER_COUNT_UNLOCK(); \ } while (0) #define SERVER_DEC() do { \ SERVER_COUNT_LOCK(); \ --(*servers_waiting); \ DEBUG2("DEC: servers_waiting: %d", *servers_waiting); \ SERVER_COUNT_UNLOCK(); \ } while (0) /* * Set the configuration values for the various child related settings. */ short int child_configure(child_config_t type, unsigned int val) { switch (type) { case CHILD_MAXCLIENTS: child_config.maxclients = val; break; case CHILD_MAXSPARESERVERS: child_config.maxspareservers = val; break; case CHILD_MINSPARESERVERS: child_config.minspareservers = val; break; case CHILD_STARTSERVERS: child_config.startservers = val; break; case CHILD_MAXREQUESTSPERCHILD: child_config.maxrequestsperchild = val; break; default: DEBUG2("Invalid type (%d)", type); return -1; } return 0; } /* * This is the main (per child) loop. */ static void child_main(struct child_s* ptr) { int connfd; struct sockaddr *cliaddr; socklen_t clilen; cliaddr = safemalloc(addrlen); if (!cliaddr) exit(0); ptr->connects = 0; while (!config.quit) { ptr->status = T_WAITING; clilen = addrlen; connfd = accept(listenfd, cliaddr, &clilen); DEBUG2("Process %u has accepted connection", ptr->tid); /* * Make sure no error occurred... */ if (connfd < 0) { log_message(LOG_ERR, "Accept returned an error (%s) ... retrying.", strerror(errno)); continue; } ptr->status = T_CONNECTED; SERVER_DEC(); handle_connection(connfd); if (child_config.maxrequestsperchild != 0) { ptr->connects++; DEBUG2("%u connections so far...", ptr->connects); if (ptr->connects >= child_config.maxrequestsperchild) { log_message(LOG_NOTICE, "Child has reached MaxRequestsPerChild (%u > %u). Killing child.", ptr->connects, child_config.maxrequestsperchild); break; } } SERVER_COUNT_LOCK(); if (*servers_waiting > child_config.maxspareservers) { /* * There are too many spare children, kill ourself * off. */ log_message(LOG_NOTICE, "Waiting servers (%d) exceeds MaxSpareServers (%d). Killing child.", *servers_waiting, child_config.maxspareservers); SERVER_COUNT_UNLOCK(); break; } else { SERVER_COUNT_UNLOCK(); } SERVER_INC(); } ptr->status = T_EMPTY; safefree(cliaddr); exit(0); } /* * Fork a child "child" (or in our case a process) and then start up the * child_main() function. */ static int child_make(struct child_s* ptr) { pid_t pid; if ((pid = fork()) > 0) return pid; /* parent */ child_main(ptr); /* never returns */ return -1; } /* * Create a pool of children to handle incoming connections */ short int child_pool_create(void) { unsigned int i; /* * Make sure the number of MaxClients is not zero, since this * variable determines the size of the array created for children * later on. */ if (child_config.maxclients == 0) { log_message(LOG_ERR, "child_pool_create: \"MaxClients\" must be greater than zero."); return -1; } if (child_config.startservers == 0) { log_message(LOG_ERR, "child_pool_create: \"StartServers\" must be greater than zero."); return -1; } child_ptr = calloc_shared_memory(child_config.maxclients, sizeof(struct child_s)); if (!child_ptr) { log_message(LOG_ERR, "Could not allocate memory for children."); return -1; } servers_waiting = malloc_shared_memory(sizeof(int)); if (servers_waiting == MAP_FAILED) { log_message(LOG_ERR, "Could not allocate memory for child counting."); return -1; } *servers_waiting = 0; /* * Create a "locking" file for use around the servers_waiting * variable. */ _child_lock_init(); if (child_config.startservers > child_config.maxclients) { log_message(LOG_WARNING, "Can not start more than \"MaxClients\" servers. Starting %u servers instead.", child_config.maxclients); child_config.startservers = child_config.maxclients; } for (i = 0; i < child_config.maxclients; i++) { child_ptr[i].status = T_EMPTY; child_ptr[i].connects = 0; } for (i = 0; i < child_config.startservers; i++) { DEBUG2("Trying to create child %d of %d", i + 1, child_config.startservers); child_ptr[i].status = T_WAITING; child_ptr[i].tid = child_make(&child_ptr[i]); if (child_ptr[i].tid < 0) { log_message(LOG_WARNING, "Could not create child number %d of %d", i, child_config.startservers); return -1; } else { log_message(LOG_INFO, "Creating child number %d of %d ...", i + 1, child_config.startservers); SERVER_INC(); } } log_message(LOG_INFO, "Finished creating all children."); return 0; } /* * Keep the proper number of servers running. This is the birth of the * servers. It monitors this at least once a second. */ void child_main_loop(void) { int i; while (1) { if (config.quit) return; /* If there are not enough spare servers, create more */ SERVER_COUNT_LOCK(); if (*servers_waiting < child_config.minspareservers) { log_message(LOG_NOTICE, "Waiting servers (%d) is less than MinSpareServers (%d). Creating new child.", *servers_waiting, child_config.minspareservers); SERVER_COUNT_UNLOCK(); for (i = 0; i < child_config.maxclients; i++) { if (child_ptr[i].status == T_EMPTY) { child_ptr[i].status = T_WAITING; child_ptr[i].tid = child_make(&child_ptr[i]); if (child_ptr[i].tid < 0) { log_message(LOG_NOTICE, "Could not create child"); child_ptr[i].status = T_EMPTY; break; } SERVER_INC(); break; } } } else { SERVER_COUNT_UNLOCK(); } sleep(5); /* Handle log rotation if it was requested */ if (log_rotation_request) { rotate_log_files(); log_rotation_request = FALSE; } } } /* * Go through all the non-empty children and cancel them. */ void child_kill_children(void) { int i; for (i = 0; i < child_config.maxclients; i++) { if (child_ptr[i].status != T_EMPTY) kill(child_ptr[i].tid, SIGTERM); } } int child_listening_sock(uint16_t port) { listenfd = listen_sock(port, &addrlen); return listenfd; } void child_close_sock(void) { close(listenfd); }