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About This Book

The primary objective of this manual is to help programmers provide software that is
compatible across the family of 32-bit PowerPC™ processors. Because the PowerPC
architecture is designed to be flexible to support a broad range of both 32 and 64-bit
processors, this book provides a general description of features that are common to
PowerPC processors and indicates those features that are optional or that may be
implemented differently in the design of each processor.

This book is a revision of an earlier document titleBowerPC Microprocessor Family:

The Programming Environmerit&’hich describes both the 64- and the 32-bit versions of

the PowerPC architecturdhe information in this manual defines only the 32-bit
version of the architecture There is also a related document titled?owerPC
Microprocessor Family: The Programming Environments for 32-Bit Microprocessors”
which was developed by Motorola. Both books describe the 32-bit version of the PowerPC
architecture and reflect changes to the PowerPC architecture made subsequent to the
publication of‘PowerPC Microprocessor Family: The Programming Environmentgyv.

0 and Rev. 0.1.

To locate any published errata or updates for this and other documents, refer to the world-
wide web at http://www.chips.ibm.com/products/ppc, or at http://www.mot.com/powerpc/.

For designers working with a specific processor, this book should be used in conjunction
with the user’s manual for that processor. For information regarding variances between a
processor implementation and the version of the PowerPC architecture reflected in this
document, see the reference llmplementation Variances Relative to Rev. 1 of The
Programming Environments Manudescribed in “PowerPC Documentation,” on Page
XXIX.

This document distinguishes between the three levels, or programming environments, of
the PowerPC architecture, which are as follows:

* PowerPC user instruction set architecture (UISA)—The UISA defines the level g
the architecture to which user-level software should conform. The UISA defines |
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

» PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functiona
that falls outside typical user-level software requirements. The VEA describes trre
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memory model for an environment in which multiple processors or other devices
can access external memory, and defines aspects of the cache model and cache
control instructions from a user-level perspective. The resources defined by the VEA
are particularly useful for optimizing memory accesses and for managing resources
in an environment in which other processors and other devices can access external
memory.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but
may not necessarily adhere to the OEA.

» PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that can cause a
floating-point exception are defined by the UISA, while the exception mechanism itself is
defined by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book. The level of the architecture to which text refers is indicated in the
outer margin, using the conventions shown in “Conventions,” on Page xxxi.

This book does not attempt to replace the PowerPC architecture specification, which
defines the architecture from the perspective of the three programming environments and
which remains the defining document for the PowerPC architecture. This book reflects
changes made to the architecture before August 6, 1996. These changes are described in
Section 1.3, “Changes to this Document.” For information about the architecture
specification, see “General Information,” on Page xxuviii.

For ease in reference, this book and the processor user's manuals have arranged the
architecture information into topics that build upon one another, beginning with a
description and complete summary of registers and instructions (for all three environments)
and progressing to more specialized topics such as the cache, exception, and memory
management models. As such, chapters may include information from multiple levels of
the architecture; for example, the discussion of the cache model uses information from both
the VEA and the OEA.

It is beyond the scope of this manual to describe individual PowerPC processors. It must be
kept in mind that each PowerPC processor is unique in its implementation of the PowerPC
architecture.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
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readers’ responsibility to be sure they are using the most recent version “
documentation. For more information, contact your sales representative.

Audience

This manual is intended for system software and hardware developers and application
programmers who want to develop products for the 32-bit PowerPC processors. It is
assumed that the reader understands operating systems, microprocessor system design, and
the basic principles of RISC processing.

This book describes only the 32-bit portions of the PowerPC architecture. The information
in this manual is also presented separatelyPowerPC Microprocessor Family: The
Programming Environments for 32-Bit Microprocessors.

Organization
Following is a summary and a brief description of the major sections of this manual:

» Chapter 1, “Overview,” is useful for those who want a general understanding of the
features and functions of the PowerPC architecture. This chapter describes the
flexible nature of the PowerPC architecture definition and provides an overview of
how the PowerPC architecture defines the register set, operand conventions,
addressing modes, instruction set, cache model, exception model, and memory
management model.

» Chapter 2, “PowerPC Register Set,” is useful for software engineers who need to
understand the PowerPC programming model for the three programming
environments and the functionality of the PowerPC registers.

» Chapter 3, “Operand Conventions,” describes PowerPC conventions for storing data
in memory, including information regarding alignment, single- and double-
precision floating-point conventions, and big- and little-endian byte ordering.

» Chapter 4, “Addressing Modes and Instruction Set Summary,” provides an overview
of the PowerPC addressing modes and a description of the PowerPC instructions.
Instructions are organized by function.

» Chapter 5, “Cache Model and Memory Coherency,” provides a discussion of the
cache and memory model defined by the VEA and aspects of the cache model that
are defined by the OEA.

» Chapter 6, “Exceptions,” describes the exception model defined in the OEA.

» Chapter 7, “Memory Management,” provides descriptions of the PowerPC address
translation and memory protection mechanism as defined by the OEA.

» Chapter 8, “Instruction Set,” functions as a handbook for the PowerPC instruction
set. Instructions are sorted by mnemonic. Each instruction description includes the
instruction formats and an individualized legend that provides such information as
the level(s) of the PowerPC architecture in which the instruction may be found and
the privilege level of the instruction.
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* Appendix A, “PowerPC Instruction Set Listings,” lists all the PowerPC instructions.
Instructions are grouped according to mnemonic, opcode, function, and form.

* Appendix B, “POWER Architecture Cross Reference,” identifies the differences
that must be managed in migration from the POWER architecture to the PowerPC
architecture.

* Appendix C, “Multiple-Precision Shifts,” describes how multiple-precision shift
operations can be programmed as defined by the UISA.

* Appendix D, “Floating-Point Models,” gives examples of how the floating-point
conversion instructions can be used to perform various conversions as described in
the UISA.

* Appendix E, “Synchronization Programming Examples,” gives examples showing
how synchronization instructions can be used to emulate various synchronization
primitives and how to provide more complex forms of synchronization.

* Appendix F, “Simplified Mnemonics,” provides a set of simplified mnemonic
examples and symbols.

» This manual also includes a glossary and an index.

Suggested Reading

This section lists additional reading that provides background for the information in this
manual as well as general information about the PowerPC architecture.

General Information

The following documentation provides useful information about the PowerPC architecture
and computer architecture in general:

» The following books are available from the Morgan-Kaufmann Publishers, 340 Pine
Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A.), (415)
392-2665 (International); internet address: mkp@mkp.com.

— The PowerPC Architecture: A Specification for a New Family of RISC
ProcessorsSecond Edition, by International Business Machines, Inc.

Updates to the architecture specification are accessible via the world-wide web
at http://www.austin.ibm.com/tech/ppc-chg.html.

— PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture by Apple Computer, Inc., International Business Machines, Inc.,
and Motorola, Inc.
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— Macintosh Technology in the Common Hardware Reference Platfwmpplen
Computer, Inc.

— Computer Architecture: A Quantitative Approa&econd Edition, by
John L. Hennessy and David A. Patterson,

* Inside Macintosh: PowerPC System Softwaiddison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.),
(800) 637-0029 (Canada), (716) 871-6555 (International).

» PowerPC Programming for Intel Programmeby, Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404;
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

PowerPC Documentation
The PowerPC documentation is organized in the following types of documents:

» User’'s manuals—These books provide details about individual PowerPC
implementations and are intended to be used in conjunctionMagProgramming
Environments Manuallhese include the following:

— PowerPC 60I™ RISC Microprocessor User's ManudlBM order #
52G7484/(MPR601UMU-02)

— PowerPC 602" RISC Microprocessor User's ManudlBM order
#MPR602UM-01)

— PowerPC 6038 RISC Microprocessor User’'s Manual with Supplement for
PowerPC 603 MicroprocessofiBM order #MPR603EUM-01)

— PowerPC 604" RISC Microprocessor User’'s Manual
(IBM order #MPR604UMU-01)

» The PowerPC Microprocessor Family: The Programming Environments,
provides information about resources defined by the PowerPC architecture that are
common to PowerPC processors. This document describes both the 32- and 64-bit
portions or the architecture.

* Implementation Variances Relative to Rev. 1 of The Programming Environments
Manualis available via the world-wide web at
http://www.chips.ibm.com/products/ppc.

» Addenda/errata to user’s manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and changes to
functionality of the follow-on part. These addenda are intended for use with the
corresponding user’s manuals. These include the following:

— Addendum to PowerPC 603e RISC Microprocessor User’'s Manual: PowerPC
603e Microprocessor Supplement and User’'s Manual Er@BM order #
SA14-2034-00)

— Addendum to PowerPC 604 RISC Microprocessor User's MaRoalerPC
604€™ Microprocessor Supplement and User’'s Manual ErrétaM order #
SA14-2056-01)
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Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations for each PowerPC implementation. These include the
following:

— PowerPC 601 RISC Microprocessor Hardware Specifications
(IBM order # MPR601HSU-03)

— PowerPC 602 RISC Microprocessor Hardware Specifications
(IBM order # SC229897-00)

— PowerPC 603 RISC Microprocessor Hardware Specifications
(IBM order # MPR603HSU-03)

— PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware
Specifications(IBM order # G522-0268-00)

— PowerPC 603e RISC Microprocessor Family: PID7V-603e Hardware
Specifications(IBM order # G522-0267-00)

— PowerPC 604 RISC Microprocessor Hardware Specifications
(IBM order #MPR604HSU-02)

— PowerPC 604e RISC Microprocessor Family: PID9V-604e Hardware
Specifications(IBM order # SA14-2054-00)

Technical Summaries—Each PowerPC implementation has a technical summary
that provides an overview of its features. This document is roughly the equivalent to
the overview (Chapter 1) of an implementation user’'s manual. Technical summaries
are available for the 601, 602, 603, 603e, 604, and 604e as well as the following:

— PowerPC 620" RISC Microprocessor Technical Summgit3M order # SA14-
2069-01)

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors
(IBM order # G522-0291-00) provides a detailed functional description of the 60x
bus interface, as implemented on the 601, 603, and 604 family of PowerPC
microprocessors. This document is intended to help system and chipset developers
by providing a centralized reference source to identify the bus interface presented by
the 60x family of PowerPC microprocessors.

PowerPC Microprocessor Family: The Programmer’s Reference Gliei& order
# MPRPPCPRG-01) is a concise reference that includes the register summary,
memory control model, exception vectors, and the PowerPC instruction set.

PowerPC Microprocessor Family: The Programmer’s Pocket Reference Guide
(IBM order # SA14-2093-00): This foldout card provides an overview of the
PowerPC registers, instructions, and exceptions for 32-bit implementations.

Application notes—These short documents contain useful information about
specific design issues useful to programmers and engineers working with PowerPC
processors.
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* Documentation for support chips—These include the following:

— MPC105 PCI Bridge/Memory Controller User’'s Manual
MPC105UM/AD (Motorola order #)

— MPC106 PCI Bridge/Memory Controller User’'s Manual
MPC106UM/AD (Motorola order #)

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.chips.ibm.com/products/ppc or at http://www.mot.com/powerpc/.

Conventions

This document uses the following notational conventions:

mnemonics
italics

0x0

0b0

rA, rB

rD

frA, frB, frC
frD
REG[FIELD]

Instruction mnemonics are shown in lowercase bold.

Italics indicate variable command parameters, for exarbpterx.
Book titles in text are set in italics.

Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source GPR
Instruction syntax used to identify a destination GPR
Instruction syntax used to identify a source FPR
Instruction syntax used to identify a destination FPR

Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets. For example,
MSRJLE] refers to the little-endian mode enable bit in the machine
state register.

In certain contexts, such as a signal encoding, this indicates a don’t
care.

Used to express an undefined numerical value
NOT logical operator

AND logical operator

OR logical operator

This symbol identifies text that is relevant with respect to the
PowerPC user instruction set architecture (UISA). This symbol is
used both for information that can be found in the UISA specification
as well as for explanatory information related to that programming
environment.

This symbol identifies text that is relevant with respect to the
PowerPC virtual environment architecture (VEA). This symbol is
used both for information that can be found in the VEA specification
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as well as for explanatory information related to that programming
environment.

This symbol identifies text that is relevant with respect to the

@ PowerPC operating environment architecture (OEA). This symbol is
used both for information that can be found in the OEA specification
as well as for explanatory information related to that programming
environment.

Indicates reserved bits or bit fields in a register. Although these bits
0000 may be written to as either ones or zeroes, they are always read as
Zeros.

Additional conventions used with instruction encodings are described in Table 8-2 on page
8-2. Conventions used for pseudocode examples are described in Table 8-3 on page 8-4.

Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this document. Note that the
meanings for some acronyms (such as SDR1 and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning
ALU Arithmetic logic unit
BAT Block address translation
BIST Built-in self test
BPU Branch processing unit
BUID Bus unit ID
CR Condition register
CTR Count register
DABR Data address breakpoint register
DAR Data address register
DBAT Data BAT
DEC Decrementer register
DSISR Register used for determining the source of a DSI exception
DTLB Data translation lookaside buffer
EA Effective address
EAR External access register
ECC Error checking and correction
FPECR Floating-point exception cause register
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
FPR Floating-point register
FPSCR Floating-point status and control register
FPU Floating-point unit
GPR General-purpose register
IBAT Instruction BAT
IEEE Institute of Electrical and Electronics Engineers
ITLB Instruction translation lookaside buffer
V] Integer unit
L2 Secondary cache
LIFO Last-in-first-out
LR Link register
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMU Memory management unit
MSB Most-significant byte
msb Most-significant bit
MSR Machine state register
NaN Not a number
NIA Next instruction address
No-op No operation
OEA Operating environment architecture
PIR Processor identification register
PTE Page table entry
PTEG Page table entry group
PVR Processor version register
RISC Reduced instruction set computing
RTL Register transfer language
RWITM Read with intent to modify
SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SIMM Signed immediate value
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
SLB Segment lookaside buffer
SPR Special-purpose register
SPRGn Registers available for general purposes
SR Segment register
SRRO Machine status save/restore register O
SRR1 Machine status save/restore register 1
STE Segment table entry
TB Time base register
TLB Translation lookaside buffer
UMM Unsigned immediate value
UISA User instruction set architecture
VA Virtual address
VEA Virtual environment architecture
XATC Extended address transfer code
XER Register used primarily for indicating conditions such as carries and overflows for integer operations
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Terminology Conventions

conventions.

Table ii. Terminology Conventions

The Architecture Specification

This Manual

Data storage interrupt (DSI)

DSl exception

Extended mnemonics

Simplified mnemonics

Instruction storage interrupt (1SI)

ISI exception

Interrupt

Exception

Privileged mode (or privileged state)

Supervisor-level privilege

Problem mode (or problem state)

User-level privilege

Real address

Physical address

Relocation Translation
Storage (locations) Memory
Storage (the act of) Access

Table iii describes instruction field notation conventions used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification

Equivalent to:

BA, BB, BT crb A, crb B, crb D (respectively)
BF, BFA crf D, crf S (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS

frA, frB, frC, frD, fr S (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)
Sl SIMM

U IMM

ul UiMM

10 0...0 (shaded)

About This Book
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Chapter 1. Overview

The PowerPC™ architecture provides a software model that ensures software compatibility
among implementations of the PowerPC family of microprocessors. In this document, and
in other PowerPC documentation as well, the term ‘implementation’ refers to a hardware

device (typically a microprocessor) that complies with the specifications defined by the

architecture.

The PowerPC architecture was originally defined as a 32-bit architecture and was later
extended to 64-bits. The 32 and 64 pertains to the size of the integer register width and it’s
supporting registers. In both implementations the floating point registers have always been
64 bits. This book describes the 32 bit option only and is a subset of the document:
“PowerPC Microprocessor Family: The Programming Environnients

In general, the architecture defines the following:

* Instruction set—The instruction set specifies the families of instructions (such as
load/store, integer arithmetic, and floating-point arithmetic instructions), the
specific instructions, and the forms used for encoding the instructions. The
instruction set definition also specifies the addressing modes used for accessing
memory.

* Programming model—The programming model defines the register set and the
memory conventions, including details regarding the bit and byte ordering, and the
conventions for how data (such as integer and floating-point values) are stored.

* Memory model—The memory model defines the size of the address space and of the
subdivisions (pages and blocks) of that address space. It also defines the ability to
configure pages and blocks of memory with respect to caching, byte ordering (big-
or little-endian), coherency, and various types of memory protection.

» Exception model—The exception model defines the common set of exceptions and
the conditions that can generate those exceptions. The exception model specifies
characteristics of the exceptions, such as whether they are precise or imprecise,
synchronous or asynchronous, and maskable or nonmaskable. The exception model
defines the exception vectors and a set of registers used when exceptions are taken.
The exception model also provides memory space for implementation-specific
exceptions. (

NOTE: Exceptions are referred to as interrupts in the architecture specification.
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* Memory management model—The memory management model defines how
memory is partitioned, configured, and protected. The memory management model
also specifies how memory translation is performed, the real, virtual, and physical
address spaces, special memory control instructions, and other characteristics.
(Physical address is referred to as real address in the architecture specification.)

» Time-keeping model—The time-keeping model defines facilities that permit the
time of day to be determined and the resources and mechanisms required for
supporting time-related exceptions.

These aspects of the PowerPC architecture are defined at different levels of the architecture,
and this chapter provides an overview of those levels—the user instruction set architecture
(UISA), the virtual environment architecture (VEA), and the operating environment
architecture (OEA).

To locate any published errata or updates for this document, refer to the website at
http://www.mot.com/powerpc/ or at http://www.chips.ibm.com/products/ppc.

1.1 PowerPC Architecture Overview

The PowerPC architecture, developed jointly by Motorola, IBM, and Apple Computer, is
based on the POWER architecture implemented by RS/6000™ family of computers. The
PowerPC architecture takes advantage of recent technological advances in such areas as
process technology, compiler design, and reduced instruction set computing (RISC)
microprocessor design to provide software compatibility across a diverse family of
implementations, primarily single-chip microprocessors, intended for a wide range of
systems, including battery-powered personal computers; embedded controllers; high-end
scientific and graphics workstations; and multiprocessing, microprocessor-based
mainframes.

To provide a single architecture for such a broad assortment of processor environments, the
PowerPC architecture is both flexible and scalable.

The flexibility of the PowerPC architecture offers many price/performance options.
Designers can choose whether to implement architecturally-defined features in hardware or
in software. For example, a processor designed for a high-end workstation has greater need
for the performance gained from implementing floating-point normalization and
denormalization in hardware than a battery-powered, general-purpose computer might.

The PowerPC architecture is scalable to take advantage of continuing technological
advances—for example, the continued miniaturization of transistors makes it more feasible
to implement more execution units and a richer set of optimizing features without being
constrained by the architecture.

1-2 PowerPC Microprocessor 32-bit Family: The Programming Environments



The PowerPC architecture defines the following features:

» Separate 32-entry register files for integer and floating-point instructions. Th
general-purpose registers (GPRs) hold source data for integer arithmetic
instructions, and the floating-point registers (FPRs) hold source and target data for
floating-point arithmetic instructions.

» Instructions for loading and storing data between the memory system and either the
FPRs or GPRs

» Uniform-length instructions to allow simplified instruction pipelining and parallel
processing instruction dispatch mechanisms

* Nondestructive use of registers for arithmetic instructions in which the second, third,
and sometimes the fourth operand, typically specify source registers for calculations
whose results are typically stored in the target register specified by the first operand.

* A precise exception model (with the option of treating floating-point exceptions
imprecisely)
» Floating-point support that includes IEEE-754 floating-point operations

» A flexible architecture definition that allows certain features to be performed in
either hardware or with assistance from implementation-specific software
depending on the needs of the processor design

* The ability to perform both single- and double-precision floating-point operations

» User-level instructions for explicitly storing, flushing, and invalidating data in the
on-chip caches. The architecture also defines special instructions (cache block touch
instructions) for speculatively loading data before it is needed, reducing the effect of
memory latency.

» Definition of a memory model that allows weakly-ordered memory accesses. This
allows bus operations to be reordered dynamically, which improves overall
performance and in particular reduces the effect of memory latency on instruction
throughput.

e Support for separate instruction and data caches (Harvard architecture) and for
unified caches

» Support for both big- and little-endian addressing modes

» The architecture supports both 32-bit or 64-bit implementations. This document
typically describes the architecture in terms of the 32-bit implementations.

This chapter provides an overview of the major characteristics of the PowerPC architecture
in the order in which they are addressed in this book:

* Reqgister set and programming model
* Instruction set and addressing modes
» Cache implementations

* Exception model

* Memory management
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1.1.1 The 64-Bit PowerPC Architecture and the 32-Bit Subset

The PowerPC architecture is a 64-bit architecture with a 32-bit subset. It is important to
distinguish the following modes of operations:

* 64-bit implementations/64-bit mode—The PowerPC architecture provides 64-bit
addressing, 64-bit integer data types, and instructions that perform arithmetic
operations on those data types, as well as other features to support the wider
addressing range. For example, memory management differs somewhat between 32-
and 64-bit processors. The processor is configured to operate in 64-bit mode by
setting a bit in the machine state register (MSR).

» Processors that implement only the 32-bit portion of the PowerPC architecture
provide 32-bit effective addresses, which is also the maximum size of integer data
types.

* 64-bit implementations/32-bit mode—~For compatibility with 32-bit
implementations, 64-bit implementations can be configured to operate in 32-bit
mode by clearing the MSR[SF] bit. In 32-bit mode, the effective address is treated
as a 32-bit address, condition bits, such as overflow and carry bits, are set based on
32-bit arithmetic (for example, integer overflow occurs when the result exceeds
32 bits), and the count register (CTR) is tested by branch conditional instructions
following conventions for 32-bit implementations. All applications written for 32-
bit implementations will run without modification on 64-bit processors running in
32-bit mode.

1.1.2 The Levels of the PowerPC Architecture

The PowerPC architecture is defined in three levels that correspond to three programming
environments, roughly described from the most general, user-level instruction set
environment, to the more specific, operating environment.

This layering of the architecture provides flexibility, allowing degrees of software
compatibility across a wide range of implementations. For example, an implementation
such as an embedded controller may support the user instruction set, whereas it may be
impractical for it to adhere to the memory management, exception, and cache models.

The three levels of the PowerPC architecture are defined as follows:

» PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level (referred to as problem state in the architecture
specification) software should conform. The UISA defines the base user-level
instruction set, user-level registers, data types, floating-point memory conventrors
and exception model as seen by user programs, and the memory and programming
models. The icon shown in the margin identifies text that is relevant with respect to
the UISA.

» PowerPC virtual environment architecture (VEA)—The VEA defines additional
user-level functionality that falls outside typical user-level software requireme
The VEA describes the memory model for an environment in which multiple
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devices can access memory, defines aspects of the cache model, defines cache
control instructions, and defines the time base facility from a user-level perspeg
The icon shown in the margin identifies text that is relevant with respect to the

Implementations that conform to the PowerPC VEA also adhere to the UISA, but
may not necessarily adhere to the OEA.

» PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level (referred to as privileged state in the architecture specification) resources
typically required by an operating system. The OEA defines the PowerPC mem
management model, supervisor-level registers, synchronization requirements, and
the exception model. The OEA also defines the time base feature from a supervisor-
level perspective. The icon shown in the margin identifies text that is relevant with
respect to the OEA.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

Implementations that adhere to the VEA level are guaranteed to adhere to the UISA level;
likewise, implementations that conform to the OEA level are also guaranteed to conform to
the UISA and the VEA levels.

All PowerPC devices adhere to the UISA, offering compatibility among all PowerPC
application programs. However, there may be different versions of the VEA and OEA than
those described here. For example, some devices, such as embedded controllers, may not
require some of the features as defined by this VEA and OEA, and may implement a
simpler or modified version of those features.

The general-purpose PowerPC microprocessors developed jointly by Motorola and IBM

(such as the PowerPC 601™, PowerPC 603™, PowerPC 603e™, PowerPC 604™,
PowerPC 604e™, and PowerPC 620™ microprocessors) comply both with the UISA and
with the VEA and OEA discussed here. In this book, these three levels of the architecture
are referred to collectively as the PowerPC architecture.

The distinctions between the levels of the PowerPC architecture are maintained clearly
throughout this document, using the conventions described in the section “Conventions” on
page xxxiii of the Preface.
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1.1.3 Latitude Within the Levels of the PowerPC Architecture

The PowerPC architecture defines those parameters necessary to ensure compatibility
among PowerPC processors, but also allows a wide range of options for individual
implementations. These are as follows:

» The PowerPC architecture defines some facilities (such as registers, bits within
registers, instructions, and exceptions) as optional.

» The PowerPC architecture allows implementations to define additional privileged
special-purpose registers (SPRs), exceptions, and instructions for special system
requirements (such as power management in processors designed for very low-
power operation).

» There are many other parameters that the PowerPC architecture allows
implementations to define. For example, the PowerPC architecture may define
conditions for which an exception may be taken, such as alignment conditions. A
particular implementation may choose to solve the alignment problem without
taking the exception.

* Processors may implement any architectural facility or instruction with assistance
from software (that is, they may trap and emulate) as long as the results (aside from
performance) are identical to that specified by the architecture.

* Some parameters are defined at one level of the architecture and defined more
specifically at another. For example, the UISA defines conditions that may cause an
alignment exception, and the OEA specifies the exception itself.

Because of updates to the PowerPC architecture specification, which are described in this
document, variances may result between existing devices and the revised architecture
specification. Those variances are includetimplementation Variances Relative to Rev. 1

of The Programming Environments Manual

1.1.4 Features Not Defined by the PowerPC Architecture

Because flexibility is an important design goal of the PowerPC architecture, there are many
aspects of the processor design, typically relating to the hardware implementation, that the
PowerPC architecture does not define, such as the following:

» System bus interface signals—Although numerous implementations may have
similar interfaces, the PowerPC architecture does not define individual signals or the
bus protocol. For example, the OEA allows each implementation to determine the
signal or signals that trigger the machine check exception.

» Cache design—The PowerPC architecture does not define the size, structure, the
replacement algorithm, or the mechanism used for maintaining cache coherency.
The PowerPC architecture supports, but does not require, the use of separate
instruction and data caches. Likewise, the PowerPC architecture does not specify the
method by which cache coherency is ensured.
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* The number and the nature of execution units—The PowerPC architectureisa RISC
architecture, and as such has been designed to facilitate the design of proces
use pipelining and parallel execution units to maximize instruction throughp
However, the PowerPC architecture does not define the internal hardware details of
implementations. For example, one processor may execute load and store operations
in the integer unit, while another may execute these instructions in a dedicated
load/store unit.

» Other internal microarchitecture issues—The PowerPC architecture does not
prescribe which execution unit is responsible for executing a particular instruction;
it also does not define details regarding the instruction fetching mechanism, how
instructions are decoded and dispatched, and how results are written back. Dispatch
and write-back may occur in order or out of order. Also while the architecture
specifies certain registers, such as the GPRs and FPRs, implementations can
implement register renaming or other schemes to reduce the impact of data
dependencies and register contention.

1.2 The PowerPC Architectural Models

This section provides overviews of aspects defined by the PowerPC architecture, following
the same order as the rest of this book. The topics include the following:

» PowerPC registers and programming model
* PowerPC operand conventions
» PowerPC instruction set and addressing modes @

» PowerPC cache model
* PowerPC exception model
* PowerPC memory management model

1.2.1 PowerPC Registers and Programming Model

The PowerPC architecture defines register-to-register operations for computational
instructions. Source operands for these instructions are accessed from the architected
registers or are provided as immediate values embedded in the instruction. The three-
register instruction format allows specification of a target register distinct from two source
operand registers. This scheme allows efficient code scheduling in a highly parallel
processor. Load and store instructions are the only instructions that transfer data between
registers and memory. The PowerPC registers are shown in Figure 1-1.
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a SUPERVISOR MODEL—OEA N\

Configuration Registers
// \\ Machine State Register (MSR)
USER MODEL—UISA Processor Version Register (PVR)
32 General-Purpose Registers (GPRs) Memory Management Registers
32 Floating-Point Registers (FPRs) 8 Instruction BAT Registers (IBATS)
Condition Register (CR) 8 Data BAT Registers (DBATS)

Floating-Point Status and Control Register (FPSCR) SDR1

XER 16 Segment Registers (SRs)

Link Register (LR) . . .
Count Register (CTR) Exception Handling Registers

k / Data Address Register (DAR)

DSISR
USER MODEL—VEA Save and Restore Registers (SRRO/SRR1)
Time Base Facility (TBU and TBL) . . SPRGO-SPRGS 1
(For reading) Floating-Point Exception Cause Register (FPECR)
k / Miscellaneous Registers

Time Base Facility (TBU and TBL) (For writing)
Decrementer Register (DEC)
Data Address Breakpoint Register (DABR) 1
Processor Identification Register (PIR) 1
\ External Access Register (EAR) 1

/

T Optional

Figure 1-1. Programming Model—PowerPC Registers

The programming model incorporates 32 GPRs, 32 FPRs, special-purpose registers
(SPRs), and several miscellaneous registers. Each implementation may have its own unique
set of hardware implementation dependent (HID) registers that are not defined by the

architecture.

PowerPC processors have two levels of privilege:

» Supervisor mode—used exclusively by the operating system. Resources defined by
the OEA can be accessed only supervisor-level software.

» User mode—used by the application software and operating system software (Only
resources defined by the UISA and VEA can be accessed by user-level software)

These two levels govern the access to registers, as shown in Figure 1-1. The division of
privilege allows the operating system to control the application environment (providing
virtual memory and protecting operating system and critical machine resources).
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Instructions that control the state of the processor, the address translation mechanism, and
supervisor registers can be executed only when the processor is operating in su
mode.

» User Instruction Set Architecture Registers—All UISA registers can be accessed
by all software with either user or supervisor privileges. These registers includ ='
32 general-purpose registers (GPRs) and the 32 floating-point registers (FPRs), and
other registers used for integer, floating-point, and branch instructions.

» Virtual Environment Architecture Registers—The VEA defines the user-level
portion of the time base facility, which consists of the two 32-bit time base regist
These registers can be read by user-level software, but can be written to only by
supervisor-level software.

» Operating Environment Architecture Registers—SPRs defined by the OEA are
used for system-level operations such as memory management, exception han@g,
and time-keeping.

The PowerPC architecture also provides room in the SPR space for implementation-
specific registers, typically referred to as HID registers. Individual HIDs are not discussed
in this manual.

1.2.2 Operand Conventions

Operand conventions are defined in two levels of the PowerPC architecturer
instruction set architecture (UISA) and virtual environment architecture (VEA). Th
conventions define how data is stored in registers and memory.

1.2.2.1 Byte Ordering

The default mapping for PowerPC processors is big-endian, but the UISA provides_the
option of operating in either big- or little-endian mode. Big-endian byte ordering is sh
in Figure 1-2.

MSB

| N |

Big-Endian Byte Ordering

Byte 0 | Byte 1 Byte N (max) |

Figure 1-2. Big-Endian Byte and Bit Ordering

The OEA defines two bits in the MSR for specifying byte ordering—LE (Iittle-endi
mode) and ILE (exception little-endian mode). The LE bit specifies whether the processor
is configured for big-endian or little-endian mode; the ILE bit specifies the mode when an
exception is taken by being copied into the LE bit of the MSR. A value of 0 specifies big-
endian mode and a value of 1 specifies little-endian mode.
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1.2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
string/multiple instructions, a sequence of bytes or words. The address of a multiple-byte
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the natural address of an operand is
an integral multiple of the operand length. A memory operand is said to be aligned if it is
aligned at its natural boundary; otherwise it is misaligned.

1.2.2.3 Floating-Point Conventions
The PowerPC architecture adheres to the IEEE-754 standard for 64- and 32-bit floating-
point arithmetic:
» Double-precision arithmetic instructions may have single- or double-precision
operands but always produce double-precision results.

» Single-precision arithmetic instructions require all operands to be single-precision
values and always produce single-precision results. Single-precision values are
stored in double-precision format in the FPRs—these values are rounded such that
they can be represented in 32-bit, single-precision format (as they are in memory).

1.2.3 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) instructions. Instruction
formats are consistent among all instruction types, permitting decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly
simplifies instruction pipelining.

1.2.3.1 PowerPC Instruction Set
Although these categories are not defined by the PowerPC architecture, the PowerPC
instructions can be grouped as follows:

* Integer instructions—These instructions are defined by the UISA. They include
computational and logical instructions.
— Integer arithmetic instructions
— Integer compare instructions
— Logical instructions
— Integer rotate and shift instructions

* Floating-point instructions—These instructions, defined by the UISA, include
floating-point computational instructions, as well as instructions that manipulate the
floating-point status and control register (FPSCR).
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— Floating-point arithmetic instructions
— Floating-point multiply/add instructions
— Floating-point compare instructions
— Floating-point status and control instructions
— Floating-point move instructions
— Optional floating-point instructions
» Load/store instructions—These instructions, defined by the UISA, include integer
and floating-point load and store instructions.
— Integer load and store instructions
— Integer load and store with byte reverse instructions
— Integer load and store multiple instructions
— Integer load and store string instructions
— Floating-point load and store instructions
* The UISA also provides a set of load/store with reservation instructiaasX and

stwcx.) that can be used as primitives for constructing atomic memory operations.
These are grouped under synchronization instructions.

» Synchronization instructions—The UISA and VEA define instructions for memory
synchronizing, especially useful for multiprocessing:

— Load and store with reservation instructions—These UISA-defined instructions
provide primitives for synchronization operations such as test and set, compare
and swap, and compare memory.

— The Synchronize instructiosynd—This UISA-defined instruction is useful for
synchronizing load and store operations on a memory bus that is shared by
multiple devices.

— Enforce In-Order Execution of I/@igio— Theeieioinstruction provides an
ordering function for the effects of load and store operations executed by
processor.

* Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— The UISA defines numerous instructions that control the program flow,
including branch, trap, and system call instructions as well as instructions that
read, write, or manipulate bits in the condition register.

— The OEA defines two flow control instructions that provide system linkag¢
These instructions are used for entering and returning from supervisor lever.

* Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches and translation lookaside buffers (TLBS)
(and segment registers ). These instructions include move to/from special-purpose
register instructionsftspr andmfspr).
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* Memory/cache control instructions—These instructions provide control of caches,
TLBs, and segment registers.

— The VEA defines several cache control instructions.

— The OEA defines one cache control instruction and several memory control
instructions.
» External control instructions—The VEA defines two optional instructions for use
with special input/output devices.

NOTE: This grouping of the instructions does not indicate which execution unit executes
a particular instruction or group of instructions. This is not defined by the
PowerPC architecture.

1.2.3.2 Calculating Effective Addresses

The effective address (EA), also called the logical address, is the address computed by the
processor when executing a memory access or branch instruction or when fetching the next
sequential instruction. Unless address translation is disabled, this address is converted by
the MMU to the appropriate physical address.

NOTE: The architecture specification uses only the term effective address and not logical
address.

The PowerPC architecture supports the following simple addressing modes for memory
access instructions:

* EA =(rA|0) (register indirect)

« EA =(rA|0) + offset (including offset = 0) (register indirect with immediate index)

« EA =(rA|0) +rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.

1.2.4 PowerPC Cache Model

The VEA and OEA portions of the architecture define aspects of cache implementations for
PowerPC processors. The PowerPC architecture does not define hardware aspects of cache
implementations. For example, some PowerPC processors may have separate instruction
and data caches (Harvard architecture), while others have a unified cache.

The PowerPC architecture allows implementations to control the following memory access
modes on a page or block basis:

» Write-back/write-through mode

e Caching-inhibited mode

* Memory coherency

» Guarded/not guarded against speculative accesses

Coherency is maintained on a cache block basis, and cache control instructions perform
operations on a cache block basis. The size of the cache block is implementation-
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dependent. The term cache block should not be confused with the notion of a block in
memory, which is described in Section 1.2.6, “PowerPC Memory Management MOM

The VEA portion of the PowerPC architecture defines several instructions for
management. These can be used by user-level software to perform such operations s VL uch
operations (which cause the cache block to be speculatively loaded), and operatiers to
store, flush, or clear the contents of a cache block. The OEA portion of the architecture
defines one cache management instruction—the Data Cache Block Invalitidoig @

instruction.

1.2.5 PowerPC Exception Model

The PowerPC exception mechanism, defined by the OEA, allows the processor to change
to supervisor state as a result of external signals, errors, or unusual conditions arising in the
execution of instructions. When exceptions occur, information about the state of the
processor is saved to various registers and the processor begins execution at an address
(exception vector) predetermined for each type of exception.

Exception handler routines begin execution in supervisor mode. The PowerPC exception
model is described in detail in Chapter 6, “Exceptions.”

NOTE: Some aspects of exception conditions are defined at other levels of the
architecture. For example, floating-point exception conditions are defined by the
UISA, whereas the exception mechanism is defined by the OEA.

PowerPC architecture requires that exceptions be handled in program order (excluding the
optional floating-point imprecise modes and the reset and machine check exception);
therefore, although a particular implementation may recognize exception conditions out of
order, they are handled strictly in order. When an instruction-caused exception is
recognized, any unexecuted instructions that appear earlier in the instruction stream,
including any that have not yet begun to execute, are required to complete before the
exception is taken. Any exceptions caused by those instructions must be handled first.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until all instructions currently executing successfully complete
processing and report their results.

The OEA supports four types of exceptions:

» Synchronous, precise

» Synchronous, imprecise

* Asynchronous, maskable

* Asynchronous, nonmaskable
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1.2.6 PowerPC Memory Management Model

The PowerPC memory management unit (MMU) specifications are provided by the
PowerPC OEA. The primary functions of the MMU in a PowerPC processor are to tra te
logical (effective) addresses to physical addresses for memory accesses and I/O accesses
(most I/O accesses are assumed to be memory-mapped), and to provide access protection
on a block or page basis.

NOTE: Many aspects of memory management are implementation-dependent. The
description in Chapter 7, “Memory Management,” describes the conceptual
model of a PowerPC MMU; however, PowerPC processors may differ in the
specific hardware used to implement the MMU model of the OEA.

PowerPC processors require address translation for two types of transactions—instruction
accesses and data accesses to memory (typically generated by load and store instructions).

The entire 4-virtual Gbyte memory space is defined by sixteen 256-Mbyte segments.
Segments are configured through the 16 segment registers. In addition, the MMU of
PowerPC processors uses an interim virtual address (52 bits) and hashed page tables in the
generation of 32-bit physical addresses.

PowerPC processors also have a block address translation (BAT) mechanism for mapping
large blocks of memory. Block sizes range from 128 Kbyte to 256 Mbyte and are software-
selectable.

Two types of accesses generated by PowerPC processors require address translation:
instruction accesses, and data accesses to memory generated by load and store instructions.
The address translation mechanism is defined in terms of segment registers and page tables
used by PowerPC processors to locate the logical-to-physical address mapping for
instruction and data accesses. The segment information translates the logical (effective)
address to an interim virtual address, and the page table information translates the virtual
address to a physical (real) address.

Translation lookaside buffers (TLBs) are commonly implemented in PowerPC processors

to keep recently-used page table entries on-chip. Although their exact characteristics are
not specified by the architecture, the general concepts that are pertinent to the system
software are described.

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as pairs
of BAT registers that are accessible as supervisor special-purpose registers (SPRs); refer to
Chapter 7, “Memory Management,” for more information.
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1.3 Changes to this Document

The document from which this book was developed reflects changes made to the P
architecture after the publication of Rev. 0 dPdwerPC Microprocessor FamilyThe

Programming Environments Manua#ind before Dec. 13, 1994 (Rev. 0.1). In addition, it
reflects changes made to the architecture after the publication of Rev. OTheof
Programming Environments Manuahd before Aug. 6, 1996 (Rev. 1). Although there are

many changes in this revision @he Programming Environments Manutig following

sections summarize only the most significant changes and clarifications to the architecture

specification.

1.3.1 The Phasing Out of the Direct-store Function

This function defined segments that were used to generate direct-store interface accesses
on the external bus to communicate with specialized 1/0 devices; it was not optimized for
performance in the PowerPC architecture and was present for compatibility with older
devices only. As of this revision of the architecture (Rev. 1), direct-store segments are an
optional processor feature. However, they are not likely to be supported in future

implementations and new software should not use them.

1.3.2 General Additions to and Refinements of the Architecture

General additions to and refinements of the architecture specification are summarized in
Table 1-1 and Table 1-2. These tables list changes made to the UISA that are reflected in

this book and identify the chapters affected by those changes.

NOTE: Many of the changes made in the UISA are reflected in both the VEA and OEA

portions of the architecture as well.

Table 1-1. UISA Changes—Rev. 0 to Rev. 0.1

Change Chapter(s) Affected
The rules for handling of reserved bits in registers are clarified. 2
Clarified that isync does not wait for memory accesses to be performed. 4,8
CRO0[0-2] are undefined for some instructions in 64-bit mode. 4,8
Clarified intermediate result with respect to floating-point operations (the intermediate 3
result has infinite precision and unbounded exponent range).
Clarified the definition of rounding such that rounding always occurs (specifically, FR and 3
FI flags are always affected) for arithmetic, rounding, and conversion instructions.
Clarified the definition of the term ‘tiny’ (detected before rounding). 3
In D.3.2, “Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Word,” D
changed value in FPR 3 from 232 t0 232 — 1..
Noted additional POWER incompatibility for Store Floating-Point Single (stfs ) instruction. B
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Table 1-2. UISA Changes—Rev. 0.1 to Rev. 1.0

Change Chapter(s) Affected

Although the stfiwx instruction is an optional instruction, it will likely be required for future | 4, 8, A
processors.

Added the new Data Cache Block Allocate (dcba) instruction. 4,5,8, A
Deleted some warnings about generating misaligned little-endian access. 3

Table 1-3 and Table 1-4 list changes made to the VEA that are reflected in this book and the
chapters that are affected by those changes.

NOTE: Some changes to the UISA are reflected in the VEA and in turn, some changes
to the VEA affect the OEA as well.

Table 1-3. VEA Changes—Rev. 0 to Rev. 0.1

Change Chapter(s) Affected
Clarified conditions under which a cache block is considered modified. 5
WIMG bits have meaning only when the effective address is translated. 2,57
Clarified that isync does not wait for memory accesses to be performed. 4,5,7,8
Clarified paging implications of eciwx and ecowx . 4,5,7,8

Table 1-4. VEA Changes—Rev. 0.1 to Rev. 1.0

Change Chapter(s) Affected

Added the requirement that caching-inhibited guarded store operations are ordered. 5

Clarified use of the dcbf instruction in keeping instruction cache coherency in the case ofa | 5
combined instruction/data cache in a multiprocessor system.

Table 1-5 and Table 1-6 list changes made to the OEA that are reflected in this book and the
chapters that are affected by those changes.

NOTE: Some changes to the UISA and VEA are reflected in the OEA as well.

Table 1-5. OEA Changes—Rev. 0 to Rev. 0.1

Change Chapter(s) Affected
Restricted several aspects of out-of-order operations. 2,4,56,7
Clarified instruction fetching and instruction cache paradoxes. 4,5
Specified that IBATs contain W and G bits and that software must not write 1s to them. 2,7
Corrected the description of coherence when the W bit differs among processors. 5
Clarified that referenced and changed bits are set for virtual pages. 7
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Table 1-5. OEA Changes—Rev. 0 to Rev. 0.1 (Continued)

Change Chapter(s) Affected
Revised the description of changed bit setting to avoid depending on the TLB. 7
Tightened the rules for setting the changed bit out of order. 57
Specified which multiple DSISR bits may be set due to simultaneous DSI exceptions. 6
Removed software synchronization requirements for reading the TB and DEC. 2
More flexible DAR setting for a DABR exception. 6

Table 1-6. OEA Changes—Rev. 0.1 to Rev. 1.0

Change Chapter(s) Affected
Changed definition of direct-store segments to an optional processor feature that is not 2,6,7
likely to be supported in future implementations and new software should not use it.
Changed the ranges of bits saved from MSR to SRR1 (and restored from SRR1to MSRon | 2,6
rfi) on an exception.
Clarified the definition of execution synchronization. Also clarified that the mtmsr 2,4,8
instructions are not execution synchronizing.
Clarified the use of memory allocated for predefined uses (including the exception 6,7
vectors).
Revised the page table update synchronization requirements and recommended code 7
sequences.
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Chapter 2. PowerPC Register Set

This chapter describes the register organization defined by the three levels of the PowerPC
architecture:

» User instruction set architecture (UISA) U
Y,

» Virtual environment architecture (VEA), and 5

» Operating environment architecture (OEA).

The PowerPC architecture defines register-to-register operations for all computational
instructions. Source data for these instructions are accessed from the on-chip registers or
are provided as immediate values embedded in the opcode. The three-register instruction
format allows specification of a target register distinct from the two source registers, thus
preserving the original data for use by other instructions and reducing the number of
instructions required for certain operations. Data is transferred between memory and
registers witrexplicit load and store instructions only.

NOTE: The handling of reserved bits in any register is implementation-dependent.
Software is permitted to write any value to a reserved bit in a register. However,
a subsequent reading of the reserved bit returns 0 if the value last written to the
bit was 0 and returns an undefined value (may be 0 or 1) otherwise. This means
that even if the last value written to a reserved bit was 1, reading that bit may
return O.

2.1 PowerPC UISA Register Set

The PowerPC UISA registers, shown in Figure 2-1, can be accessed by either user- or
supervisor-level instructions (the architecture specification refers to user-level and
supervisor-level as problem state and privileged state respectively). The general-purpose
registers (GPRs) and floating-point registers (FPRs) are accessed as instruction operands.
Access to registers can be explicit (that is, through the use of specific instructions for that
purpose such as Move to Special-Purpose Registéspf) and Move from Special-
Purpose Registentfspr) instructions) or implicit as part of the execution of an instruction.
Some registers are accessed both explicitly and implicitly.

The number to the right of the register names indicates the number that is used in the syntax
of the instruction operands to access the register (for example, the number used to access
the XER is SPR 1).

NOTE: All registers are 32 bits wide except the Floating-Point Registers.
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Figure 2-1. UISA Programming Model—User-Level Registers
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The user-level registers can be accessed by all software with either user or supervisor
privileges. The user-level registers are:

» General-purpose registers (GPRs). The general-purpose register file consists of 32
GPRs designated as GPRO-GPR31. The GPRs serve as data source or destir
registers for all integer instructions and provide data for generating addresses“
Section 2.1.1, “General-Purpose Registers (GPRs),” for more information.

* Floating-point registers (FPRs). The floating-point register file consists of 32 FPRs
designated as FPRO-FPR31; these registers serve as either the source or the
destination for all floating-point instructions. While the floating-point model
includes data objects of either single- or double-precision floating-point format, the
FPRs only contain data in double-precision format. For more information, see
Section 2.1.2, “Floating-Point Registers (FPRs).

» A condition register (CR) is a 32-bit register that is divided into eight 4-bit fields,
CRO-CRY. This register stores the results of certain arithmetic operations and
provides a mechanism for testing and branching. For more information, see Section
2.1.3, “Condition Register (CR).”

* A floating-point status and control register (FPSCR) which contains all floating-
point exception signal bits, exception summary bits, exception enable bits, and
rounding control bits needed for compliance with the IEEE 754 standard. For more
information, see Section 2.1.4, “Floating-Point Status and Control Register
(FPSCR).”

NOTE: The architecture specification refers to exceptions as interrupts.

* An XER register (XER) which indicates overflows and carry conditions for integer
operations and the number of bytes to be transferred by the load/store string indexed
instructions. For more information, see Section 2.1.5, “XER Register (XER).”

* Alink register (LR) which provides the branch target address for the Branch
Conditional to Link Registerqclr x) instructions, and can optionally be used to hold
the effective address of the instruction that follows a branch with link update
instruction in the instruction stream, typically used for loading the return pointer for
a subroutine. For more information, see Section 2.1.6, “Link Register (LR).”

* A count register (CTR) which holds a loop count that can be decremented during
execution of appropriately coded branch instructions. The CTR can also provide the
branch target address for the Branch Conditional to Count Redjistzrx)
instructions. For more information, see Section 2.1.7, “Count Register (CTR).”

2.1.1 General-Purpose Registers (GPRSs)

Integer data is manipulated in the processor’s 32 GPRs shown in Figure 2-1. These registers
are 32-bit registers. The GPRs are accessed as either source or destination registers in the
instruction syntax.
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2.1.2 Floating-Point Registers (FPRS)

The PowerPC architecture provides thirty-two 64-bit FPRs as shown in Figure 2-2. These
registers are accessed as either source or destination registers for floating-point instructions.
Each FPR supports the double-precision floating-point format. Every instruction that
interprets the contents of an FPR as a floating-point value uses the double-precision
floating-point format for this interpretation.

Instructions for all floating-point arithmetic operations use the data located in the FPRs and,
with the exception of compare instructions, place the result into a FPR. Information about
the status of floating-point operations is placed into the FPSCR and in some cases, into the
CR after the completion of instruction execution. For information on how the CR is affected
for floating-point operations, see Section 2.1.3, “Condition Register (CR).”

Instructions to load and to store floating-point double precision values transfer 64 bits of
data between memory and the FPRs with no conversion.

Instructions to load floating-point single precision values are provided to read single-
precision floating-point values from memory, convert them to double-precision floating-
point format, and place them in the target floating-point register.

Instructions to store single-precision values are provided to read double-precision floating-
point values from a floating-point register, convert them to single-precision floating-point
format, and place them in the target memory location.

Instructions for single- and double-precision arithmetic operations accept values from the
FPRs in double-precision format. For instructions of single-precision arithmetic and store
operations, all input values must be representable in single-precision format; otherwise, the
results placed into the target FPR (or the memory location) and the setting of status bits in
the FPSCR and in the condition register (if the instruction’s record bit, Rc, is set) are
undefined.

The floating-point arithmetic instructions produce intermediate results that may be
regarded as infinitely precise and with unbounded exponent range. This intermediate result
is normalized or denormalized if required, and then rounded to the destination format. The
final resultis then placed into the target FPR in the double-precision format or in fixed-point
format, depending on the instruction. Refer to Section 3.3, “Floating-Point Execution
Models—UISA,” for more information.

FPRO
FPR1

FPR31

Figure 2-2. Floating-Point Registers (FPRSs)
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2.1.3 Condition Register (CR)

The condition register (CR) is a 32-bit register that reflects the result of certain operations
and provides a mechanism for testing and branching. The bits in the CR are grouped into

eight 4-bit fields, CRO—-CR7, as shown below. -
2

CRO CR1 CR2 CR3 CR4 CR5 CR6 CR7

0 34 7 8 11 12 15 16 19 20 23 24 27 28 31

Figure 2-3. Condition Register (CR)

The CR fields can be set in one of the following ways:

» Specified fields of the CR can be set from a GPR by usingtitré instruction.

» The contents of the XER[0-3] can be moved to another CR field by usingc¢hie
instruction.

» A specified field of the XER can be copied to a specified field of the CR by using the
mcrxr instruction.

» A specified field of the FPSCR can be copied to a specified field of the CR by using
themcrfs instruction.

» Logical instructions of the condition register can be used to perform logical
operations on specified bits in the condition register.

* CRO can be the implicit result of an integer instruction.

* CR1 can be the implicit result of a floating-point instruction.

* A specified CR field can indicate the result of either an integer or floating-point
compare instruction.

NOTE: Branch instructions are provided to test individual CR bits.
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2.1.3.1 Condition Register CRO Field Definition

For all integer instructions, when the CR is set to reflect the result of the operation (that is,
when Rc = 1), and foaddic., andi., andandis,, the first three bits of CRO are set by an
algebraic comparison of the result to zero; the fourth bit of CRO is copied from XER[SO].
For integer instructions, CR bits 0-3 are set to reflect the result as a signed quantity.

The CR bits are interpreted as shown in Table 2-1. If any portion of the result is undefined,
the value placed into the first three bits of CRO is undefined.

Table 2-1. Bit Settings for CRO Field of CR

CRO -
Bit Description
0 Negative (LT)—This bit is set when the result is negative.
1 Positive (GT)—This bit is set when the result is positive (and not
Zero).
2 Zero (EQ)—This bit is set when the result is zero.
3 Summary overflow (SO)—This is a copy of the final state of XER[SO]
at the completion of the instruction.

NOTE: If overflow occurs, CRO may not reflect the true (that is, infinitely precise)
results.

2.1.3.2 Condition Register CR1 Field Definition

In all floating-point instructions when the CR is set to reflect the result of the operation (that
Is, when the instruction’s record bit, Rc, is set), CR1 (bits 4—7 of the CR) is copied from

bits 0-3 of the FPSCR and indicates the floating-point exception status. For more
information about the FPSCR, see Section 2.1.4, “Floating-Point Status and Control
Register (FPSCR).” The bit settings for the CR1 field are shown in Table 2-2.

Table 2-2. Bit Settings for CR1 Field of CR

CR1 .
Bit Description
4 Floating-point exception (FX)—This is a copy of the final state of
FPSCRI[FX] at the completion of the instruction.
5 Floating-point enabled exception (FEX)—This is a copy of the final
state of FPSCR[FEX] at the completion of the instruction.
6 Floating-point invalid exception (VX)—This is a copy of the final state
of FPSCR[VX] at the completion of the instruction.
7 Floating-point overflow exception (OX)—This is a copy of the final
state of FPSCR[OX] at the completion of the instruction.

2-6 PowerPC Microprocessor 32-bit Family: The Programming Environments



2.1.3.3 Condition Register CR n Field—Compare Instruction

For a compare instruction, when a specified CR field is set to reflect the result of the
comparison, the bits of the specified field are interpreted as shown in Table 2-3.

Table 2-3. CR n Field Bit Settings for Compare Instructions

CRn L. 2
Bit 1 Description
0 Less than or floating-point less than (LT, FL).
For integer compare instructions: rA < SIMM or rB (signed comparison) or
rA < UIMM or rB (unsigned comparison).
For floating-point compare instructions: frA < frB.
1 Greater than or floating-point greater than (GT, FG).
For integer compare instructions: rA > SIMM or rB (signed comparison) or
rA > UIMM or rB (unsigned comparison).
For floating-point compare instructions: frA > frB.
2 Equal or floating-point equal (EQ, FE).
For integer compare instructions: rA = SIMM, UIMM, or rB.
For floating-point compare instructions: frA = frB.
3 Summary overflow or floating-point unordered (SO, FU).
For integer compare instructions: This is a copy of the final state of XER[SO]
at the completion of the instruction.
For floating-point compare instructions: One or both of frA and frB is a Not a
Number (NaN).

Notes :*Here, the bit indicates the bit number in any one of the 4-bit subfields, CRO-CR7.
2For a complete description of instruction syntax conventions, refer to Table 8-2 on
page 8-2.

2.1.4 Floating-Point Status and Control Register (FPSCR)
The Floating-Point Status and Control Register (FPSCR), shown inFigure 2-4, is used for:

» Recording exceptions generated by floating-point operations

» Recording the type of the result produced by a floating-point operation

» Controlling the rounding mode used by floating-point operations
» Enabling or disabling the reporting of exceptions (that is, invoking the exception

handler)

Bits 0-23 are status bits. Bits 24—-31 are control bits. Status bits in the FPSCR are updated
at the completion of the instruction execution.

Except for the floating-point enabled exception summary (FEX) and floating-point invalid
operation exception summary (VX), the exception condition bits in the FPSCR (bits 0-12
and 21-23) are sticky. Once set, sticky bits remain set until they are cleared by the relevant
mcrfs, mtfsfi, mtfsf, or mtfsbO instruction.

FEX and VX are the logical ORs of other FPSCR bits. Therefore, these two bits are not
listed among the FPSCR bits directly affected by the various instructions.

Chapter 2. PowerPC Register Set
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Figure 2-4. Floating-Point Status and Control Register (FPSCR)

A listing of FPSCR bit settings is shown in Table 2-4.

Table 2-4. FPSCR Bit Settings

Bit(s) Name Description

0 FX Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf,
implicitly sets FPSCR[FX] if that instruction causes any of the floating-point exception bits in
the FPSCR to transition from 0 to 1. The mcrfs , mtfsfi , mtfsf, mtfsb0 , and mtfsbl
instructions can alter FPSCR[FX] explicitly. This is a sticky bit.

1 FEX Floating-point enabled exception summary. This bit signals the occurrence of any of the
enabled exception conditions. It is the logical OR of all the floating-point exception bits masked
by their respective enable bits (FEX = (VX & VE) * (OX & OE) * (UX & UE) " (ZX & ZE) ™ (XX
& XE)). The mcrfs , mtfsf , mtfsfi , mtfsbO , and mtfsb1 instructions cannot alter FPSCR[FEX]
explicitly. This is not a sticky bit.

2 VX Floating-point invalid operation exception summary. This bit signals the occurrence of any
invalid operation exception. It is the logical OR of all of the invalid operation exceptions. The
mcrfs , mtfsf, mtfsfi , mtfsbO , and mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This
is not a sticky bit.

3 OoX Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2, “Overflow,
Underflow, and Inexact Exception Conditions.”

4 UX Floating-point underflow exception. This is a sticky bit. See Section 3.3.6.2.2, “Underflow
Exception Condition.”

5 ZX Floating-point zero divide exception. This is a sticky bit. See Section 3.3.6.1.2, “Zero Divide
Exception Condition.”

6 XX Floating-point inexact exception. This is a sticky bit. See Section 3.3.6.2.3, “Inexact Exception
Condition.”

FPSCR[XX] is the sticky version of FPSCR[FI]. The following rules describe how FPSCR[XX]
is set by a given instruction:
« If the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically
ORing the old value of FPSCR[XX] with the new value of FPSCR[FI].
« If the instruction does not affect FPSCRI[FI], the value of FPSCR[XX] is unchanged.

7 VXSNAN | Floating-point invalid operation exception for SNaN. This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

8 VXISI Floating-point invalid operation exception for 0—00 . This is a stiky bit.

See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”
9 VXIDI Floating-point invalid operation exception for 00 = 00, This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”
10 VXzZDZzZ Floating-point invalid operation exception for O+ Q. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”
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Table 2-4. FPSCR Bit Settings (Continued)

Bit(s) Name Description

11 VXIMZ Floating-point invalid operation exception for © * Q. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

12 VXVC Floating-point invalid operation exception for invalid compare. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

13 FR Floating-point fraction rounded. The last arithmetic or rounding and conversion instruction that
rounded the intermediate result incremented the fraction. This bit is NOT sticky.
See Section 3.3.5, “Rounding.”

14 Fl Floating-point fraction inexact. The last arithmetic or rounding and conversion instruction
either rounded the intermediate result (producing an inexact fraction) or caused a disabled
overflow exception. This bit is NOT sticky.

See Section 3.3.5, “Rounding.” For more information regarding the relationship between
FPSCR[FI] and FPSCR[XX], see the description of the FPSCR[XX] bit.

15-19 | FPRF Floating-point result flags. For arithmetic, rounding, and conversion instructions, the field is
based on the result placed into the target register, except that if any portion of the result is
undefined, the value placed here is undefined.

15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion
instructions may set this bit with the FPCC bits to indicate the class of the result as
shown in Table 2-5.

16-19 Floating-point condition code (FPCC). Floating-point compare instructions always
set one of the FPCC bits to one and the other three FPCC bits to zero. Arithmetic,
rounding, and conversion instructions may set the FPCC bits with the C bit to
indicate the class of the result. Note: In this case the high-order three bits of the
FPCC retain their relational significance indicating that the value is less than,
greater than, or equal to zero.

16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)

19 Floating-point unordered or NaN (FU or ?)

Note: These are NOT sticky bits.

20 — Reserved

21 VXSOFT | Floating-point invalid operation exception for software request. This is a sticky bit. This bit can
be altered only by one of the following instructions: mcrfs , mtfsfi , mtfsf , mtfsbO , or mtfsbl .
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

22 VXSQRT | Floating-point invalid operation exception for invalid square root. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

23 VXCVI Floating-point invalid operation exception for invalid integer convert. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

24 VE Floating-point invalid operation exception enable.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

25 OE IEEE floating-point overflow exception enable.
See Section 3.3.6.2, “Overflow, Underflow, and Inexact Exception Conditions.”

26 UE IEEE floating-point underflow exception enable.
See Section 3.3.6.2.2, “Underflow Exception Condition.”

27 ZE IEEE floating-point zero divide exception enable.
See Section 3.3.6.1.2, “Zero Divide Exception Condition.”

28 XE Floating-point inexact exception enable. See Section 3.3.6.2.3, “Inexact Exception Condition.”
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Table 2-4. FPSCR Bit Settings (Continued)

Bit(s) Name Description

29 NI Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards
and the other FPSCR bits may have meanings other than those described here. If the bit is set
and if all implementation-specific requirements are met and if an IEEE-conforming result of a
floating-point operation would be a denormalized number, the result produced is zero
(retaining the sign of the denormalized number). Any other effects associated with setting this
bit are described in the user’s manual for the implementation (the effects are implementation-
dependent).

30-31 | RN Floating-point rounding control. See Section 3.3.5, “Rounding.”
00 Round to nearest

01 Round toward zero

10  Round toward +infinity

11  Round toward —infinity

Table 2-5 illustrates the floating-point result flags used by PowerPC processors. The result
flags correspond to FPSCR bits 15-19.

Table 2-5. Floating-Point Result Flags in FPSCR

Result Flags (Bits 15—-19)
Result Value Class
C < > = ?
1 0 0 0 1 Quiet NaN
0 1 0 0 1 | —Infinity
0 1 0 0 0 | —Normalized number
1 1 0 0 0 | —Denormalized number
1 0 0 1 0 | —Zero
0 0 0 1 0 | +Zero
1 0 1 0 0 | +Denormalized number
0 0 1 0 0 | +Normalized number
0 0 1 0 1 | +Infinity
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2.1.5 XER Register (XER)
The XER register (XER) is a 32-bit, user-level register shown in Figure 2-5.

SO oV

01

2 3

[ Reserved

24 25 31

Figure 2-5. XER Register

The bit definitions for XER, shown in Table 2-6, are based on the operation of an
instruction considered as a whole, not on intermediate results. For example, the result of the
Subtract from Carryingdubfcx) instruction is specified as the sum of three values. This
instruction sets bits in the XER based on the entire operation, not on an intermediate sum.

Table 2-6. XER Bit Definitions

Bit(s)

Name

Description

SO

Summary overflow. The summary overflow bit (SO) is set whenever an instruction (except mtspr )
sets the overflow bit (OV). Once set, the SO bit remains set until it is cleared by an mtspr
instruction (specifying the XER) or an mcrxr instruction. It is not altered by compare instructions,
nor by other instructions (except mtspr to the XER, and mcrxr ) that cannot overflow. Executing
an mtspr instruction to the XER, supplying the values zero for SO and one for OV, causes SO to
be cleared and OV to be set.

ov

Overflow. The overflow bit (OV) is set to indicate that an overflow has occurred during execution of
an instruction. Add, subtract from, and negate instructions having OE = 1 set the OV bit if the
carry out of the msb is not equal to the carry into the msb, and clear it otherwise. Multiply low and
divide instructions having OE = 1 set the OV bit if the result cannot be represented in 32 bits
(mullw , divw, divwu ), and clear it otherwise. The OV bit is not altered by compare instructions
that cannot overflow (except mtspr to the XER, and mcrxr).

CA

Carry. The carry bit (CA) is set during execution of the following instructions:
« Add carrying, subtract from carrying, add extended, and subtract from extended instructions
set CA if there is a carry out of the msb, and clear it otherwise.
« Shift right algebraic instructions set CA if any 1 bits have been shifted out of a negative
operand, and clear it otherwise.
The CA bit is not altered by compare instructions, nor by other instructions that do not set carry
(except shift right algebraic, mtspr to the XER, and mcrxr ).

3-24

Reserved

25-31

This field specifies the number of bytes to be transferred by a Load String Word Indexed (Iswx ) or
Store String Word Indexed (stswx ) instruction.
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2.1.6 Link Register (LR)

The link register (LR) is a 32-bit register which supplies the branch target address for the
Branch Conditional to Link Registeb¢lrx) instructions, and in the case of a branch with
link update instruction, can be used to hold the logical address of the instruction that
follows the branch with link update instruction (for returning from a subroutine). The
format of LR is shown in Figure 2-6.

Branch Address

Figure 2-6. Link Register (LR)

NOTE: Although the two least-significant bits can accept any values written to them,
they are ignored when the LR is used as an address. Both conditional and
unconditional branch instructions include the option of placing the logical
address of the instruction following the branch instruction in the LR.

The link register can be also accessed byrtiispr andmfspr instructions using SPR 8.
Prefetching instructions along the target path (loaded byepr instruction) is possible
provided the link register is loaded sufficiently ahead of the branch instruction so that any
branch prediction hardware can calculate the branch address. Additionally, PowerPC
processors can prefetch along a target path loaded by a branch and link instruction.

NOTE: Some PowerPC processors may keep a stack of the LR values most recently set
by branch with link update instructions. To benefit from these enhancements, use
of the link register should be restricted to the manner described in
Section 4.2.4.2, “Conditional Branch Control.”

2.1.7 Count Register (CTR)

The count register (CTR) is a 32-bit register. The CTR can hold a loop count that can be
decremented during execution of branch instructions that contain an appropriately coded
BO field. If the value in CTR is 0 before being decremented, it is OXFFFF_FFEF (3
afterwards. The CTR can also provide the branch target address for the Branch Conditional
to Count Registerbcctrx) instruction. The CTR is shown in Figure 2-7.

CTR

Figure 2-7. Count Register (CTR)

Prefetching instructions along the target path is also possible provided the count register is
loaded sufficiently ahead of the branch instruction so that any branch prediction hardware
can calculate the correct value of the loop count.
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The count register can also be accessed byriispr andmfspr instructions by specifying
SPR 9. In branch conditional instructions, the BO field specifies the conditions under which
the branch is taken. The first four bits of the BO field specify how the branch is affected by
or affects the CR and the CTR. The encoding for the BO field is shown in Table 2-7.

Table 2-7. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR 0 and the condition is TRIE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

01llzy Branch if the condition is TRUE.

1200y Decrement the CTR, then branch if the decremented CTR 0.

1201y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

Notes: The y bit provides a hint about whether a conditional branch is likely to be taken and is used by
some PowerPC implementations to improve performance. Other implementations may ignore the
y bit.

The zindicates a bit that is ignored. The z bits should be cleared (zero), as they may be assigned
a meaning in a future version of the PowerPC UISA.

2.2 PowerPC VEA Register Set—Time Base

The PowerPC virtual environment architecture (VEA) defines registers in addition to those
defined by the UISA. The PowerPC VEA register set can be accessed by all softwarith
either user- or supervisor-level privileges. Figure 2-8 provides a graphic illustration of the
PowerPC VEA register set. (Figure 2-8 is similar to that found in Figure 2-1 with the
additonal PowerPC VEA registers.)

The PowerPC VEA introduces the time base facility (TB), a 64-bit structure that consists
of two 32-bit registers—time base upper (TBU) and time base lower (TBL).

NOTE: The time base registers can be accessed by both user- and supervisor-level
instructions. In the context of the VEA, user-level applications are permitted
read-only access to the TB. The OEA defines supervisor-level access to the TB
for writing values to the TB. See Section 2.3.12, “Time Base Facility The
general-purpose registers (GPRS), link register (LR), and count register (CTR)
are 32 bits. These registers are described fully in Section 2.1, “PowerPC UISA
Register Set.” (TB)—OEA,” for more information.

In Figure 2-8, the numbers to the right of the register name indicates the number that is used
in the syntax of the instruction operands to access the register (for example, the number
used to access the XER is SPR 1).
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Figure 2-8. VEA Programming Model—User-Level Registers Plus Time Base
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The time base (TB), shown in Figure 2-9, is a 64-bit structure that contains a 64-bit
unsigned integer that is incremented periodically. Each increment adds 1 to the low-order
bit (bit 31 of TBL). The frequency at which the counter is incremented is implementation-

dependent.

TBU—Upper 32 bits of time base TBL—Lower 32 bits of time base

0 310 31

Figure 2-9. Time Base (TB)

The TB increments until its value becomes OxFFFF_FFFF_FFFF_FlfTﬂF @. At the
next increment its value becomes 0x0000 0000 _0000_0000.

NOTE: There is no explicit indication that this has occurred (that is, no exception is
generated).

The period of the time base depends on the driving frequency. The TB is implemented such
that the following requirements are satisfied:

1. Loading a GPR from the time base has no effect on the accuracy of the time base.

2. Storing a GPR to the time base replaces the value in the time base with the value in
the GPR.

The PowerPC VEA does not specify a relationship between the frequency at which the time
base is updated and other frequencies, such as the processor clock. The TB update
frequency is not required to be constant; however, for the system software to maintain time
of day and operate interval timers, one of two things is required:

* The system provides an implementation-dependent exception to software whenever
the update frequency of the time base changes and a means to determine the current
update frequency; or

* The system software controls the update frequency of the time base.

NOTE: If the operating system initializes the TB to some reasonable value and the
update frequency of the TB is constant, the TB can be used as a source of values
that increase at a constant rate, such as for time stamps in trace entries.

Even if the update frequency is not constant, values read from the TB are monotonically
increasing (except when the TB wraps froftf 2 1 to 0). If a trace entry is recorded each

time the update frequency changes, the sequence of TB values can be postprocessed to
become actual time values.

However, successive readings of the time base may return identical values due to
iImplementation-dependent factors such as a low update frequency or initialization.
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2.2.1 Reading the Time Base

Themftb instruction is used to read the time base. The following sections discuss reading
the time base. For specific details on usingrtifth instruction, see Chapter 8, “Instruction
Set.” For information on writing the time base, see Section 2.3.12.1, “Writing to the Time
Base.”

Tt is not possible to read the entire 64-bit time base in a single instructionmiftie
simplified mnemonic moves from the lower half of the time base register (TBL) to a GPR,
and themftbu simplified mnemonic moves from the upper half of the time base (TBU) to
a GPR.

Because of the possibility of a carry from TBL to TBU occurring between reads of the TBL
and TBU, a sequence such as the following example is necessary to read the time base:

loop:
mftbu r x #load from TBU
mftb ry #load from TBL
mftbu rz #load from TBU
cmpw rz, rx #see if ‘old’ = ‘new’
bne loop #loop if carry occurred

The comparison and loop are necessary to ensure that a consistent pair of values has been
obtained.

2.2.2 Computing Time of Day from the Time Base

Since the update frequency of the time base is system-dependent, the algorithm for
converting the current value in the time base to time-of-day is also system-dependent.

In a system in which the update frequency of the time base may change over time, it is not
possible to convert an isolated time base value into time of day. Instead, a time base value
has meaning only with respect to the current update frequency and the time of day that the
update frequency was last changed. Each time the update frequency changes, either the
system software is notified of the change via an exception, or else the change was instigated
by the system software itself. At each such change, the system software must compute the
current time of day using the old update frequency, compute a new value of ticks-per-
second for the new frequency, and save the time of day, time base value, and tick rate.
Subsequent calls to compute time of day use the current time base value and the saved data.

A generalized service to compute time of day could take the following as input:

» Time of day at beginning of current epoch

» Time base value at beginning of current epoch

» Time base update frequency

» Time base value for which time of day is desired

For a PowerPC system in which the time base update frequency does not vary, the first three
inputs would be constant.
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2.3 PowerPC OEA Register Set

The PowerPC operating environment architecture (OEA) completes the discussion of
PowerPC registers. Figure 2-10 shows a graphic representation of the entire PowerPC
register set—UISA, VEA, and OEA. In Figure 2-10 the numbers to the right of the regis

name indicates the number that is used in the syntax of the instruction operands to
the register (for example, the number used to access the XER is SPR 1).

All of the SPRs in the OEA can be accessed only by supervisor-level instructions; any
attempt to access these SPRs with user-level instructions results in a superviso el
exception. Some SPRs are implementation-specific. In some cases, not all of a register’s
bits are implemented in hardware.

If a PowerPC processor executes mmtspr/mfspr instruction with an undefined SPR
encoding, it takes (depending on the implementation) an illegal instruction program
exception, a privileged instruction program exception, or the results are boundedly
undefined. See Section 6.4.7, “Program Exception (0x00700),” for more information.

NOTE: The GPRs, LR, CTR, TBL, MSR, DAR, SDR1, SRRO0, SRR1, and
SPRGO-SPRG3 are 32 bits wide.
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The PowerPC OEA supervisor-level registers are:

» Configuration registers include:

— A machine state register (MSR) which defines the state of the processor. The
MSR can be modified by the Move to Machine State Registémisr), System
Call (s9, and Return from Interruptff ) instructions. It can be read by the Move
from Machine State Registen{msr) instruction. For more information, see
Section 2.3.1, “Machine State Register (MSR).”

— A processor version register (PVR) which is a read-only register that identifies
the version (model) and revision level of the PowerPC processor. For more
information, see Section 2.3.2, “Processor Version Register (PVR).”

* Memory management registers include:

— Block-address translation (BAT) registers. The PowerPC OEA includes eight
block-address translation registers (BATS), consisting of four pairs of instruction
BATs (IBATOU-IBAT3U and IBATOL—IBAT3L) and four pairs of data BATs
(DBATOU-DBAT3U and DBATOL-DBAT3L). See Figure 2-10 for a list of the
SPR numbers for the BAT registers. Refer to Section 2.3.3, “BAT Registers,” for
more information.

— An SDR1 register which specifies the page table base address used in virtual-to-
physical address translation. For more information, see Section 2.3.4, “SDR1.”

NOTE: The physical address is referred to as the real address in the architecture
specification.

— Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SRO-SR15). The fields in the segment register are interpreted
differently depending on the value of bit 0. For more information, see
Section 2.3.5, “Segment Registers.”

» Exception handling registers include:

— A data address register (DAR) which is set to the effective address generated by
the a DSI or an alignment exception. For more information, see Section 2.3.6,
“Data Address Register (DAR).”

— The SPRGO0-SPRG3 registers which are provided for operating system use. For
more information, see Section 2.3.7, “SPRG0O-SPRG3.”

— A DSISR which defines the cause of DSI and alignment exceptions. For more
information, refer to Section 2.3.8, “DSISR.”

— A machine status save/restore register 0 (SRR0). The SRRO register is used to
save the program effective address on exceptions and return to interrupted
program when anfi instruction is executed. For more information, see Section
2.3.9, “Machine Status Save/Restore Register 0 (SRRO).

— A machine status save/restore register 1 (SRR1). The SRR1 register is used to
save MSR register and machine exception status bits and to restore MSR register
when arrfi instruction is executed. For more information, see Section 2.3.10,
“Machine Status Save/Restore Register 1 (SRR1).”
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— A floating-point exception cause register (FPECR) to identify the cause of a
floating-point exception. (This is an optional register.)

» Miscellaneous registers include:

— Time base (TB). The TB is a 64-bit structure that maintains the time of day and
operates interval timers. The TB consists of two 32-bit registers—time base
upper (TBU) and time base lower (TBL).

NOTE: The time base registers can be accessed by both user- and supervisor-level
instructions. For more information, see Section 2.3.12, “Time Base Facility
(TB)—OEA” and Section 2.2, “PowerPC VEA Register Set—Time Base.”

— Decrementer register (DEC). This register is a 32-bit decrementing counter that
provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock. For
more information, see Section 2.3.13, “Decrementer Register (DEC).”

— External access register (EAR). This optional register is used in conjunction with
the eciwx andecowxinstructions.

NOTE: The EAR register and theciwx andecowxinstructions are optional in the
PowerPC architecture and may not be supported in all PowerPC processors that
implement the OEA. For more information about the external control facility, see
Section 4.3.4, “External Control Instructions.”

— Data address breakpoint register (DABR). This optional register is used to
control the data address breakpoint facility.

NOTE: The DABR is optionalin the PowerPC architecture and may not be supported in
all PowerPC processors that implement the OEA. For more information about
the data address breakpoint facility, see Section 6.4.3, “DSI Exception
(0x00300).”

— Processor identification register (PIR). This optional register is used to hold a
value that distinguishes an individual processor in a multiprocessor environment.

2.3.1 Machine State Register (MSR)

The machine state register (MSR) is a 32-bit register (see Figure 2-11). The MSR defines
the state of the processor. When an exception occurs, the contents of the MSR register are
saved in SRR1. A new set of bits are loaded into the MSR as determined by the exception.
See Table 2-8 for a description for MSR bits. The MSR can also be modified bytthsr,

sG andrfi instructions. It can be read by timémsr instruction.

[] Reserved

0000 0000 0000 O POW| O | ILE [EE|PR|FP|ME|FEO|SE|BE|FE1| O | IP [IR[DR| 00 |RI[LE

0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 272829 30 31

Figure 2-11. Machine State Register (MSR)
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Table 2-8 shows the bit definitions for the MSR.

Table 2-8. MSR Bit Settings

bit(s) Name Description
0-12 — Reserved
13 POW Power management enable

0  Power management disabled (normal operation mode)

1  Power management enabled (reduced power mode)

Note: Power management functions are implementation-dependent. If the

function is not implemented, this bit is treated as reserved.

14 — Reserved
15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into

MSRILE] to select the endian mode for the context established by the

exception.

16 EE External interrupt enable

0  While the bit is cleared, the processor delays recognition of external
interrupts and decrementer exception conditions.

1  The processor is enabled to take an external interrupt or the decrementer
exception.

17 PR Privilege level
0  The processor can execute both user- and supervisor-level instructions.
1  The processor can only execute user-level instructions.

18 FP Floating-point available

0  The processor prevents dispatch of floating-point instructions, including
floating-point loads, stores, and moves.

1  The processor can execute floating-point instructions.

19 ME Machine check enable

0  Machine check exceptions are disabled.

1  Machine check exceptions are enabled.

20 FEO Floating-point exception mode 0 (see Table 2-9).
21 SE Single-step trace enable (Optional)

0 The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the
successful execution of the next instruction.

Note: If the function is not implemented, this bit is treated as reserved.

22 BE Branch trace enable (Optional)

0  The processor executes branch instructions normally.

1 The processor generates a branch trace exception after completing the
execution of a branch instruction, regardless of whether the branch was
taken.

Note: If the function is not implemented, this bit is treated as reserved.

23 FE1 Floating-point exception mode 1 (See Table 2-9).
24 — Reserved
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Table 2-8. MSR Bit Settings (Continued)

bit(s) Name Description

25 P Exception prefix. The setting of this bit specifies whether an exception vector
offset is prepended with Fs or 0s. In the following description, nnnnn is the
offset of the exception vector. See Table 6-2.

0  Exceptions are vectored to the physical address 0x000n_nnnn.

1  Exceptions are vectored to the physical address OxFFFn_nnnn.

In most systems, IP is set to 1 during system initialization, and then cleared to
0 when initialization is complete.

26 IR Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information, see Chapter 7, “Memory Management.”

27 DR Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information, see Chapter 7, “Memory Management.”

28-29 — Reserved

30 RI Recoverable exception (for system reset and machine check exceptions).
0  Exception is not recoverable.

1  Exception is recoverable.

For more information, see Chapter 6, “Exceptions.”

31 LE Little-endian mode enable
0  The processor runs in big-endian mode.
1  The processor runs in little-endian mode.

The floating-point exception mode bits (FEO-FE1) are interpreted as shown in
Table 2-9

Table 2-9. Floating-Point Exception Mode Bits

FEO | FE1 Mode
0 0 Floating-point exceptions disabled
0 1 Floating-point imprecise nonrecoverable
1 0 Floating-point imprecise recoverable
1 1 Floating-point precise mode
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Table 2-10 indicates the initial state of the MSR at power up.
Table 2-10. State of MSR at Power Up

Bit(s) Name Def:jﬁ/lglue
0-12 — Unspecifiedl
13 POW 0
14 — Unspecifiedl
15 ILE 0
16 EE 0
17 PR 0
18 FP 0
19 ME 0
20 FEO 0
21 SE 0
22 BE 0
23 FE1 0
24 _ Unspeciﬁed1
25 P 12
26 IR 0
27 DR 0
2829 | — Unspecified®
30 RI 0
31 LE 0

1 Unspecified can be either 0 or 1
21 is typical, but might be 0

2.3.2 Processor Version Register (PVR)

The processor version register (PVR) is a 32-bit, read-only register which contains a value
identifying the specific version (model) and revision level of the PowerPC processor (see
Figure 2-12). The contents of the PVR can be copied to a GPR bytser instruction.

Read access to the PVR is supervisor-level only; write access is not provided.

Version Revision

0 15 16 31

Figure 2-12. Processor Version Register (PVR)
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The PVR consists of two 16-bit fields:

» Version (bits 0-15)—A 16-bit number that uniquely identifies a particular processor
version. This number can be used to determine the version of a processor; it may not
distinguish between different end product models if more than one model uses the
same processor.

» Revision (bits 16—31)—A 16-bit number that distinguishes between various releases
of a particular version (that is, an engineering change level). The value of the
revision portion of the PVR is implementation-specific. The processor revision level
is changed for each revision of the device.

2.3.3 BAT Registers

The BAT registers (BATs) maintain the address translation information for eight blocks of
memory. The BATs are maintained by the system software and are implemented as eight
pairs of special-purpose registers (SPRs). Each block is defined by a pair of SPRs called
upper and lower BAT registers. These BAT registers define the starting addresses and sizes
of BAT areas.

The PowerPC OEA defines the BAT registers as eight instruction block-address translation
(IBAT) registers, consisting of four pairs of instruction BATSs, or IBATs (IBATOU—-IBAT3U

and IBATOL-IBAT3L) and eight data BATs, or DBATs, (DBATOU-DBAT3U and
DBATOL-DBAT3L). See Figure 2-10 for a list of the SPR numbers for the BAT registers.

Figure 2-13 and Figure 2-14 show the format of the upper and lower BAT registers for
32-bit PowerPC processors.

[] Reserved
BEPI 0 000 BL Vs|Vp
0 14 15 18 19 29 30 31
Figure 2-13. Upper BAT Register
[] Reserved
BRPN 0 0000 0000 O WIMG* 0 PP
0 14 15 24 25 28 29 30 31

*W and G bits are not defined for IBAT registers. Attempting to write to these bits causes boundedly-undefined results.

Figure 2-14. Lower BAT Register
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Table 2-11 describes the bits in the BAT registers.

Table 2-11. BAT Registers—Field and Bit Descriptions

Upper/
Lower Bit(s) Name Description
BAT

Upper 0-14 BEPI Block effective page index. This field is compared with high-order bits
BAT of the logical address to determine if there is a hit in that BAT array
Register entry.

Note: The architecture specification refers to logical address as
effective address.

15-18 — Reserved

19-29 BL Block length. BL is a mask that encodes the size of the block. Values
for this field are listed in Table 2-12.

30 Vs Supervisor mode valid bit. This bit interacts with MSR[PR] to
determine if there is a match with the logical address. For more
information, see Section 7.4.2, “Recognition of Addresses in BAT
Arrays."

31 Vp User mode valid bit. This bit also interacts with MSR[PR] to
determine if there is a match with the logical address. For more
information, see Section 7.4.2, “Recognition of Addresses in BAT
Arrays.”

Lower 0-14 BRPN This field is used in conjunction with the BL field to generate high-
BAT order bits of the physical address of the block.
Register

15-24 — Reserved

25-28 WIMG Memory/cache access mode bits

W  Write-through

I Caching-inhibited

M  Memory coherence

G Guarded

Attempting to write to the W and G bits in IBAT registers causes
boundedly-undefined results. For detailed information about the
WIMG bits, see Section 5.2.1, “Memory/Cache Access Attributes."

29 — Reserved

30-31 PP Protection bits for block. This field determines the protection for the
block as described in Section 7.4.4, “Block Memory Protection."

Table 2-12 lists the BAT area lengths encoded in BAT[BL].
Table 2-12. BAT Area Lengths

Bﬁ:—n’;ﬁa BL Encoding
128 Kbytes 000 0000 0000
256 Kbytes 000 0000 0001
512 Kbytes 000 0000 0011
1 Mbyte 000 0000 0111
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Table 2-12. BAT Area Lengths (Continued)

Bf;—n';‘:ﬁa BL Encoding
2 Mbytes 000 0000 1111
4 Mbytes 000 0001 1111
8 Mbytes 000 0011 1111
16 Mbytes 000 0111 1111
32 Mbytes 000 1111 1111
64 Mbytes 0011111 1111
128 Mbytes 0111111 1111
256 Mbytes 111111111112

Only the values shown in Table 2-12 are valid for the BL field. The rightmost bit of BL is
aligned with bit 14 of the logical address. A logical address is determined to be within a
BAT area if the logical address matches the value in the BEPI field.

The boundary between the cleared bits and set bits (Os and 1s) in BL determines the bits of
logical address that participate in the comparison with BEPI. Bits in the logical address
corresponding to set bits in BL are cleared for this comparison. Bits in the logical address
corresponding to set bits in the BL field, concatenated with the 17 bits of the logical address
to the right (less significant bits) of BL, form the offset within the BAT area. This is
described in detail in Chapter 7, “Memory Management.”

The value loaded into BL determines both the length of the BAT area and the alignment of
the area in both logical and physical address space. The values loaded into BEPI and BRPN
must have at least as many low-order zeros as there are ones in BL.

Use of BAT registers is described in Chapter 7, “Memory Management.”
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2.3.4 SDR1
The SDR1 is a 32-bit register and is shown in Figure 2-15.

|:| Reserved

HTABORG 0000 000 HTABMASK

0 15 16 22 23 31

Figure 2-15. SDR1
The bits of SDR1 are described in Table 2-13.

Table 2-13. SDR1 Bit Settings

Bits Name Description
0-15 HTABORG The high-order 16 bits of the 32-bit physical address of the page table
16-22 — Reserved

23-31 HTABMASK Mask for page table address

The HTABORG field in SDR1 contains the high-order 16 bits of the 32-bit physical address
of the page table. Therefore, the page table is constrained to lie Jcﬁqhy@ (64 Kbytes)
boundary at a minimum. At least 10 bits from the hash function are used to index into the
page table. The page table must consist of at least 64 Kbyjt%@UEGs of 64 bytes each).

The page table can be any siZbvhere 16< n < 25. As the table size is increased, more

bits are used from the hash to index into the table and the value in HTABORG must have
more of its low-order bits equal to 0. The HTABMASK field in SDR1 contains a mask value
that determines how many bits from the hash are used in the page table index. This mask
must be of the form 0b00...011...1; that is, a string of O bits followed by a string of 1bits.
The 1 bits determine how many additional bits (at least 10) from the hash are used in the
index; HTABORG must have this same number of low-order bits equal to O.

See Figure 7-23 for an example of the primary PTEG address generation.

For example, suppose that the page table is 8,183, @4-byte PTEGs, for a total size of
219%pytes (512 Kbytes).

NOTE: A 13-bitindex is required. Ten bits are provided from the hash initially, so 3
additional bits form the hash must be selected.
The value in HTABMASK must be 0x007 and the value in HTABORG must
have its low-order 3 bits (bits 13—-15 of SDR1) equal to O.
This means that the page table must begin on a

23 +10+6- 719 - 512 Khytes boundary.

For more information, refer to Chapter 7, “Memory Management.”
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2.3.5 Segment Registers

The segment registers contain the segment descriptors. The OEA defines a segment register
file of sixteen 32-bit registers. Segment registers can be accessed by usmigitimafsr
andmtsrin/mfsrin instructions. The value of bit 0, the T bit, determines how the remaining
register bits are interpreted.

Figure 2-16 shows the format of a segment register when T = 0.

[] Reserved

T [Ks|Kp| N 0000

VSID

0 1 2 3 4 78

Figure 2-16. Segment Register Format (T = 0)

Segment register bit settings when T = 0 are described in Table 2-14.

Table 2-14. Segment Register Bit Settings (T = 0)

Bits Name Description
0 T T = 0 selects this format
1 Ks Supervisor-state protection key
2 Kp User-state protection key
3 N No-execute protection
4-7 — Reserved
8-31 VSID Virtual segment ID

Figure 2-17 shows the bit definition when T = 1.

31

T | Ks| Kp BUID

Controller-Specific Information

11 12

Figure 2-17. Segment Register Format (T = 1)

31
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The bits in the segment register when T = 1 are described in Table 2-15.

Table 2-15. Segment Register Bit Settings (T = 1)

Bits Name Description
0 T T = 1 selects this format.
1 Ks Supervisor-state protection key
2 Kp User-state protection key
3-11 BUID Bus unit ID
12-31 CNTLR_SPEC | Device-specific data for /0O controller

If an access is translated by the block address translation (BAT) mechanism, the BAT
translation takes precedence and the results of translation using segment registers are not
used. However, if an access is not translated by a BAT, and T = 0 in the selected segment
register, the effective address is a reference to a memory-mapped segment. In this case, the
52-bit virtual address (VA) is formed by concatenating the following:

» The 24-bit VSID field from the segment register
» The 16-bit page index, EA[4-19]
* The 12-bit byte offset, EA[20-31]

The VA is then translated to a physical (real) address as described in Section 7.5, “Memory
Segment Model.”

If T =1 in the selected segment register (and the access is not translated by a BAT), the
effective address is a reference to a direct-store segment. No reference is made to the page
tables.

NOTE: However, the direct-store facility is being phased out of the architecture and will
not likely be supported in future devices. Therefore, all new programs should
write a value of zero to the T bit.

For further discussion of address translation when T = 1, see Section 7.8,
“Direct-Store Segment Address Translation.”

2.3.6 Data Address Register (DAR)
The DAR is a 32-bit register. The DAR is shown in Figure 2-18.

DAR

0 3131

Figure 2-18. Data Address Register (DAR)
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The effective address (EA) generated by a memory access instruction is placed in the DAR
if the access causes an exception (for example, an alignment exception). For information,
see Chapter 6, “Exceptions.”

2.3.7 SPRGO-SPRG3

SPRGO-SPRG3 are 32-bit registers. They are provided for general operating system use,
such as performing a fast state save or for supporting multiprocessor implementations.

The formats of SPRG0O-SPRG3 are shown in Figure 2-19.

SPRGO
SPRG1
SPRG2

SPRG3
0 3131

Figure 2-19. SPRGO0-SPRG3

Table 2-16 provides a description of conventional uses of SPRGO through SPRG3.
Table 2-16. Conventional Uses of SPRGO-SPRG3

Register Description

SPRGO | Software may load a unique physical address in this register to identify an area of memory
reserved for use by the first-level exception handler. This area must be unique for each processor
in the system.

SPRG1 | This register may be used as a scratch register by the first-level exception handler to save the
content of a GPR. That GPR then can be loaded from SPRGO and used as a base register to
save other GPRs to memory.

SPRG2 | This register may be used by the operating system as needed.

SPRG3 | This register may be used by the operating system as needed.

2.3.8 DSISR

The 32-bit DSISR, shown in Figure 2-20, identifies the cause of DSI and alignment
exceptions.

DSISR

Figure 2-20. DSISR

For information about bit settings, see Section 6.4.3, “DSI Exception (0x00300),” and
Section 6.4.6, “Alignment Exception (0x00600).”

2-30 PowerPC Microprocessor 32-bit Family: The Programming Environments



2.3.9 Machine Status Save/Restore Register 0 (SRRO)

The SRRO is a 32-bit register. SRRO is used to save the effective address on exceptions
(interrupts) and return to the interrupted program wherfianstruction is executed. SRRO

holds the address of the first instruction that has not been executed in the program

the exception occurs. It also holds the EA for the instruction that follows the Systemh
(s9 instruction. The format of SRRO is shown in Figure 2-21.

[] Reserved

SRRO 00

0 29 30 31
[] Reserved

SRRO 00

0 29 30 31
Figure 2-21. Machine Status Save/Restore Register 0 (SRRO)

When an exception occurs, SRRO is set to point to an instruction such that all prior
instructions have completed execution and no subsequent instruction has completed
execution. In the case of an error exception the SRRO register is pointing at the instruction
that caused the error. Whendninstruction is executed, the contents of SRRO contains the
address from which to fetch the next instruction to continue program executed. In the case
of an exception where the offending instruction is to be emulated the contents of SRRO
must be incremented by 4 to skip over that instruction. The exception type and status bits
are used to determine the action to be taken. In all cases the instruction pointed to by SRRO
has not completed execution.

NOTE: Insomeimplementations, every instruction fetch performed while MSR[IR] =1,
and every instruction execution requiring address translation when MSR[DR] =
1, may modify SRRO.

For information on how specific exceptions affect SRRO, refer to the descriptions of
individual exceptions in Chapter 6, “Exceptions.”

2.3.10 Machine Status Save/Restore Register 1 (SRR1)

The SRRL1 is a 32-bit register and is used to save exception status and the machine status
register (MSR) on exceptions and to restore machine status register (MSR) winen an
instruction is executed. The format of SRR1 is shown in Figure 2-22.

SRR1

0 3131

Figure 2-22. Machine Status Save/Restore Register 1 (SRR1)
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When an exception occurs, bits 1-4 and 10-15 of SRR1 are loaded with exception-specific
information and bits 16-23, 25-27, and 30-31 of the MSR are placed into the
corresponding bit positions of SRR1. When thas executed, MSR[16-23, 25-27, 30-31]

are loaded from SRR1[16-23, 25-27, 30-31].

The remaining bits of SRR1 are defined as reserved. An implementation may define one or
more of these bits, and in this case, may also cause them to be saved from MSR on an
exception and restored to MSR from SRR1 omfian

NOTE: Insome implementations, every instruction fetch when MSR[IR] = 1, and every
instruction execution requiring address translation when MSR[DR] = 1, may
modify SRR1.

For information on how specific exceptions affect SRR1, refer to the individual exceptions
in Chapter 6, “Exceptions.”

2.3.11 Floating-Point Exception Cause Register (FPECR)
The FPECR register may be used to identify the cause of a floating-point exception.

NOTE: The FPECR is an optional register in the PowerPC architecture and may be
implemented differently (or not at all) in the design of each processor. The user’s
manual of a specific processor will describe the functionality of the FPECR, if it
is implemented in that processor.

2.3.12 Time Base Facility (TB)—OEA

As described in Section 2.2, “PowerPC VEA Register Set—Time Base,” the time base (TB)
provides a long-period counter driven by an implementation-dependent frequency. The
VEA defines user-level read-only access to the TB. Writing to the TB is reserved for
supervisor-level applications such as operating systems and boot-strap routines. The OEA
defines supervisor-level, write access to the TB.

The TB is a volatile resource and must be initialized during reset. Some implementations
may initialize the TB with a known value; however, there is no guarantee of automatic
initialization of the TB when the processor is reset. The TB runs continuously after start-up.

For more information on the user-level aspects of the time base, refer to Section 2.2,
“PowerPC VEA Register Set—Time Base.”

2.3.12.1 Writing to the Time Base
NOTE: Writing to the TB is reserved for supervisor-level software.

The simplified mnemonicsnttbl andmttbu, write the lower and upper halves of the TB,
respectively. The simplified mnemonics listed above are fornt&pr instruction; see
Appendix F, “Simplified Mnemonics,” for more information. Thespr, mttbl, andmttbu
instructions treat TBL and TBU as separate 32-bit registers; setting one leaves the other
unchanged. It is not possible to write the entire 64-bit time base in a single instruction.
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The TB can be written by a sequence such as:

lwz r x,upper #load 64-bit value for

lwz r y,lower # TB into rx and ry

li r z,0

mttbl  r z #force TBLto O

mttbu  r X #set TBU
mttbl  r vy #set TBL

Provided that no exceptions occur while the last three instructions are being executed,
loading O into TBL prevents the possibility of a carry from TBL to TBU while the time base
IS being initialized.

For information on reading the time base, refer to Section 2.2.1, “Reading the Time Base.”

2.3.13 Decrementer Register (DEC)

The decrementer register (DEC), shown in Figure 2-23, is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a programmable
delay. The DEC frequency is based on the same implementation-dependent frequency that
drives the time base.

DEC

Figure 2-23. Decrementer Register (DEC)

2.3.13.1 Decrementer Operation

The DEC counts down, causing an exception (unless masked by MSR[EE]) when it passes
through zero. The DEC satisfies the following requirements:

* The operation of the time base and the DEC are coherent (that is, the counters are
driven by the same fundamental time base).

* Loading a GPR from the DEC has no effect on the DEC.

» Storing the contents of a GPR to the DEC replaces the value in the DEC with the
value in the GPR.

* Whenever bit 0 of the DEC changes from 0 to 1, a decrementer exception request is
signaled. Multiple DEC exception requests may be received before the first
exception occurs; however, any additional requests are canceled when the exception
occurs for the first request.

» Ifthe DEC is altered by software and the content of bit 0 is changed from 0 to 1, an
exception request is signaled.
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2.3.13.2 Writing and Reading the DEC

The content of the DEC can be read or written usingnifigor andmtspr instructions, both

of which are supervisor-level when they refer to the DEC. Using a simplified mnemonic for
themtspr instruction, the DEC may be written from GPR with the following:

mtdec r A
Using a simplified mnemonic for thafspr instruction, the DEC may be read into GPR
with the following:

mfdec r A

2.3.14 Data Address Breakpoint Register (DABR)

The optional data address breakpoint facility is controlled by an optional SPR, the DABR.
The DABR is a 32-bit register. The data address breakpoint facility is optional to the

PowerPC architecture. However, if the data address breakpoint facility is implemented, it
is recommended, but not required, that it be implemented as described in this section.

The data address breakpoint facility provides a means to detect accesses to a designated
double word. The address comparison is done on an effective address, and it applies to data
accesses only. It does not apply to instruction fetches.

The DABR is shown in Figure 2-24.

DAB BT|DW|DR
0 28 29 30 31
DAB BT|DW|DR
0 28 29 30 31

Figure 2-24. Data Address Breakpoint Register (DABR)

Table 2-17 describes the fields in the DABR.

Table 2-17. DABR—BIt Settings

Bit(s) Name Description
0-28 DAB Data address breakpoint
29 BT Breakpoint translation enable
30 DW Data write enable
31 DR Data read enable
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A data address breakpoint match is detected for a load or store instruction if the three
following conditions are met for any byte accessed:

 EA[0-28] = DABR[DAB]

« MSRI[DR] = DABR[BT]
» The instruction is a store and DABR[DW] = 1, or the instruction is a load and
DABR[DR] = 1.

Even if the above conditions are satisfied, it is undefined whether a match occurs in the
following cases:

» A store string instructionstwcx. ) in which the store is not performed
» A load or store string instructiots{vx or stswx with a zero length

* A dchz dcbz eciwx, orecowxinstruction. For the purpose of determining whether
a match occurgciwxis treated as a load, addbz, dcba, andecowxare treated as
stores.

The cache management instructions other thdbz anddcbanever cause a match.dtbz
ordcbacauses a match, some or all of the target memory locations may have been updated.

A match generates a DSI exception. Refer to Section 6.4.3, “DSI Exception (0x00300),” for
more information on the data address breakpoint facility.

2.3.15 External Access Register (EAR)

The EAR is an optional 32-bit SPR that controls access to the external control facility and
identifies the target device for external control operations. The external control facility
provides a means for user-level instructions to communicate with special external devices.
The EAR is shown in Figure 2-25.

[] Reserved

E 000 0000 0000 0000 0000 0000 00 RID

01 25 26 31

Figure 2-25. External Access Register (EAR)

The high-order bits of the resource ID (RID) field beyond the width of the RID supported
by a particular implementation are treated as reserved bits.

The EAR register is provided to support the External Control In Word Indes@d/K) and
External Control Out Word Indexede¢owy instructions, which are described in
Chapter 8, “Instruction Set.” Although access to the EAR is supervisor-level, the operating
system can determine which tasks are allowed to issue external access instructions and
when they are allowed to do so. The bit settings for the EAR are described in Table 2-18.
Interpretation of the physical address transmitted byethex andecowxinstructions and

the 32-bit value transmitted by thecowxinstruction is not prescribed by the PowerPC
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OEA but is determined by the target device. The data accesxiofx and ecowx is
performed as though the memory access mode bits (WIMG) were 0101.

For example, if the external control facility is used to support a graphics adaptecdiw
instruction could be used to send the translated physical address of a buffer containing
graphics data to the graphics device. uwx instruction could be used to load status
information from the graphics adapter.

Table 2-18. External Access Register (EAR) Bit Settings

Bit Name Description
0 E Enable bit
1 Enabled
0 Disabled

If this bit is set, the eciwx and ecowx instructions can perform the
specified external operation. If the bit is cleared, an eciwx or ecowx
instruction causes a DSI exception.

1-25 — Reserved

26-31 RID Resource ID

This register can also be accessed by using htspr and mfspr instructions.
Synchronization requirements for the EAR are shown in Table 2-19 and Table 2-20.

2.3.16 Processor Identification Register (PIR)

The PIR register is used to differentiate between individual processors in a multiprocessor
environment.

NOTE: The PIR is an optional register in the PowerPC architecture and may be
iImplemented differently (or not at all) in the design of each processor. The user’s
manual of a specific processor will describe the functionality of the PIR, if it is
iImplemented for that processor.

2.3.17 Synchronization Requirements for Special Registers and for
Lookaside Buffers

Changing the value in certain system registers, and invalidating TLB entries, can cause
alteration of the context in which data addresses and instruction addresses are interpreted,
and in which instructions are executed. An instruction that alters the context in which data
addresses or instruction addresses are interpreted, or in which instructions are executed, is
called a context-altering instruction. The context synchronization required for context-
altering instructions is shown in Table 2-19 for data access and Table 2-20 for instruction
fetch and execution.

A context-synchronizing exception (that is, any exception except nonrecoverable system
reset or nonrecoverable machine check) can be used instead of a context-synchronizing
instruction. In the tables, if no software synchronization is required before (after) a context-
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altering instruction, the synchronizing instruction before (after) the context-altering
instruction should be interpreted as meaning the context-altering instruction itself.

A synchronizing instruction before the context-altering instruction ensures that all
instructions up to and including that synchronizing instruction are fetched and executd

the context that existed before the alteration. A synchronizing instruction after the con
altering instruction ensures that all instructions after that synchronizing instruction are
fetched and executed in the context established by the alteration. Instructions after the first
synchronizing instruction, up to and including the second synchronizing instruction, may

be fetched or executed in either context.

If a sequence of instructions contains context-altering instructions and contains no
instructions that are affected by any of the context alterations, no software synchronization
Is required within the sequence.

NOTE: Some instructions that occur naturally in the program, such aditaéthe end
of an exception handler, provide the required synchronization.

No software synchronization is required before altering the MSR (except when altering the
MSR[POW] or MSRI[LE] bits; see Table 2-19 and Table 2-20), becausesr is execution
synchronizing. No software synchronization is required before most of the other alterations
shown in Table 2-20, because all instructions before the context-altering instruction are
fetched and decoded before the context-altering instruction is executed (the processor must
determine whether any of the preceding instructions are context synchronizing).

Table 2-19 provides information on data access synchronization requirements.

Table 2-19. Data Access Synchronization

Instruction/Event Required Prior Required After
Exception 1 None None
rfi L None None
sc ! None None
Trap None None
mtmsr (ILE) None None
mtmsr (PR) None Context-synchronizing instruction
mtmsr (ME) 2 None Context-synchronizing instruction
mtmsr (DR) None Context-synchronizing instruction

mtmsr (LE) 3 — —

mtsr [or mtsrin ] Context-synchronizing instruction Context-synchronizing instruction
mtspr (SDR1) 45 sync Context-synchronizing instruction
mtspr (DBAT) Context-synchronizing instruction Context-synchronizing instruction

mtspr (DABR) © — —
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Table 2-19. Data Access Synchronization (Continued)

Instruction/Event

Required Prior

Required After

mtspr (EAR)

Context-synchronizing instruction

Context-synchronizing instruction

tibie * Context-synchronizing instruction Context-synchronizing instruction or
sync
tibia ’ Context-synchronizing instruction Context-synchronizing instruction or
sync
Notes .

1 synchronization requirements for changing the power conserving mode are implementation-dependent.

2 A context synchronizing instruction is required after modification of the MSR[ME] bit to ensure that the
modification takes effect for subsequent machine check exceptions, which may not be recoverable and
therefore may not be context synchronizing.

3

Synchronization requirements for changing from one endian mode to the other are implementation-dependent.

4 SDR1 must not be altered when MSR[DR] = 1 or MSR[IR] = 1; if it is, the results are undefined.

A sync instruction is required before the mtspr instruction because SDR1 identifies the page table and thereby
the location of the referenced and changed (R and C) bits. To ensure that R and C bits are updated in the

correct page table, SDR1 must not be altered until all R and C bit updates due to instructions before the mtspr

have completed. A sync instruction guarantees this synchronization of R and C bit updates, while neither a

context synchronizing operation nor the instruction fetching mechanism does so.

Synchronization requirements for changing the DABR are implementation-dependent.

7 Multiprocessor systems have other requirements to synchronize TLB invalidate.

Table 2-20 provides information on instruction access synchronization requirements.

Table 2-20. Instruction Access Synchronization

Instruction/Event Required Prior Required After

Exception 1 None None

rfi None None

sct None None

Trap ! None None

mtmsr (POW) 1 — —

mtmsr (ILE) None None

mtmsr (EE) 2 None None

mtmsr (PR) None Context-synchronizing instruction
mtmsr (FP) None Context-synchronizing instruction
mtmsr (ME) 3 None Context-synchronizing instruction
mtmsr (FEO, FE1) None Context-synchronizing instruction
mtmsr (SE, BE) None Context-synchronizing instruction
mtmsr (IP) None None

mtmsr (IR) 4 None Context-synchronizing instruction
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Table 2-20. Instruction Access Synchronization (Continued)

Instruction/Event Required Prior Required After
mtmsr (RI) None None
mtmsr (LE) ° — —
mtsr [or mtsrin ] 4 None Context-synchronizing instruction
mtspr (SDR1) &7 sync Context-synchronizing instruction
mtspr (IBAT) 4 None Context-synchronizing instruction
mtspr (DEC) & None None
tibie ° None Context-synchronizing instruction or sync
tibia ° None Context-synchronizing instruction or sync
Notes .

1 synchronization requirements for changing the power conserving mode are implementation-dependent.

2 The effect of altering the EE bit is immediate as follows:

 Ifan mtmsr sets the EE bit to 0, neither an external interrupt nor a decrementer exception can occur after
the instruction is executed.

 If an mtmsr sets the EE bit to 1 when an external interrupt, decrementer exception, or higher priority
exception exists, the corresponding exception occurs immediately after the mtmsr is executed, and
before the next instruction is executed in the program that set MSR[EE].

3 A context synchronizing instruction is required after modification of the MSR[ME] bit to ensure that the
modification takes effect for subsequent machine check exceptions, which may not be recoverable and therefore
may not be context synchronizing.

The alteration must not cause an implicit branch in physical address space. The physical address of the context-
altering instruction and of each subsequent instruction, up to and including the next context synchronizing
instruction, must be independent of whether the alteration has taken effect.

Synchronization requirements for changing from one endian mode to the other are implementation-dependent.
6 SDR1 must not be altered when MSR[DR] = 1 or MSR[IR] = 1; if it is, the results are undefined.

7 A'sync instruction is required before the mtspr instruction because SDR1 identifies the page table and thereby
the location of the referenced and changed (R and C) bits. To ensure that R and C bits are updated in the correct
page table, SDR1 must not be altered until all R and C bit updates due to instructions before the mtspr have
completed. A sync instruction guarantees this synchronization of R and C bit updates, while neither a context
synchronizing operation nor the instruction fetching mechanism does so.

The elapsed time between the content of the decrementer becoming negative and the signaling of the
decrementer exception is not defined.

Multiprocessor systems have other requirements to synchronize TLB invalidate.
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Chapter 3. Operand Conventions

This chapter describes the operand conventions as they are represented in two Ievef the
PowerPC architecture—user instruction set architecture (UISA) and virtual environment
architecture (VEA). Detailed descriptions are provided of conventions used for sg
values in registers and memory, accessing PowerPC registers, and representing data in these
registers in both big- and little-endian modes. Additionally, the floating-point data formats
and exception conditions are described. Refer to Appendix D, “Floating-Point Models,” for
more information on the implementation of the IEEE floating-point execution models.

3.1 Data Organization in Memory and Data Transfers

In a PowerPC microprocessor-based system, bytes in memory are numbered consecutively
starting with 0. Each number is the address of the corresponding byte. Memory operasds
may be bytes, half-words, words, or double words, or, for the load and store muItipI d
the load and store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

The following sections describe the concepts of alignment and byte ordering of data, and
their significance to the PowerPC architecture.

3.1.1 Aligned and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the natural address of an operand is
an integral multiple of the operand length. A memory operand is said to be aligned if it is
aligned at its natural boundary; otherwise it is misaligned. Instructions are always four
bytes long and word-aligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 3-1. (Although not permitted as memory operands, quad words are shown because
guad-word alignment is desirable for certain memory operands.)

Table 3-1. Memory Operand Alignment

Operand Length Aligned Addr(28-31) 1!
Byte 8 hits XXXX
Half word 2 bytes xxx0
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Table 3-1. Memory Operand Alignment (Continued)

Operand Length Aligned Addr(28-31) *
Word 4 bytes xx00
Double word 8 bytes x000
Quad word 16 bytes 0000

Note: 1An x in an address bit position indicates that the bit can be 0 or 1
independent of the state of other bits in the address.

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is aimultiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned.

3.1.2 Byte Ordering

If individual data items were indivisible, the concept of byte ordering would be
unnecessary. The order of bits or groups of bits within the smallest addressable unit of
memory is irrelevant, because nothing can be observed about such order. Order matters
only when scalars, which the processor and programmer regard as indivisible quantities,
can be made up of more than one addressable unit of memory.

For PowerPC processors, the smallest addressable memory unit is the byte (8 bits), and
scalars are composed of one or more sequential bytes. When a 32-bit scalar is moved from
a register to memory, it occupies four consecutive bytes in memory, and a decision must be
made regarding the order of these bytes in these four addresses.

Although the choice of byte ordering is arbitrary, only two orderings are practical—big-
endian and little-endian. The PowerPC architecture supports both big- and little-endian
byte ordering. The default byte ordering is big-endian.

3.1.2.1 Big-Endian Byte Ordering

For big-endian scalars, the most-significant byte (MSB) is stored at the lowest (or starting)
address while the least-significant byte (LSB) is stored at the highest (or ending) address.
This is called big-endian because the big end of the scalar comes first in memory.

3.1.2.2 Little-Endian Byte Ordering

For little-endian scalars, the least-significant byte is stored at the lowest (or starting)
address while the most-significant byte is stored at the highest (or ending) address. This is
called little-endian because the little end of the scalar comes first in memory.
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3.1.3 Structure Mapping Examples

Figure 3-1 shows a C programming example that contains an assortment of scalars and one
array of characters (a string). The value presumed to be in each structure element is shown
in hexadecimal in the comments (except for the character array, which is represented by a
sequence of characters, each enclosed in single quote marks).

struct {
int a; /*0x1112 1314 word */

double b; [* 0x2122 2324 2526 2728 double word */
char* c; /* 0x3132_3334 word */
char d[7y; *'L','M','N''O'P','Q''R" array of bytes */

short e /* 0x5152 half word */
int f; [* 0x6162_6364 word */

}S;

Figure 3-1. C Program Example—Data Structure S

The data structur& is used throughout this section to demonstrate how the bytes that
comprise each elemerg, @, ¢, d, e, andf) are mapped into memory.
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3.1.3.1 Big-Endian Mapping

The big-endian mapping of the structu&js shown in Figure 3-2. Addresses are shown

in hexadecimal below each byte. The content of each byte, as shown in the preceding C
programming example, is shown in hexadecimal and, for the character array, as characters
enclosed in single quote marks.

NOTE: The most-significant byte of each scalar is at the lowest address.

Contents | 11 | 12 | 13 | 14 | x) | x) | x) | ) |
Address 00 01 02 03 04 05 06 07
Contents| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
Address 08 09 0A 0B oC 0D OE OF
Contents| 31 | 32 | 33 | 34 | €L | ‘M | ‘N | ‘O’ |
Address 10 11 12 13 14 15 16 17
Contents| P | ‘Q | R | x) | 51 | 52 | ) | x) |
Address 18 19 1A 1B 1C 1D 1E 1F
Contents | 61 | 62 | 63 | 64 | ) | x) | ) | x) |
Address 20 21 22 23 24 25 26 27

Figure 3-2. Big-Endian Mapping of Structure S

The structure mapping introduces padding (skipped bytes indicated by (x) in Figure 3-2) in
the map in order to align the scalars on their proper boundaries—four bytes between
elementsa andb, one byte between elemerdsande, and two bytes between elemeets
andf.

NOTE: The padding is dependent on the compiler; it is not a function of the architecture.
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3.1.3.2 Little-Endian Mapping

Figure 3-3 shows the structut®,using little-endian mapping.

NOTE: The least-significant byte of each scalar is at the lowest address.

Contents
Address

Contents
Address

Contents
Address

Contents
Address

Contents
Address

[ 14 13 12 11 0 | 0 | ® 0 |
00 01 02 03 04 05 06 07
| 28 27 26 25 24 23 | 22 21 |
08 09 0A 0B ocC oD OE OF
| 34 33 32 31 L ™ | ‘N’ ‘0’ |
10 11 12 13 14 15 16 17
| P Q R’ (x) 52 51 | ® 0 |
18 19 1A 1B 1c 1D 1E 1F
[ 64 63 62 61 ) 0 | ® 0 |
20 21 22 23 24 25 26 27

Figure 3-3. Little-Endian Mapping of Structure S

Figure 3-3 shows the sequence of double words laid out with addresses increasing from left
to right. Programmers familiar with little-endian byte ordering may be more accustomed to
viewing double words laid out with addresses increasing from right to left, as shown in
Figure 3-4. This allows the little-endian programmer to view each scalar in its natural byte
order of MSB to LSB. However, to demonstrate how the PowerPC architecture provides
both big- and little-endian support, this section uses the convention of showing addresses

increasing from left to right, as in Figure 3-3.
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Contents| (x) | (x) | (x) | x) | 11 | 12 | 13 | 14 |

Address 07 06 05 04 03 02 01 00
Contents| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
Address OF OE oD 0C 0B 0A 09 08
Contents| ‘o’ | ‘N’ | ‘M | L | 31 | 32 | 33 | 34 |
Address 17 16 15 14 13 12 11 10
Contents| (x) | ) | 51 | 52 | (x) | R | ‘Q | P |
Address 1F 1E 1D 1C 1B 1A 19 18
Contents | x) | x) | x) | x) | 61 | 62 | 63 | 64 |
Address 27 26 25 24 23 22 21 20

Figure 3-4. Little-Endian Mapping of Structure S —Alternate View

3.1.4 PowerPC Byte Ordering

The PowerPC architecture supports both big- and little-endian byte ordering. The default
byte ordering is big-endian. However, the code sequence used to switch from big- to little-
endian mode may differ among processors.

The PowerPC architecture defines two bits in the MSR for specifying byte ordering—LE
(little-endian mode) and ILE (exception little-endian mode). The LE bit specifies the endian
mode in which the processor is currently operating and ILE specifies the mode to be used
when an exception handler is invoked. That is, when an exception occurs, the ILE bit (as
set for the interrupted process) is copied into MSR[LE] to select the endian mode for the
context established by the exception. For both bits, a value of 0 specifies big-endian mode
and a value of 1 specifies little-endian mode.

The PowerPC architecture also provides load and store instructions that reverse byte
ordering. These instructions have the effect of loading and storing data in the endian mode
opposite from that which the processor is operating. See Section 4.2.3.4, “Integer Load and
Store with Byte-Reverse Instructions,” for more information on these instructions.

3.1.4.1 Aligned Scalars in Little-Endian Mode

Chapter 4, “Addressing Modes and Instruction Set Summary,” describes the effective
address calculation for the load and store instructions. For processors in little-endian mode,
the effective address is modified before being used to access memory. The three low-order
address bits of the effective address are exclusive-ORed (XOR) with a three-bit value that
depends on the length of the operand (1, 2, 4, or 8 bytes), as shown in Table 3-2. This
address modification is called ‘munging’.
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NOTE: Although the process (munging) is described in the architecture, the actual term

‘munging’ is not defined or used in the specification. However, the term is

commonly used to describe the effective address modifications necessary for

converting big-endian addressed data to little-endian addressed data.

Table 3-2. EA Modifications

Data Width (Bytes)

EA Modification

8

No change

4

XOR with 0b100

2

XOR with 0b110

1

XOR with Ob111

The munged physical address is passed to the cache or to main memory, and the specified
width of the data is transferred (in big-endian order—that is, MSB at the lowest address,
LSB at the highest address) between a GPR or FPR and the addressed memory locations

(as modified).

Munging makes it appear to the processor that individual aligned scalars are stored as little-
endian, when in fact they are stored in big-endian order, but at different byte addresses
within double words. Only the address is modified, not the byte order.

Taking into account the preceding description of munging, in little-endian mode, structure
Sis placed in memory as shown in Figure 3-5.

Contents
Address

Contents
Address

Contents
Address

Contents
Address

Contents
Address

Figure 3-5. Munged Little-Endian Structure

x) | ) | x) | xX) | 11 | 12 13 14
00 01 02 03 04 05 06 07
21 | 22 | 23 | 24 | 25 | 26 27 28
08 09 0A 0B oC oD OE OF
‘0’ | N | M | L | 31 | 32 33 34
10 11 12 13 14 15 16 17
) | (x) | 51 | 52 | (x) | R ‘Q ‘P’
18 19 1A 1B 1C 1D 1E 1F
x) | x) | (x) | (x) | 61 | 62 63 64
20 21 22 23 24 25 26 27

S as Seen by the Memory Subsystem
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NOTE:

Contents
Address

Contents
Address

Contents
Address

Contents
Address

Contents
Address

Figure 3-6. Munged Little-Endian Structure

As seen by the program executing in the processor, the mapping for the strGcture
(Figure 3-6) is identical to the little-endian mapping shown in Figure 3-3. However, from
outside of the processor, the addresses of the bytes making up the stBa&ter@s shown

in Figure 3-5.

These addresses match neither the big-endian mapping of Figure 3-2 nor the true little-
endian mapping of Figure 3-3. This must be taken into account when performing I/O
operations in little-endian mode; this is discussed in Section 3.1.4.5, “PowerPC

The mapping shown in Figure 3-5 is not a true little-endian mapping of the
structureS. However, because the processor munges the address when accessing
memory, the physical structushown in Figure 3-5 appears to the processor as
the structurés shown in Figure 3-6.
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64
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Input/Output Data Transfer Addressing in Little-Endian Mode.”

27

S as Seen by Processor
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3.1.4.2 Misaligned Scalars in Little-Endian Mode

Performing an XOR operation on the low-order bits of the address works only if the scalar
is aligned on a boundary equal to a multiple of its length. Figure 3-7 shows a true little-
endian mapping of the four-byte word 0x1112_ 1314, stored at address 05.

Contents| | | | | | 14 | 13 | 12 |

Address 00 01 02 03 04 05 06 07
Contents | 11 | | | | | | | |
Address 08 09 0A 0B oC oD OE OF

Figure 3-7. True Little-Endian Mapping, Word Stored at Address 05

For the true little-endian example in Figure 3-7, the least-significant byte (0x14) is stored
at address 0x05, the next byte (0x13) is stored at address 0x06, the third byte (0x12) is
stored at address 0x07, and the most-significant byte (Ox11) is stored at address 0x08.

When a PowerPC processor, in little-endian mode, issues a single-register load or store
instruction with a misaligned effective address, it may take an alignment exception. In this
case, a single-register load or store instruction means any of the integer load/store,
load/store with byte-reverse, memory synchronization (exclugymg), or floating-point
load/store (includingtfiwx) instructions. PowerPC processors in little-endian mode are not
required to invoke an alignment exception when such a misaligned access is attempted. The
processor may handle some or all such accesses without taking an alignment exception.

The PowerPC architecture requires that half-words, words, and double words be placed in
memory such that the little-endian address of the lowest-order byte is the effective address
computed by the load or store instruction; the little-endian address of the next-lowest-order
byte is one greater, and so on. However, because PowerPC processors in little-endian mode
munge the effective address, the order of the bytes of a misaligned scalar must be as if they
were accessed one at a time.

Using the same example as shown in Figure 3-7, when the least-significant byte (0x14) is
stored to address 0x05, the address is XORed with Ob111 to become 0x02. When the next
byte (0x13) is stored to address 0x06, the address is XORed with 0b111 to become 0x01.
When the third byte (0x12) is stored to address 0x07, the address is XORed with Ob111 to
become 0x00. Finally, when the most-significant byte (0x11) is stored to address 0x08, the
address is XORed with Ob111 to become OxOF. Figure 3-8 shows the misaligned word,
stored by a little-endian program, as seen by the memory subsystem.
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Contents| 12 | 13 | 14 | | | | | |
Address 00 01 02 03 04 05 06 07

Contents| | | | | | | | 11 |

Address 08 09 O0A 0B oC 0D OE OF

Figure 3-8. Word Stored at Little-Endian Address 05 as Seen by the Memory
Subsystem

NOTE: The misaligned word in this example spans two double words. The two parts of
the misaligned word are not contiguous as seen by the memory system. An
implementation may support some but not all misaligned little-endian accesses.
For example, a misaligned little-endian access that is contained within a double
word may be supported, while one that spans double words may cause an
alignment exception.

3.1.4.3 Nonscalars

The PowerPC architecture has two types of instructions that handle nonscalars (multiple
instances of scalars):

» Load and store multiple instructions
» Load and store string instructions

Because these instructions typically operate on more than one word-length scalar, munging
cannot be used. These types of instructions cause alignment exception conditions when the
processor is executing in little-endian mode. Although string accesses are not supported,
they are inherently byte-based operations, and can be broken into a series of word-aligned
accesses.

3.1.4.4 PowerPC Instruction Addressing in Little-Endian Mode

Each PowerPC instruction occupies an aligned word of memory. PowerPC processors fetch
and execute instructions as if the current instruction address is incremented by four for each
sequential instruction. When operating in little-endian mode, the instruction address is
munged as described in Section 3.1.4.1, “Aligned Scalars in Little-Endian Mode,” for
fetching word-length scalars; that is, the instruction address is XORed with 0b100. A
program is thus an array of little-endian words with each word fetched and executed in
order (not including branches).
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All instruction addresses visible to an executing program are the effective addresses that are
computed by that program, or, in the case of the exception handlers, effective addresses that
were or could have been computed by the interrupted program. These effective addresses
are independent of the endian mode. Examples for little-endian mode include the
following:

* Aninstruction address placed in the link register by branch and link operation, or an
instruction address saved in an SPR when an exception is taken, is the addres 3
a program executing in little-endian mode would use to access the instruction 3
word of data using a load instruction.

* An offset in a relative branch instruction reflects the difference between the
addresses of the branch and target instructions, where the addresses used are those
that a program executing in little-endian mode would use to access the instructions
as data words using a load instruction.

» Atarget address in an absolute branch instruction is the address that a program
executing in little-endian mode would use to access the target instruction as a word
of data using a load instruction.

* The memory locations that contain the first set of instructions executed by each kind
of exception handler must be set in a manner consistent with the endian mode in
which the exception handler is invoked. Thus, if the exception handler is to be
invoked in little-endian mode, the first set of instructions comprising each kind of
exception handler must appear in memory with the instructions within each double
word reversed from the order in which they are to be executed.

3.1.4.5 PowerPC Input/Output Data Transfer Addressing in Little-
Endian Mode

For a PowerPC system running in big-endian mode, both the processor and the memory
subsystem recognize the same byte as byte 0. However, this is not true for a PowerPC
system running in little-endian mode because of the munged address bits when the
processor accesses memory.

For I/O transfers in little-endian mode to transfer bytes properly, they must be performed
as if the bytes transferred were accessed one at a time, using the little-endian address
modification appropriate for the single-byte transfers (that is, the lowest order address bits
must be XORed with Ob111). This does not mean that I/O operations in little-endian
PowerPC systems must be performed using only one-byte-wide transfers. Data transfers
can be as wide as desired, but the order of the bytes within double words must be as if they
were fetched or stored one at a time. That is, for a true little-endian 1/O device, the system
must provide a mechanism to munge and unmunge the addresses and reverse the bytes
within a double word (MSB to LSB).
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In earlier processors, /O operations can also be performed with certain devices by storing
to or loading from addresses that are associated with the devices (this is referred to as
direct-store interface operations). However, the direct-store facility is being phased out of
the architecture and will not likely be supported in future devices. Care must be taken with
such operations when defining the addresses to be used because these addresses are
subjected to munging as described in Section 3.1.4.1, “Aligned Scalars in Little-Endian
Mode.” A load or store that maps to a control register on an external device may require the
bytes of the value transferred to be reversed. If this reversal is required, the load and store
with byte-reverse instructions may be used. See Section 4.2.3.4, “Integer Load and Store
with Byte-Reverse Instructions,” for more information on these instructions.

3.2 Effect of Operand Placement on
Performance—VEA

The PowerPC VEA states that the placement (location and alignment) of operands in
memory affects the relative performance of memory accesses. The best performance is
guaranteed if memory operands are aligned on natural boundaries. For more information
on memory access ordering and atomicity, refer to Section 5.1, “The Virtual Environment.”

3.2.1 Summary of Performance Effects

To obtain the best performance across the widest range of PowerPC processor
implementations, the programmer should assume the performance model described in
Table 3-3 and Table 3-4. with respect to the placement of memory operands.

The performance of accesses varies depending on:

* Operand size

* Operand alignment

* Endian mode (big-endian or little-endian)
» Crossing no boundary

» Crossing a cache block boundary

» Crossing a page boundary

» Crossing a BAT boundary

» Crossing a segment boundary
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Table 3-3 applies when the processor is in big-endian mode.

Table 3-3. Performance Effects of Memory Operand Placement, Big-Endian Mode

Operand Boundary Crossing
Size Al I?wyr;eent
9 None Cache Block Page BAT/Segment
Integer

8 byte 8 Optimal — — —

4 Good Good Poor Poor

<4 Poor Poor Poor Poor
4 byte 4 Optimal — — —

<4 Good Good Poor Poor
2 byte 2 Optimal — — —

<2 Good Good Poor Poor
1 byte 1 Optimal — — —
Imw, stmw 4 Good Good Good? Poor
String — Good Good Poor Poor

Floating Point None Cache Block Page BAT/Segment

8 byte 8 Optimal — — —

4 Good Good Poor Poor

<4 Poor Poor Poor Poor
4 byte 4 Optimal — — —

<4 Poor Poor Poor Poor

Note: 1 Crossing a page boundary where the memory/cache access attributes of the two pages
differ is equivalent to crossing a segment boundary, and thus has poor performance.
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Table 3-4. applies when the processor is in little-endian mode.

Table 3-4. Performance Effects of Memory Operand Placement, Little-Endian Mode

Operand Boundary Crossing
Size Ali iyrﬁim
9 None Cache Block Page BAT/Segment
Integer

8 byte 8 Optimal — — —

<8 Poor Poor Poor Poor
4 byte 4 Optimal — — —

<4 Poor Poor Poor Poor
2 byte 2 Optimal — — —

<2 Poor Poor Poor Poor
1 byte 1 Optimal — — —

Floating Point None Cache Block Page BAT/Segment

8 byte 8 Optimal — — —

<8 Poor Poor Poor Poor
4 byte 4 Optimal — — —

<4 Poor Poor Poor Poor

The load/store multiple and the load/store string instructions are supported only in big-
endian mode. The load/store multiple instructions are defined by the PowerPC architecture
to operate only on aligned operands. The load/store string instructions have no alignment
requirements.

3.2.2 Instruction Restart

If a memory access crosses a page, BAT, or segment boundary, a number of conditions
could abort the execution of the instruction after part of the access has been performed. For
example, this may occur when a program attempts to access a page it has not previously
accessed or when the processor must check for a possible change in the memory/cache
access attributes when an access crosses a page boundary. When this occurs, the processor
or the operating system may restart the instruction. If the instruction is restarted, some bytes

at that location may be loaded from or stored to the target location a second time.

The following rules apply to memory accesses with regard to restarting the instruction:

» Aligned accesses—A single-register instruction that accesses an aligned operand is
never restarted (that is, it is not partially executed).

» Misaligned accesses—A single-register instruction that accesses a misaligned
operand may be restarted if the access crosses a page, BAT, or segment boundary, or
if the processor is in little-endian mode.
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» Load/store multiple, load/store string instructions—These instructions may be
restarted if, in accessing the locations specified by the instruction, a page, BAT, or
segment boundary is crossed.

The programmer should assume that any misaligned access in a segment might be restarted.
When the processor is in big-endian mode, software can ensure that misaligned accesses
are not restarted by placing the misaligned data in BAT areas, as BAT areas have no in
protection boundaries. Refer to Section 7.4, “Block Address Translation,” for mh
information on BAT areas.

3.3 Floating-Point Execution Models—UISA

There are two kinds of floating-point instructions defined for the PowerPC architecture:
computational and noncomputational. The computational instructions consist of se
operations defined by the IEEE-754 standard for 64- and 32-bit arithmetic (those that
perform addition, subtraction, multiplication, division, extracting the square root, rounding
conversion, comparison, and combinations of these) and the multiply-add and reciprocal
estimate instructions defined by the architecture. The noncomputational floating-point
instructions consist of the floating-point load, store, and move instructions. While both the
computational and noncomputational instructions are considered to be floating-point
instructions governed by the MSR[FP] bit (that allows floating-point instructions to be
executed), only the computational instructions are considered floating-point operations
throughout this chapter.

The IEEE standard requires that single-precision arithmetic be provided for single-

precision operands. The standard permits double-precision arithmetic instructions to have
either (or both) single-precision or double-precision operands, but states that single-
precision arithmetic instructions should not accept double-precision operands. The
guidelines are as follows:

» Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

» Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision is done implicitly
by the processor.

All PowerPC implementations provide the equivalent of the following execution models to

ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following

sections.

Appendix D. Floating-Point Modelshas additional detailed information on the execution
models for IEEE operations as well as the other floating-point instructions.
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Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is 1 (exceptions are referred to as
interrupts in the architecture specification):

» Underflow during multiplication using a denormalized operand
» Overflow during division using a denormalized divisor

3.3.1 Floating-Point Data Format

The PowerPC UISA defines the representation of a floating-point value in two different
binary, fixed-length formats. The format is a 32-bit format for a single-precision floating-
point value or a 64-bit format for a double-precision floating-point value. The single-
precision format may be used for data in memory. The double-precision format can be used
for data in memory or in floating-point registers (FPRS).

The lengths of the exponent and the fraction fields differ between these two formats. The
layout of the single-precision format is shown in Figure 3-9; the layout of the double-
precision format is shown in Figure 3-10.

EXP FRACTION
01 89 31

Figure 3-9. Floating-Point Single-Precision Format

EXP FRACTION
01 1112 63

Figure 3-10. Floating-Point Double-Precision Format

Values in floating-point format consist of three fields:

» S (sign hit)

» EXP (exponent + bias)

* FRACTION (fraction)
If only a portion of a floating-point data item in memory is accessed, as with a load or store
instruction for a byte or half word (or word in the case of floating-point double-precision

format), the value affected depends on whether the PowerPC system is using big- or little-
endian byte ordering, which is described in Section 3.1.2, “Byte Ordering.”

Big-endian mode is the default.
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For numeric values, the significand consists of a leading implied bit concatenated on the
right with the FRACTION. This leading implied bit is a 1 for normalized numbers and a 0
for denormalized numbers and is the first bit to the left of the binary point. Values
representable within the two floating-point formats can be specified by the parameters

listed in Table 3-5.

Table 3-5. IEEE Floating-Point Fields

Parameter Single-Precision Double-Precision
Exponent bias +127 +1023
Maximum exponent +127 +1023
(unbiased)

Minimum exponent -126 -1022
(unbiased)

Format width 32 hits 64 bits
Sign width 1 bit 1 bit
Exponent width 8 bits 11 bits
Fraction width 23 bits 52 bits
Significand width 24 bits 53 bits

NOTE: Two exponent values are reserved to represent special-case values:

— Setting all bits indicates that the value is infinity, or NaN.

— Clearing all bits indicates that the number is either zero, or denormalized.

Table 3-6. Biased Exponent Format

Biased Exponent Single-Precision Double-Precision
(Binary) (Unbiased) (Unbiased)

11. ... 11 Reserved for infinities and NaNs
11..... 10 +127 +1023
11..... 01 +126 +1022
10..... 00 1 1
01..... 11 0 0
01..... 10 -1 -1

Chapter 3. Operand Conventions

3-17

The true value of the exponent can be determined by subtracting 127 for single-precision
numbers and 1023 for double-precision numbers. This is shown in Table 3-6.



Table 3-6. Biased Exponent Format (Continued)

Biased Exponent Single-Precision Double-Precision
(Binary) (Unbiased) (Unbiased)
00..... 01 -126 -1022
00..... 00 Reserved for zeros and denormalized numbers

3.3.1.1 Value Representation

The PowerPC UISA defines numerical and nonnumerical values representable within
single- and double-precision formats. The numerical values are approximations to the real
numbers and include the normalized numbers, denormalized numbers, and zero values. The
nonnumerical values representable are the positive and negative infinities and the NaNs.
The positive and negative infinities are adjoined to the real numbers but are not numbers
themselves, and the standard rules of arithmetic do not hold when they appear in an
operation. They are related to the real numbers by order alone. It is possible, however, to
define restricted operations among numbers and infinities as defined below. The relative
location on the real number line for each of the defined numerical entities is shown in
Figure 3-11. Tiny values include denormalized numbers and all numbers that are too small
to be represented for a particular precision format; they do not include zero values.

A
\J
A
\J

Tiny Tiny

- ‘ —-NORM ‘—DENORM ‘ +DENORM

I | | A

+NORM ‘ +
A ' | '

A
\

Unrepresentable, small numbers

Figure 3-11. Approximation to Real Numbers

The positive and negative NaNs are encodings that convey diagnostic information such as
the representation of uninitialized variables and are not related to the numbers, or each
other by order or value.

Table 3-7 describes each of the floating-point formats.

Table 3-7. Recognized Floating-Point Numbers

Sign Bit Biased Exponent Implied Bit Fraction Value
0 Maximum X Nonzero NaN
0 Maximum X Zero +Infinity
0 0 < Exponent < Maximum 1 X +Normalized
0 0 0 Nonzero +Denormalized
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Table 3-7. Recognized Floating-Point Numbers (Continued)

Sign Bit Biased Exponent Implied Bit Fraction Value
0 0 X Zero +0
1 0 X Zero -0
1 0 0 Nonzero —Denormalized
1 0 < Exponent < Maximum 1 X —Normalized
1 Maximum X Zero —Infinity
1 Maximum X Nonzero NaN

The following sections describe floating-point values defined in the architecture.

3.3.1.2 Binary Floating-Point Numbers

Binary floating-point numbers are machine-representable values used to approximate real
numbers. Three categories of numbers are supported—normalized numbers, denormalized
numbers, and zero values.

3.3.1.3 Normalized Numbers ( NORM)
The values for normalized numbers have a biased exponent value in the range:

* 1-254 in single-precision format
e 1-2046 in double-precision format

The implied unit bit is one. Normalized numbers are interpreted as follows:
NORM = (-1) Sx2 Ex (Lfraction)
The variable (s) is the sign, (E) is the unbiased exponent, and (1.fraction) is the significand

composed of a leading unit bit (implied bit) and a fractional part. The format for normalized
numbers is shown in Figure 3-12.

MIN < EXPONENT < MAX

(BIASED) FRACTION = ANY BIT PATTERN

SIGN BIT,00R 1

Figure 3-12. Format for Normalized Numbers

The ranges covered by the magnitude (M) of a normalized floating-point number are
approximated in the following decimal representation:

Single-precision format:
12x10 ¥ <M<34x10 B
Double-precision format:
22x10 3® <M <18x10 308
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3.3.1.4 Zero Values ( 0)

Zero values have a biased exponent value of zero and fraction of zero. This is shown in
Figure 3-13. Zeros can have a positive or negative sign. The sign of zero is ignored by
comparison operations (that is, comparison regards +0 as equal to —0). Arithmetic with zero
results is always exact and does not signal any exception, except when an exception occurs
due to the invalid operations as described in Section 3.3.6.1.1, “Invalid Operation
Exception Condition.” Rounding a zero only affects the sign.

EXPONENT =0

(BIASED) FRACTION =0

SIGN BIT,00R 1

Figure 3-13. Format for Zero Numbers

3.3.1.5 Denormalized Numbers ( DENORM)

Denormalized numbers have a biased exponent value of zero and a nonzero fraction. The
format for denormalized numbers is shown in Figure 3-14.

EXPONENT =0 FRACTION = ANY NONZERO
(BIASED) BIT PATTERN

SIGNBIT,00R 1

Figure 3-14. Format for Denormalized Numbers

Denormalized numbers are nonzero numbers smaller in magnitude than the normalized
numbers. They are values in which the implied unit bit is zero. Denormalized numbers are
interpreted as follows:

DENORM = (1) Sx2 EMny (0 fraction)

The value Emin is the minimum unbiased exponent value for a normalized number (-126
for single-precision, —1022 for double-precision).
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3.3.1.6 Infinities ( )

These are values that have the maximum biased exponent value of 255 in the single-
precision format, 2047 in the double-precision format, and a zero fraction value. They are
used to approximate values greater in magnitude than the maximum normalized value.
Infinity arithmetic is defined as the limiting case of real arithmetic, with restricted

operations defined among numbers and infinities. Infinities and the real numbers can be
related by numeric ordering in the following sense:

—oo < every finite number <ot

The format for infinities is shown in Figure 3-15.

EXPONENT = MAXIMUM
(BIASED)

FRACTION =0

SIGN BIT,00R 1

Figure 3-15. Format for Positive and Negative Infinities

Arithmetic using infinite numbers is always exact and does not signal any exception, except
when an exception occurs due to the invalid operations as described in Section 3.3.6.1.1,

“Invalid Operation Exception Condition.”

3.3.1.7 Not a Numbers (NaNs)

NaNs have the maximum biased exponent value and a nonzero fraction. The format for
NaNs is shown in Figure 3-16. The sign bit of NaN does not show an algebraic sign; rather,
it is simply another bit in the NaN. If the highest-order bit of the fraction field is a zero, the

NaN is a signaling NaN; otherwise it is a quiet NaN (QNaN).

EXPONENT = MAXIMUM
(BIASED)

FRACTION = ANY NONZERO
BIT PATTERN

SIGN BIT (ignored)

Figure 3-16. Format for NaNs

Signaling NaNs signal exceptions when they are specified as arithmetic operands.

Quiet NaNs represent the results of certain invalid operations, such as attempts to perform
arithmetic operations on infinities or NaNs, when the invalid operation exception is
disabled (FPSCR[VE] = 0). Quiet NaNs propagate through all operations, except floating-
point round to single-precision, ordered comparison, and conversion to integer operations,
and signal exceptions only for ordered comparison and conversion to integer operations.
Specific encodings in QNaNs can thus be preserved through a sequence of operations and

used to convey diagnostic information to help identify results from invalid operations.
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When a QNaN results from an operation because an operand is a NaN or because a QNaN
is generated due to a disabled invalid operation exception, the following rule is applied to
determine the QNaN to be stored as the result:
If( fr A)isaNaN
Then fr D « ( fr A)
Else if ( fr B) is a NaN
Then if instruction is frsp
Then fr D — ( fr B)[0-34]||(29)0
Else fr D « ( fr B)
Else if ( fr C)is a NaN
Then fr D ~ ( fr C)

Else if generated QNaN
Then fr D ~ generated QNaN

If the operand specified HyA is a NaN, that NaN is stored as the result. Otherwise, if the
operand specified by B is a NaN (if the instruction specifies &B operand), that NaN is

stored as the result, with the low-order 29 bits cleared. Otherwise, if the operand specified
by fr C is a NaN (if the instruction specifies &1C operand), that NaN is stored as the result.
Otherwise, if a QNaN is generated by a disabled invalid operation exception, that QNaN is
stored as the result. If a QNaN is to be generated as a result, the QNaN generated has a sign
bit of zero, an exponent field of all ones, and a highest-order fraction bit of one with all
other fraction bits zero. An instruction that generates a QNaN as the result of a disabled
invalid operation generates this QNaN. This is shown in Figure 3-17.

0 111..1 1000....0

SIGN BIT (ignored)

Figure 3-17. Representation of Generated QNaN

3.3.2 Sign of Result

The following rules govern the sign of the result of an arithmetic operation, when the
operation does not yield an exception. These rules apply even when the operands or results
are zero (0), or :

» The sign of the result of an addition operation is the sign of the source operand
having the larger absolute value. If both operands have the same sign, the sign of the
result of an addition operation is the same as the sign of the operands. The sign of
the result of the subtraction operation, x —y, is the same as the sign of the result of
the addition operation, x + (-y).

* When the sum of two operands with opposite sign, or the difference of two operands
with the same sign, is exactly zero, the sign of the result is positive in all rounding
modes except round toward negative infinity (- ),in which case the sign is negative.

» The sign of the result of a multiplication or division operation is the XOR of the
signs of the source operands.
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* The sign of the result of a round to single-precision or convert to/from integer
operation is the sign of the source operand.

» The sign of the result of a square root or reciprocal square root estimate operation is
always positive, except that the square root of —0 is —0 and the reciprocal square root
of —0 is —infinity.

For multiply-add/subtract instructions, these rules are applied first to the multiplicaty
operation and then to the addition/subtraction operation (one of the source operands 3
addition/subtraction operation is the result of the multiplication operation).

3.3.3 Normalization and Denormalization

The intermediate result of an arithmetic or Floating Round to Single-Precifigmx)
instruction may require normalization and/or denormalization. When an intermediate result
consists of a sign bit, an exponent, and a nonzero significand with a zero leading bit, the
result must be normalized (and rounded) before being stored to the target.

A number is normalized by shifting its significand left and decrementing its exponent by
one for each bit shifted until the leading significand bit becomes one. The guard and round
bits are also shifted, with zeros shifted into the round bit; see SebtiierExecution Model

for IEEE Operations—for information about the guard and round bits. During
normalization, the exponent is regarded as if its range were unlimited.

If an intermediate result has a nonzero significand and an exponent that is smaller than the
minimum value that can be represented in the format specified for the result, this value is
referred to as ‘tiny’ and the stored result is determined by the rules described in Section
3.3.6.2.2, “Underflow Exception Condition.” These rules may involve denormalization.
The sign of the number does not change.

An exponent can become tiny in either of the following circumstances:

* As the result of an arithmetic or Floating Round to Single-Precifigpx)
instruction, or

» As the result of decrementing the exponent in the process of normalization.

Normalization is the process of coercing the leading significand bitetaa il while
denormalization is the process of coercing the exponent into the target format's range.

In denormalization, the significand is shifted to the right while the exponent is incremented
for each bit shifted until the exponent equals the format’s minimum value. The result is then
rounded. If any significand bits are lost due to the rounding of the shifted value, the result
Is considered inexact.

The sign of the number does not change.
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3.3.4 Data Handling and Precision

There are specific instructions for moving floating-point data between the FPRs and
memory. For double-precision format data, the data is not altered during the move. For
single-precision data, the format is converted to double-precision format when data is
loaded from memory into an FPR. A format conversion from double- to single-precision is
performed when data from an FPR is stored as single-precision. These operations do not
cause floating-point exceptions.

All floating-point arithmetic, move, and select instructions use floating-point double-
precision format.

Floating-point single-precision formats are obtained by using the following four types of
instructions:

Load floating-point single-precision instructions—These instructions access a
single-precision operand in single-precision format in memory, convert it to double-
precision, and load it into an FPR. Floating-point exceptions do not occur during the
load operation.

The floating round to single-precision (frspx) instruction—Thefrspxinstruction
rounds a double-precision operand to single-precision, checking the exponent for
single-precision range and handling any exceptions according to respective enable
bits in the FPSCR. The instruction places that operand into an FPR as a double-
precision operand. For results produced by single-precision arithmetic instructions
and by single-precision loads, this operation does not alter the value.

Single-precision arithmetic instructions—These instructions take operands from
the FPRs in double-precision format, perform the operation as if it produced an
intermediate result correct to infinite precision and with unbounded range, and then
force this intermediate result to fit in single-precision format. Status bits in the
FPSCR and in the condition register are set to reflect the single-precision result. The
result is then converted to double-precision format and placed into an FPR. The
result falls within the range supported by the single-precision format.

Source operands for these instructions must be representable in single-precision
format. Otherwise, the result placed into the target FPR and the setting of status bits
inthe FPSCR, and in the condition register if update mode is selected, are undefined.

Store floating-point single-precision instructions—These instructions convert a
double-precision operand to single-precision format and store that operand into
memory. If the operand requires denormalization in order to fit in single-precision
format, it is automatically denormalized prior to being stored. No exceptions are
detected on the store operation (the value being stored is effectively assumed to be
the result of an instruction of one of the preceding three types).

When the result of a Load Floating-Point Singlis), Floating Round to Single-Precision
(frspx), or single-precision arithmetic instruction is stored in an FPR, the low-order 29
fraction bits are zero. This is shown in Figure 3-18.
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Figure 3-18. Single-Precision Representation in an FPR

Thefrspx instruction allows conversion from double- to single-precision with appropri
exception checking and rounding. This instruction should be used to convert double-
precision floating-point values (produced by double-precision load and arithmetic
instructions) to single-precision values before storing them into single-format memory
elements or using them as operands for single-precision arithmetic instructions. Values
produced by single-precision load and arithmetic instructions can be stored directly, or used
directly as operands for single-precision arithmetic instructions, without being preceded by
anfrspx instruction.

A single-precision value can be used in double-precision arithmetic operations. The reverse
is true only if the double-precision value can be represented in single-precision format.

Some implementations may execute single-precision arithmetic instructions faster than
double-precision arithmetic instructions. Therefore, if double-precision accuracy is not

required, using single-precision data and instructions may speed operations in some
implementations.

3.3.5 Rounding

All arithmetic, rounding, and conversion instructions defined by the PowerPC architecture
(except the optional Floating Reciprocal Estimate Singkesk) and Floating Reciprocal
Square Root Estimatérgqrtex) instructions) produce an intermediate result considered to
be infinitely precise and with unbounded exponent range. This intermediate result is
normalized or denormalized if required, and then rounded to the destination format. The
final resultis then placed into the target FPR in the double-precision format or in fixed-point
format, depending on the instruction.

The IEEE-754 specification allows loss of accuracy to be defined as when the rounded
result differs from the infinitely precise value with unbounded range (same as the definition
of ‘inexact’). In the PowerPC architecture, this is the way loss of accuracy is detected.

Let Z be the intermediate arithmetic result (with infinite precision and unbounded range) or

the operand of a conversion operation. If Z can be represented exactly in the target format,
then the result in all rounding modes is exactly Z. If Z cannot be represented exactly in the

target format, let Z1 and Z2 be the next larger and next smaller numbers representable in
the target format that bound Z; then Z1 or Z2 can be used to approximate the result in the
target format.
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Figure 3-19 shows a graphical representation of Z, Z1, and Z2 in this case.

By incrementing Isb of Z
Infinitely precise value
By truncating after Isb

A
Y

Negative values — 1 5  Positive values

Figure 3-19. Relation of Z1 and Z2

Four rounding modes are available through the floating-point rounding control field (RN)
in the FPSCR. See Section 2.1.4, “Floating-Point Status and Control Register (FPSCR).”
These are encoded as follows in Table 3-8.

Table 3-8. FPSCR Bit Settings—RN Field

RN Rounding Mode Rules

00 Round to nearest Choose the best approximation (Z1 or Z2). In case of a tie,
choose the one that is even (least-significant bit 0).

01 Round toward zero Choose the smaller in magnitude (Z1 or Z2).
10 Round toward +infinity Choose Z1.
11 Round toward —infinity Choose Z2.

Rounding occurs before an overflow condition is detected. This means that while an

infinitely precise value with unbounded exponent range may be greater than the greatest
representable value, the rounding mode may allow that value to be rounded to a

representable value. In this case, no overflow condition occurs.
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However, the underflow condition is tested before rounding. Therefore, if the value that is
infinitely precise and with unbounded exponent range falls within the range of
unrepresentable values, the underflow condition occurs. The results in these cases are
defined in Section 3.3.6.2.2, “Underflow Exception Condition.” Figure 3-20 shows the
selection of Z1 and Z2 for the four possible rounding modes that are provided by

FPSCRI[RN].

Z is infinitely precise
result or operand

Z fits otherwise

target format \I

Z2 <Z<Z71| perFigure 3-19

/é\ FPSCRI[RN] =

otherwise (round toward 0)
FPSCR[RN] =11 o
(round toward —) otherwise
6-frD — 22 1frD - 21 D72

FPSCR[RN] = FPSCR[RN] =
(round to nearest) (round toward + )

frD — Best approx (Zl or Z2) frD -« Z1
If tie, choose even (Z1 or Z2 w/ Isb 0)

Figure 3-20. Selection of Z1 and Z2 for the Four Rounding Modes

All arithmetic, rounding, and conversion instructions affect FPSCR bits FR and FlI,
according to whether the rounded result is inexact (FI) and whether the fraction was
incremented (FR) as shown in Figure 3-21. If the rounded result is inexact, Fl is set and FR
may be either set or cleared. If rounding does not change the result, both FR and FI are
cleared. The optiondtesx andfrsqgrtex instructions set FI and FR to undefined values;
other floating-point instructions do not alter FR and Fl.
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(Zround is rounded result)

P

otherwise Z ound Z

FI « 1
FI <0
FR < 0 .
fraction otherwise

incremented

Figure 3-21. Rounding Flags in FPSCR

3.3.6 Floating-Point Program Exceptions

The computational instructions of the PowerPC architecture are the only instructions that
can cause floating-point enabled exceptions (subsets of the program exception). In the
processor, floating-point program exceptions are signaled by condition bits set in the
floating-point status and control register (FPSCR) as described in this section and in
Chapter 2, “PowerPC Register Set.” These bits correspond to those conditions identified as
IEEE floating-point exceptions and can cause the system floating-point enabled exception
error handler to be invoked. Handling for floating-point exceptions is described in
Section 6.4.7, “Program Exception (0x00700).”

The FPSCR is shown in Figure 3-22.

[ ] Reserved
VXIDI VXZDZ ——  VXSOFT
VXIS| ————— ———— VXIMZ VXSQRT
VXSNAN —‘ ’7 VXVC ’— VXCVI
Fx [FEX|[vx|ox| ux| zx|xx FR| FI FPRF |0 VE|OE|UE|ZE|XE[NI| RN
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1920 21 22 23 24 25 26 27 28 29 30 31

Figure 3-22. Floating-Point Status and Control Register (FPSCR)

3-28 PowerPC Microprocessor 32-bit Family: The Programming Environments



A listing of FPSCR bit settings is shown in Table 3-9.

Table 3-9. FPSCR Bit Settings

Bit(s) Name Description
0 FX Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf,
implicitly sets FPSCR[FX] if that instruction causes any of the floating-point exception bits in
the FPSCR to transition from 0 to 1. The mcrfs , mtfsfi , mtfsf , mtfsb0 , and mtfsb1
instructions can alter FPSCR[FX] explicitly. This is a sticky bit.
1 FEX Floating-point enabled exception summary. This bit signals the occurrence of any of the
enabled exception conditions. It is the logical OR of all the floating-point exception bits masked
by their respective enable bits (FEX = (VX & VE) » (OX & OE) * (UX & UE) " (ZX & ZE) ~ (XX
& XE)). The mcrfs , mtfsf, mtfsfi , mtfsb0 , and mtfsbl instructions cannot alter FPSCR[FEX]
explicitly. This is not a sticky bit.
2 VX Floating-point invalid operation exception summary. This bit signals the occurrence of any
invalid operation exception. It is the logical OR of all of the invalid operation exception bits as
described in Section 3.3.6.1.1, “Invalid Operation Exception Condition.” The mcrfs , mtfsf ,
mtfsfi , mtfsbO , and mtfsbl instructions cannot alter FPSCR[VX] explicitly. This is not a sticky
bit.
3 OX Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2, “Overflow,
Underflow, and Inexact Exception Conditions.”
4 UX Floating-point underflow exception. This is a sticky bit. See Section 3.3.6.2.2, “Underflow
Exception Condition.”
5 ZX Floating-point zero divide exception. This is a sticky bit. See Section 3.3.6.1.2, “Zero Divide
Exception Condition.”
6 XX Floating-point inexact exception. This is a sticky bit. See Section 3.3.6.2.3, “Inexact Exception
Condition.”
FPSCR[XX] is the sticky version of FPSCRI[FI]. The following rules describe how FPSCR[XX]
is set by a given instruction:
« If the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically
ORing the old value of FPSCR[XX] with the new value of FPSCRI[FI].
« If the instruction does not affect FPSCR[FI], the value of FPSCR[XX] is unchanged.
7 VXSNAN | Floating-point invalid operation exception for SNaN. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”
8 VXISI Floating-point invalid operation exception for 00 — 00, This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”
9 VXIDI Floating-point invalid operation exception for 0 = 0. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”
10 VXzZDbz Floating-point invalid operation exception for O =+ 0. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”
11 VXIMZ Floating-point invalid operation exception for 60 * 0. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”
12 VXVC Floating-point invalid operation exception for invalid compare. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”
13 FR Floating-point fraction rounded. The last arithmetic, rounding, or conversion instruction

incremented the fraction. See Section 3.3.5, “Rounding.” This bit is not sticky.
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Table 3-9. FPSCR Bit Settings (Continued)

Bit(s)

Name

Description

14

Fl

Floating-point fraction inexact. The last arithmetic, rounding, or conversion instruction either
produced an inexact result during rounding or caused a disabled overflow exception. See
Section 3.3.5, “Rounding.” This is not a sticky bit. For more information regarding the
relationship between FPSCR[FI] and FPSCR[XX], see the description of the FPSCR[XX] bit.

15-19

FPRF

Floating-point result flags. For arithmetic, rounding, and conversion instructions the field is
based on the result placed into the target register, except that if any portion of the result is
undefined, the value placed here is undefined.

15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion
instructions may set this bit with the FPCC bits to indicate the class of the result as
shown in Table 3-10.

16-19 Floating-point condition code (FPCC). Floating-point compare instructions always
set one of the FPCC bits to one and the other three FPCC bits to zero. Arithmetic,
rounding, and conversion instructions may set the FPCC bits with the C bit to
indicate the class of the result. Note: In this case the high-order three bits of the
FPCC retain their relational significance indicating that the value is less than,
greater than, or equal to zero.

16 Floating-point less than or negative (FL or <)

17 Floating-point greater than or positive (FG or >)

18 Floating-point equal or zero (FE or =)

19 Floating-point unordered or NaN (FU or ?)

Note: These are not sticky bits.

20

Reserved

21

VXSOFT

Floating-point invalid operation exception for software request. This is a sticky bit. This bit can
be altered only by the mcrfs , mtfsfi , mtfsf , mtfsbO , or mtfsbl instructions. For more detailed
information, refer to Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

22

VXSQRT

Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more
detailed information, refer to Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

23

VXCVI

Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See
Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

24

VE

Floating-point invalid operation exception enable. See Section 3.3.6.1.1, “Invalid Operation
Exception Condition.”

25

OE

IEEE floating-point overflow exception enable. See Section 3.3.6.2, “Overflow, Underflow, and
Inexact Exception Conditions.”

26

UE

IEEE floating-point underflow exception enable. See Section 3.3.6.2.2, “Underflow Exception
Condition.”

27

ZE

IEEE floating-point zero divide exception enable. See Section 3.3.6.1.2, “Zero Divide
Exception Condition.”

28

XE

”

Floating-point inexact exception enable. See Section 3.3.6.2.3, “Inexact Exception Condition.
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Table 3-9. FPSCR Bit Settings (Continued)

Bit(s) Name Description

29 NI Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards
and the other FPSCR bits may have meanings other than those described here. If the bit is set
and if all implementation-specific requirements are met and if an IEEE-conforming result of a
floating-point operation would be a denormalized number, the result produced is zero
(retaining the sign of the denormalized number). Any other effects associated with setting this
bit are described in the user’s manual for the implementation.
Effects of the setting of this bit are implementation-dependent.

30-31 | RN Floating-point rounding control. See Section 3.3.5, “Rounding.”

00
01
10
11

Round to nearest
Round toward zero
Round toward +infinity
Round toward —infinity

Table 3-10 illustrates the floating-point result flags used by PowerPC processors. The result
flags correspond to FPSCR bits 15-19 (the FPRF field).

Table 3-10. Floating-Point Result Flags — FPSCR[FPRF]

Result Flags (Bits 15—-19)

Result Value Class

C < > = ?

1 0 0 0 1 Quiet NaN

0 1 0 0 1 | —Infinity

0 1 0 0 0 | —Normalized number

1 1 0 0 0 | —Denormalized number
1 0 0 1 0 | —Zero

0 0 0 1 0 | +Zero

1 0 1 0 0 | +Denormalized number
0 0 1 0 0 | +Normalized number

0 0 1 0 1 | +Infinity

The following conditions that can cause program exceptions are detected by the processor.
These conditions may occur during execution of computational floating-point instructions.

The corresponding bits set in the FPSCR are indicated in parentheses:

Invalid operation exception condition (VX)

— SNaN condition (VXSNAN)

— Infinity — infinity condition (VXISI)
— Infinity =infinity condition (VXIDI)

— Zero +zero condition (VXZDZ)
— Infinity * zero condition (VXIMZ)
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— Invalid compare condition (VXVC)

— Software request condition (VXSOFT)
— Invalid integer convert condition (VXCVI)
— Invalid square root condition (VXSQRT)

These exception conditions are described in Section 3.3.6.1.1, “Invalid Operation
Exception Condition.”

» Zero divide exception condition (ZX). These exception conditions are described in
Section 3.3.6.1.2, “Zero Divide Exception Condition.”

» Overflow Exception Condition (OX). These exception conditions are described in
Section 3.3.6.2.1, “Overflow Exception Condition.”

» Underflow Exception Condition (UX). These exception conditions are described in
Section 3.3.6.2.2, “Underflow Exception Condition.”

* Inexact Exception Condition (XX). These exception conditions are described in
Section 3.3.6.2.3, “Inexact Exception Condition.”

Each floating-point exception condition and each category of invalid IEEE floating-point
operation exception condition has a corresponding exception bit in the FPSCR which
indicates the occurrence of that condition. Generally, the occurrence of an exception
condition depends only on the instruction and its arguments (with one deviation, described
below). When one or more exception conditions arise during the execution of an
instruction, the way in which the instruction completes execution depends on the value of
the IEEE floating-point enable bits in the FPSCR which govern those exception conditions.
If no governing enable bit is set to 1, the instruction delivers a default result. Otherwise,
specific condition bits and the FX bit in the FPSCR are set and instruction execution is
completed by suppressing or delivering a result. Finally, after the instruction execution has
completed, a nonzero FX bitin the FPSCR causes a program exception if either FEO or FE1
is set in the MSR (invoking the system error handler). The values in the FPRs immediately
after the occurrence of an enabled exception do not depend on the FEO and FE1 bits.

The floating-point exception summary bit (FX) in the FPSCR is set by any floating-point
instruction (excepintfsfi andmtfsf) that causes any of the exception bits in the FPSCR to
change from 0O to 1, or bgntfsfi, mtfsf, andmtfsb1 instructions that explicitly set one of
these bits. FPSCR[FEX] is set when any of the exception condition bits is set and the
exception is enabled (enable bit is one).

A single instruction may set more than one exception condition bit only in the following
cases:

* The inexact exception condition bit (FPSCR[XX]) may be set with the overflow
exception condition bit (FPSCR[OX]).

» The inexact exception condition bit (FPSCR[XX]) may be set with the underflow
exception condition bit (FPSCR[UX]).
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* The invalid IEEE floating-point operation exception condition bit (SNaN) may be
set with invalid IEEE floating-point operation exception conditionditq)
(FPSCR[VXIMZ]) for multiply-add instructions.

» The invalid operation exception condition bit (SNaN) may be set with the invalid
IEEE floating-point operation exception condition bit (invalid compare)
(FPRSC[VXVC]) for compare ordered instructions.

* The invalid IEEE floating-point operation exception condition bit (SNaN) may E))n
set with the invalid IEEE floating-point operation exception condition bit (invali
integer convert) (FPSCR[VXCVI]) for convert-to-integer instructions.

Instruction execution is suppressed for the following kinds of exception conditions, so that
there is no possibility that one of the operands is lost:

* Enabled invalid IEEE floating-point operation
* Enabled zero divide

For the remaining kinds of exception conditions, a result is generated and written to the
destination specified by the instruction causing the exception condition. The result may
depend on whether the condition is enabled or disabled. The kinds of exception conditions
that deliver a result are the following:

» Disabled invalid IEEE floating-point operation
e Disabled zero divide

» Disabled overflow

» Disabled underflow

» Disabled inexact

e Enabled overflow

» Enabled underflow

* Enabled inexact

Subsequent sections define each of the floating-point exception conditions and specify the
action taken when they are detected.

The IEEE standard specifies the handling of exception conditions in terms of traps and trap
handlers. In the PowerPC architecture, an FPSCR exception enable bit being set causes
generation of the result value specified in the IEEE standard for the trap enabled case—the
expectation is that the exception is detected by hardware which will notify software by
taking an exception (trap). The software exception handler will revise the result. An FPSCR
exception enable bit of O causes generation of the default result value specified for the trap
disabled (or no trap occurs or trap is not implemented) case—the expectation is that the
exception will not be detected by software (because the hardware doesn’t trap or take the
exception), which will simply use the default result. The result to be delivered in each case
for each exception is described in the following sections.
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The IEEE default behavior when an exception occurs, which is to generate a default value
and not to notify software, is obtained by clearing all FPSCR exception enable bits and
using ignore exceptions mode (see Table 3-11). In this case the system floating-point
enabled exception error handler is not invoked, even if floating-point exceptions occur. If
necessary, software can inspect the FPSCR exception bits to determine whether exceptions
have occurred.

If the system error handler is to be invoked, the corresponding FPSCR exception enable bit
must be set and a mode other than ignore exceptions mode must be used. In this case the
system floating-point enabled exception error handler is invoked if an enabled floating-
point exception condition occurs.

Whether and how the system floating-point enabled exception error handler is invoked if an
enabled floating-point exception occurs is controlled by MSR bits FEO and FE1 as shown
in Table 3-11. (The system floating-point enabled exception error handler is never invoked
if the appropriate floating-point exception is disabled.)

Table 3-11. MSR[FEO] and MSR[FE1] Bit Settings for FP Exceptions

FEO | FE1 Description

0 0 Ignore exceptions mode—Floating-point exceptions do not cause the program exception error
handler to be invoked.

0 1 Imprecise nonrecoverable mode—When an exception occurs, the exception handler is invoked at
some point at or beyond the instruction that caused the exception. It may not be possible to identify
the excepting (offending) instruction or the data that caused the exception. Results from the
excepting instruction may have been used by or affected subsequent instructions executed before the
exception handler was invoked.

1 0 Imprecise recoverable mode— When an enabled exception occurs, the floating-point enabled
exception handler is invoked at some point at or beyond the instruction that caused the exception.
Sufficient information is provided to the exception handler that it can identify the excepting (offending)
instruction and correct any faulty results. In this mode, no results caused by the excepting instruction
have been used by or affected subsequent instructions that are executed before the exception
handler is invoked. Running in this mode may cause degradation in performance

1 1 Precise mode—The system floating-point enabled exception error handler is invoked precisely at the
instruction that caused the enabled exception. Running in this mode may cause degradation in

performance.

In precise mode, whenever the system floating-point enabled exception error handler is
invoked, the architecture ensures that all instructions logically residing before the excepting
instruction have completed and no instruction after the excepting instruction has been
executed. In an imprecise mode, the instruction flow may not be interrupted at the point of
the instruction that caused the exception. The instruction at which the system floating-point
exception handler is invoked has not been executed unless it is the excepting instruction and
the exception is not suppressed.

In either of the imprecise modes, any FPSCR instruction can be used to force the
occurrence of any invocations of the floating-point enabled exception handler, due to
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instructions initiated before the FPSCR instruction. This forcing has no effect in ignore
exceptions mode and is superfluous for precise mode.

Instead of using an FPSCR instruction, an execution synchronizing instruction or event can
be used to force exceptions and set bits in the FPSCR; however, for the best performance
across the widest range of implementations, an FPSCR instruction should be used to

achieve these effects.
For the best performance across the widest range of implementations, the follop
guidelines should be considered:

» |If IEEE default results are acceptable to the application, FEO and FE1 should be
cleared (ignore exceptions mode). All FPSCR exception enable bits should be
cleared.

» If IEEE default results are unacceptable to the application, an imprecise mode
should be used with the FPSCR enable bits set as needed.

* Ignore exceptions mode should not, in general, be used when any FPSCR exception
enable bits are set.

* Precise mode may degrade performance in some implementations, perhaps
substantially, and therefore should be used only for debugging and other specialized
applications.

3.3.6.1 Invalid Operation and Zero Divide Exception Conditions

The flow diagram in Figure 3-23 shows the initial flow for checking floating-point
exception conditions (invalid operation and divide by zero conditions). In any of these cases
of floating-point exception conditions, if the FPSCR[FEX] bit is set (implicitly) and
MSR[FEO-FE1%00, the processor takes a program exception (floating-point enabled
exception type). Refer to Chapter 6, “Exceptions,” for more information on exception
processing. The actions performed for each floating-point exception condition are
described in greater detail in the following sections.
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Figure 3-23. Initial Flow for Floating-Point Exception Conditions

Check for Overflow, Underflow, (see Figure 3-24)
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3.3.6.1.1 Invalid Operation Exception Condition

An invalid operation exception occurs when an operand is invalid for the specified
operation. The invalid operations are as follows:

* Any operation except load, store, move, selectmdsf on a signaling NaN (SNaN)

» For add or subtract operations, magnitude subtraction of infinkiesc)

 Division of infinity by infinity (e + o0 )
» Division of zero by zero (G- 0)

» Multiplication of infinity by zero ¢ * 0)

* Ordered comparison involving a NaN (invalid compare)

» Square root or reciprocal square root of a negative, nonzero number (invalid square
root).

NOTE: If the implementation does not support the optional floating-point square
root or floating-point reciprocal square root estimate instructions, software
can simulate the instruction and set the FPSCR[VXSQRT] bit to reflect the
exception.

Integer convert involving a number that is too large in magnitude to be represented
in the target format, or involving an infinity or a NaN (invalid integer convert)

FPSCR[VXSOFT] allows software to cause an invalid operation exception for a condition
that is not necessarily associated with the execution of a floating-point instruction. For
example, it might be set by a program that computes a square root if the source operand is
negative. This allows PowerPC instructions not implemented in hardware to be emulated.

Any time an invalid operation occurs or software explicitly requests the exception via
FPSCR[VXSOFT], (regardless of the value of FPSCR[VE]), the following actions are
taken:

* One or two invalid operation exception condition bits is set

FPSCR[VXSNAN] (if SNaN)

FPSCR[VXISI] (if co—oo0 )

FPSCR[VXIDI] (if c0o+o00)
FPSCR[VXZDZ] (if 0 + 0)

FPSCR[VXIMZ] (if o* 0)

FPSCR[VXVC] (if invalid comparison)
FPSCR[VXSOFT] (if software request)
FPSCR[VXSQRT] (if invalid square root)
FPSCR[VXCVI] (if invalid integer convert)

» If the operation is a compare,
FPSCR[FR, FI, C] are unchanged
FPSCR[FPCC] is set to reflect unordered

» If software explicitly requests the exception,
FPSCRI[FR, FI, FPRF] are as set by ti#sfi, mtfsf, or mtfsbl instruction.
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There are additional actions performed that depend on the value of FPSCR[VE]. These are
described in Table 3-12.

Table 3-12. Additional Actions Performed for Invalid FP Operations

Action Performed

Invalid Operation Result Category
FPSCR[VE] =1 FPSCR[VE] =0
Arithmetic or floating-point round frD Unchanged QNaN
to single
FPSCRI[FR, FI] Cleared Cleared
FPSCR[FPRF] Unchanged Set for QNaN
Convert to 32-bit integer frD[0-31] Unchanged Undefined
(positive number or + ') — -
frD[32-63] Unchanged Most positive 32-bit
integer value
FPSCRI[FR, FI] Cleared Cleared
FPSCR[FPRF] Unchanged Undefined
Convert to 32-bit integer frD[0-31] Unchanged Undefined
(negative number, NaN, or — 00 ) - -
frD[32—-63] Unchanged Most negative 32-bit
integer value
FPSCRI[FR, FI] Cleared Cleared
FPSCR[FPRF] Unchanged Undefined
All cases FPSCR[FEX] Implicitly set Unchanged

(causes exception)

3.3.6.1.2 Zero Divide Exception Condition

A zero divide exception condition occurs when a divide instruction is executed with a zero
divisor value and a finite, nonzero dividend value or wheffrasor frsgrte instruction is
executed with a zero operand value. This exception condition indicates an exact infinite
result from finite operands exception condition corresponding to a mathematical pole
(divide orfres) or a branch point singularityrgqrte).
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When a zero divide condition occurs, the following actions are taken:
e Zero divide exception condition bit is set FPSCR[ZX] = 1.

* FPSCRI[FR, Fl] are cleared.

Additional actions depend on the setting of the zero divide exception condition enable bit,

FPSCRI[ZE], as described in Table 3-13.

Table 3-13. Additional Actions Performed for Zero Divide

Action Performed
Result Category
FPSCR[ZE] =1 FPSCR[ZE] =0
frD Unchanged (sign detemined by XOR of the
signs of the operands)
FPSCR[FEX] Implicitly set (causes exception) Unchanged
FPSCR[FPRF] Unchanged Set to indicate

3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions

As described earlier, the overflow, underflow, and inexact exception conditions are detected
after the floating-point instruction has executed and an infinitely precise result with
unbounded range has been computed. Figure 3-24 shows the flow for the detection of these
conditions and is a continuation of Figure 3-23. As in the cases of invalid operation, or zero
divide conditions, if the FPSCR[FEX] bit is implicitly set as described in Table 3-9 and
MSR[FEO-FEL1]# 00, the processor takes a program exception (floating-point enabled
exception type). Refer to Chapter 6, “Exceptions,” for more information on exception
processing. The actions performed for each of these floating-point exception conditions
(including the generated result) are described in greater detail in the following sections.
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Figure 3-24. Checking of Remaining Floating-Point Exception Conditions
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3.3.6.2.1 Overflow Exception Condition

Overflow occurs when the magnitude of what would have been the rounded result (had the
exponent range been unbounded) is greater than the magnitude of the largest finite number
of the specified result precision. Regardless of the setting of the overflow exception
condition enable bit of the FPSCR, the following action is taken:

* The overflow exception condition bit is set FPSCR[OX] = 1.

Additional actions are taken that depend on the setting of the overflow exception cond

enable bit of the FPSCR as described in Table 3-14.

Table 3-14. Additional Actions Performed for Overflow Exception Condition

Condition

Result Category

Action Performed

FPSCRI[OE] = 1

FPSCR[OE] = 0

Double-precision
arithmetic instructions

Exponent of normalized
intermediate result

Adjusted by subtracting 1536

Single-precision
arithmetic and frsp x
instruction

Exponent of normalized
intermediate result

Adjusted by subtracting 192

All cases

frD Rounded result (with adjusted Default result per Table 3-15
exponent)

FPSCR[XX] Set if rounded result differs Set
from intermediate result

FPSCR[FEX] Implicitly set (causes Unchanged
exception)

FPSCR[FPRF] Set to indicatetnormal number | Set to indicate £ or namal

*number
FPSCRIFI] Reflects rounding Set
FPSCR[FR] Reflects rounding Undefined

When the overflow exception condition is disabled (FPSCR[OE] = 0) and an overflow
condition occurs, the default result is determined by the rounding mode bit (FPSCR[RN])
and the sign of the intermediate result as shown in Table 3-15.
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Table 3-15. Target Result for Overflow Exception Disabled Case

FPSCR[RN] Sign of Igw;g;rr:ediate D
Round to nearest Positive +Infinity
Negative —Infinity
Round toward zero Positive Format's largest finite positive number
Negative Format's most negative finite number
Round toward +infinity Positive +Infinity
Negative Format’'s most negative finite number
Round toward —infinity Positive Format's largest finite positive number
Negative —Infinity

3.3.6.2.2 Underflow Exception Condition
The underflow exception condition is defined separately for the enabled and disabled states:

» Enabled—Underflow occurs when the intermediate result is tiny.

» Disabled—Underflow occurs when the intermediate result is tiny and the rounded
result is inexact.

In this context, the term ‘tiny’ refers to a floating-point value that is too small to be
represented for a particular precision format.

As shown in Figure 3-24, a tiny result is detected before rounding, when a nonzero
intermediate result value computed as though it had infinite precision and unbounded
exponent range is less in magnitude than the smallest normalized number.

If the intermediate result is tiny and the underflow exception condition enable bit is cleared
(FPSCR[UE] = 0), the intermediate result is denormalized (see Section 3.3.3,
“Normalization and Denormalization”) and rounded (see Section 3.3.5, “Rounding”)
before being stored in an FPR. In this case, if the rounding causes the delivered result value
to differ from what would have been computed were both the exponent range and precision
unbounded (the result is inexact), then underflow occurs and FPSCR[UX] is set.
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The actions performed for underflow exception conditions are described in Table 3-16.

Table 3-16. Actions Performed for Underflow Conditions

Condition

Result Category

Action Performed

FPSCR[UE] = 1

FPSCR[UE] =0

Double-precision
arithmetic instructions

Exponent of normalized
intermediate result

Adjusted by adding 1536

Single-precision
arithmetic and frsp x

Exponent of normalized
intermediate result

Adjusted by adding192

instructions
All cases frD Rounded result (with Denormalized and
adjusted exponent) rounded result
FPSCR[XX] Set if rounded result Set if rounded result
differs from intermediate differs from intermediate
result result
FPSCR[UX] Set Set only if tiny and inexact
after denormalization and
rounding
FPSCR[FPRF] Set to indicate nomalized | Set to indicate
number *denormalized number or
tzero
FPSCR[FEX] Implicitly set (causes Unchanged
exception)
FPSCRI[FI] Reflects rounding Reflects rounding
FPSCRI[FR] Reflects rounding Reflects rounding
NOTE: The FR and Fl bits in the FPSCR allow the system floating-point enabled

exception error handler, when invoked because of an underflow exception

condition, to simulate a trap disabled environment.
That is, the FR and FI bits allow the system floating-point enabled exception
error handler to unround the result, thus allowing the result to be denormalized.

3.3.6.2.3 Inexact Exception Condition

The inexact exception condition occurs when one of two conditions occur during rounding:

* The rounded result differs from the intermediate result assuming the intermediate
result exponent range and precision to be unbounded. (In the case of an enabled

overflow or underflow condition, where the exponent of the rounded result is

adjusted for those conditions, an inexact condition occurs only if the significand of
the rounded result differs from that of the intermediate result.)

* The rounded result overflows and the overflow exception condition is disabled.
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When an inexact exception condition occurs, the following actions are taken independently
of the setting of the inexact exception condition enable bit of the FPSCR:

* Inexact exception condition bit in the FPSCR is set FPSCR[XX] = 1.

* The rounded or overflowed result is placed into the target FPR.

 FPSCR[FPRF] is set to indicate the class and sign of the result.

In addition, if the inexact exception condition enable bit in the FPSCR (FPSCR[XE]) is set,
and an inexact condition exists, then the FPSCR[FEX] bit is implicitly set, causing the
processor to take a floating-point enabled program exception.

In PowerPC implementations, running with inexact exception conditions enabled may have
greater latency than enabling other types of floating-point exception conditions.
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Chapter 4. Addressing Modes and
Instruction Set Summary

This chapter describes instructions and addressing modes defined by the three levels [y
PowerPC architecture—user instruction set architecture (UISA), virtual environm vV
architecture (VEA), and operating environment architecture (OEA). These instructions _p
divided into the following functional categories: o

* Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 4.2.1, “Integer Instructions.”

* Floating-pointinstructions—These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 4.2.2, “Floating-Point Instructions.”

» Load and store instructions—These include integer and floating-point load and store
instructions. For more information, see Section 4.2.3, “Load and Store Instructions.”

* Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 4.2.4, “Branch and Flow Control
Instructions.”

» Processor control instructions—These instructions are used for synchronizing
memory accesses and managing of caches, TLBs, and the segment registers. For
more information, see Section 4.2.5, “Processor Control Instructions—UISA,”
Section 4.3.1, “Processor Control Instructions—VEA,” and Section 4.4.2,
“Processor Control Instructions—OEA.”

* Memory synchronization instructions—These instructions control the order in
which memory operations are completed with respect to asynchronous events, and
the order in which memory operations are seen by other processors or memory
access mechanisms. For more information, see Section 4.2.6, “Memory
Synchronization Instructions—UISA,” and Section 4.3.2, “Memory
Synchronization Instructions—VEA.”

» Memory control instructions—These include cache management instructions (user-
level and supervisor-level), segment register manipulation instructions, and
translation lookaside buffer management instructions. For more information, see
Section 4.3.3, “Memory Control Instructions—VEA,” and Section 4.4.3, “Memory
Control Instructions—OEA.”
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NOTE: User-level and supervisor-level are referred to as problem state and privileged
state, respectively, in the architecture specification.

» External control instructions—These instructions allow a user-level program to
communicate with a special-purpose device. For more information, see
Section 4.3.4, “External Control Instructions.”

This grouping of instructions does not necessarily indicate the execution unit that processes
a particular instruction or group of instructions within a processor implementation.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision and double-precision floating-point operands. The
PowerPC architecture uses instructions that are four bytes long and word-aligned. It
provides for byte, half-word, and word operand fetches and stores between memory and a
set of 32 general-purpose registers (GPRSs). It also provides for word and double-word
operand fetches and stores between memory and a set of 32 floating-point registers (FPRS).
The FPRs are 64 bits wide in all PowerPC implementations. The GPRs are 32 bits wide.

Arithmetic and logical instructions do not read or modify memory. To use the contents of
a memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
PowerPC-compliant assemblers support the mnemonics and operand lists. To simplify
assembly language programming, a set of simplified mnemonics (referred to as extended
mnemonics in the architecture specification) and symbols is provided for some of the most
frequently-used instructions; see Appendix F, “Simplified Mnemonics,” for a complete list
of simplified mnemonics.

The instructions are organized by functional categories while maintaining the delineation
of the three levels of the PowerPC architecture—UISA, VEA, and OEA; Section 4.2
discusses the UISA instructions, followed by Section 4.3 that discusses the VEA
instructions and Section 4.4 that discusses the OEA instructions. See Section 1.1.2, “.The
Levels of the PowerPC Architecture,” for more information about the various levels defined
by the PowerPC architecture.

4.1 Conventions

This section describes conventions used for the PowerPC instruction set. Descriptions of
computation modes, memory addressing, synchronization, and the PowerPC exception
summary follow.

4.1.1 Sequential Execution Model

The PowerPC processors appear to execute instructions in program order, regardless of
asynchronous events or program exceptions. The execution of a sequence of instructions
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may be interrupted by an exception caused by one of the instructions in the sequence, or by
an asynchronous event.

NOTE: The architecture specification refers to exceptions as interrupts.

For exceptions to the sequential execution model, refer to Chapter 6, “Exceptions.” For
information about the synchronization required when using store instructions to access
instruction areas of memory, refer to Section 4.2.3.3, “Integer Store Instructions,” and
Section 5.1.5.2, “Instruction-Cache Instructions.” For information regarding instruction
fetching, and for information about guarded memory refer to Section 5.2.1.5, “T,
Guarded Attribute (G).” h

4.1.2 Computation Modes

The PowerPC architecture allows for both 32-bit and 64-bit modes, however, this manual
defines only the 32-bit implementation, in which all registers except the FPRs are 32 bits
long, and effective addresses are always 32 bits long.

4.1.3 Classes of Instructions

PowerPC instructions belong to one of the following three classes:
» Defined
* lllegal

» Reserved

The class is determined by examining the primary opcode, and the extended opcode if any.
If the opcode, or the combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

In future versions of the PowerPC architecture, instruction codings that are now illegal may
become defined (by being added to the architecture) or reserved (by being assigned to one
of the special purposes). Likewise, reserved instructions may become defined.

4.1.3.1 Definition of Boundedly Undefined

The results of executing a given instruction are said to be boundedly undefined if they could
have been achieved by execution an arbitrary sequence of instructions, stating in the state
the machine was in before execution the given instruction. Boundedly undefined results for
a given instruction may vary between implementations, and between different executions
on a the same implementations.

4.1.3.2 Defined Instruction Class

Defined instructions contain all the instructions defined in the PowerPC UISA, VEA, and
OEA. Defined instructions are guaranteed to be supported in all PowerPC implementations
as stated in the instruction descriptions in Chapter 8, “Instruction set.” A PowerPC
processor may invoke the illegal instruction error handler (part of the program exception
handler) when an unimplemented PowerPC instruction is encountered so that it may be
emulated in software, as required.

A defined instruction can have invalid forms, as described in Section 4.1.3.2.2, “Invalid
Instruction Forms.”
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4.1.3.2.1 Preferred Instruction Forms
A defined instruction may have an instruction form that is preferred (that is, the instruction
will execute in an efficient manner). Any form other than the preferred form may take
significantly longer to execute. The following instructions have preferred forms:

» Load/store multiple instructions

» Load/store string instructions

* Orimmediate instruction (preferred form of no-op)

4.1.3.2.2 Invalid Instruction Forms

A defined instruction may have an instruction form that is invalid if one or more operands,
excluding opcodes, are coded incorrectly in a manner that can be deduced by examining
only the instruction encoding (primary and extended opcodes). Attempting to execute an
invalid form of an instruction either invokes the illegal instruction error handler (a program
exception) or yields boundedly-undefined results. See Chapter 8, “Instruction set,” for
individual instruction descriptions.

Invalid forms result when a bit or operand is coded incorrectly, for example, or when a
reserved bit (shown as ‘0’) is coded as ‘1.

The following instructions have invalid forms identified in their individual instruction
descriptions:

* Branch conditional instructions

» Load/store with update instructions

» Load multiple instructions

» Load string instructions

* Integer compare instructions

» Load/store floating-point with update instructions

4.1.3.2.3 Optional Instructions

A defined instruction may be optional. The optional instructions fall into the following
categories:

» General-purpose instructiondsgrt andfsqrts
» Graphics instructions+res, frsqrte, andfsel
» External control instructions-e€iwx andecowx

* Lookaside buffer management instruction#ibia, tlbie, andtlbsync (with
conditions, see Chapter 8, “Instruction set,” for more information)

NOTE: Thestfiwx instruction is defined as optional by the PowerPC architecture to
ensure backwards compatibility with earlier processors; however, it will likely be
required for subsequent PowerPC processors.

Additional categories may be defined in future implementations. If an
implementation claims to support a given category, it implements all the
instructions in that category.
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Any attempt to execute an optional instruction that is not provided by the implementation
will cause the illegal instruction error handler to be invoked. Exceptions to this rule are
stated in the instruction descriptions found in Chapter 8, “Instruction set.”

4.1.3.3 lllegal Instruction Class
lllegal instructions can be grouped into the following categories:

* Instructions that are not implemented in the PowerPC architecture. These opcodes
are available for future extensions of the PowerPC architecture; that is, future
versions of the PowerPC architecture may define any of these instructions to
perform new functions. The following primary opcodes are defined as illegal b
may be used in future extensions to the architecture:

1,2,4,5,6, 22, 30, 56, 57, 58, 60, 61, 62

» Allunused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, “Instructions Sorted by Opcode,” and
Section 4.1.3.4, “Reserved Instructions.” The following primary opcodes have some
unused extended opcodes.

19, 31, 59, 63

* Aninstruction consisting entirely of zeros is guaranteed to be an illegal instruction.
This increases the probability that an attempt to execute data or uninitialized
memory invokes the illegal instruction error handler (a program exception).

NOTE: If only the primary opcode consists of all zeros, the instruction is considered a
reserved instruction, as described in Section 4.1.3.4, “Reserved Instructions.”

An attempt to execute an illegal instruction invokes the illegal instruction error handler (a
program exception) but has no other effect. See Section 6.4.7, “Program Exception
(0Ox00700),” for additional information about illegal instruction exception.

With the exception of the instruction consisting entirely of binary zeros, the illegal
instructions are available for further additions to the PowerPC architecture.

4.1.3.4 Reserved Instructions

Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
Section 6.4.7, “Program Exception (0x00700),” for additional information about illegal
instruction exception.

The following types of instructions are included in this class:

1. Instructions for the POWER architecture that have not been included in the
PowerPC architecture.
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2. Implementation-specific instructions used to conform to the PowerPC
architecture specifications (for example, Load Data TLB Eniipjd() and
Load Instruction TLB Entryt(pli ) instructions for the PowerPC 603™
microprocessor).

3. Theinstruction with primary opcode 0, when the instruction does not consist
entirely of binary zeros

4. Any other implementation-specific instructions that are not defined in the UISA,
VEA, or OEA

4.1.4 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches
the next sequential instruction.

4.1.4.1 Memory Operands

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte. Within words bytes are number from left to right.

Memory operands may be bytes, half-words, words, or double words, for the load/store
multiple, and load/store string instructions a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian;
see Section 3.1.2, “Byte Ordering,” for more information.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Chapter 3, “Operand Conventions.”

4.1.4.2 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor when executing a

memory access or branch instruction or when fetching the next sequential instruction. For

a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the

following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O is ignored. The effective address arithmetic wraps
around from the maximum addres3? 2 1, to address 0.

In all implementations, the three low-order bits of the calculated effective address may be
modified by the processor before accessing memory if the PowerPC system is operating in
little-endian mode.

See Section 3.1.2, “Byte Ordering,” for more information about little-endian mode.
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Load and store operations have three categories of effective address generation that depend
on the operands specified:

* Register indirect with immediate index mode

» Reqgister indirect with index mode (sum of two registers)

* Register indirect mode

See Section 4.2.3.1, “Integer Load and Store Address Generation,” for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

* Immediate addressing.
» Link register indirect
» Count register indirect

See Section 4.2.4.1, “Branch Instruction Address Calculation,” for a detailed
description of effective address generation for branch instructions.

Branch instructions can optionally load the LR with the next sequential instruction address
(current instruction address + 4). This is used for subroutine call and return.

4.1.5 Synchronizing Instructions

The synchronization described in this section refers to the state of activities within the
processor that is performing the synchronization. Refer to Section6.1.2,
“Synchronization,” for more detailed information about other conditions that can cause
context and execution synchronization.

4.1.5.1 Context Synchronizing Instructions

The System Callq40, Return from Interruptrfi), and Instruction Synchronizasgync)
instructions perform context synchronization by allowing previously issued instructions to
complete before continuing with program execution. All three instructions will flush the
instruction prefetch queue and start instruction fetching from memory in the context
established after all preceding instructions have completed execution.

1. No higher priority exception existsd and instruction fetching and dispatching is
halted.

2. All previous instructions have completed to a point where they can no longer cause
an exception.

If a previous memory access instruction causes one or more direct-store interface
error exceptions, the results are guaranteed to be determined before this instruction
is executed.

3. Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.
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4. The instructions at the target of the branchadndrfi and those following thesync
instruction execute in the context established by these instructions. ksyribe
instruction the instruction fetch queue must be flushed and instruction fetching
restarted at the next sequential instruction. Batndrfi execute like a branch and
the flushing and refetching is automatic.

4.1.5.2 Execution Synchronizing Instructions

An instruction is execution synchronizing if it satisfies the conditions of the first two items
described above for context synchronization. $fecinstruction is treated likesyncwith

respect to the second item described above (that is, the conditions described in the second
item apply to the completion &fyng. Thesyncandmtmsr instructions are examples of
execution-synchronizing instructions.

Theisync instruction is concerned mainly with the instruction stream in the processor on
which it is executed, whereasyncis looking outward towards the caches and memory and
is concerned with data arriving at memory where it is visible to other processors in a
multiprocessor environment. (e.g. cache block store, cache block flush, etc.)

All context-synchronizing instructions are execution-synchronizing. Unlike a context
synchronizing operation, an execution synchronizing instruction need not ensure that the
instructions following it execute in the context established by that instruction. This new
context becomes effective sometime after the execution synchronizing instruction
completes and before or at a subsequent context synchronizing operation.
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4.1.6 Exception Summary

PowerPC processors have an exception mechanism for handling system functions and error
conditions in an orderly way. The exception model is defined by the OEA. There are two
kinds of exceptions—those caused directly by the execution of an instruction and those
caused by an asynchronous event. Either may cause components of the system software to
be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

* An attempt to execute an illegal instruction causes the illegal instruction (progr
exception) error handler to be invoked. An attempt by a user-level program to
execute the supervisor-level instructions listed below causes the privileged
instruction (program exception) handler to be invoked.

The PowerPC architecture provides the following supervisor-level instructions:
dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi, tibia, tlbie,
andtlbsync (defined by OEA).

NOTE: The privilege level of thenfspr andmtspr instructions depends on the
SPR encoding.
* The execution of a defined instruction using an invalid form causes either the illegal
instruction error handler or the privileged instruction handler to be invoked.

* The execution of an optional instruction that is not provided by the implementation
causes the illegal instruction error handler to be invoked.

* An attempt to access memory in a manner that violates memory protection, or an
attempt to access memory thatis not available (page fault), causes the DSI exception
handler or ISI exception handler to be invoked.

* An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

» The execution of aacinstruction permits a program to call on the system to perform
a service, by causing a system call exception handler to be invoked.

» The execution of a trap instruction invokes the program exception trap handler.

» The execution of a floating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable exception handler.

» The execution of an instruction that causes a floating-point exception that is enabled
invokes the floating-point enabled exception handler.

» The execution of a floating-point instruction that requires system software assistance
causes the floating-point assist exception handler to be invoked. The conditions
under which such software assistance is required are implementation-dependent.

Exceptions caused by asynchronous events are described in Chapter 6, “Exceptions.”
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4.2 PowerPC UISA Instructions

The PowerPC user instruction set architecture (UISA) includes the base user-level
instruction set (excluding a few user-level cache-control, synchronization, and time base
instructions), user-level registers, programming model, data types, and addressing modes.
This section discusses the instructions defined in the UISA.

4.2.1 Integer Instructions
The integer instructions consist of the following:

* Integer arithmetic instructions

* Integer compare instructions

» Integer logical instructions

» Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs. Integer arithmetic, shift, rotate, and string move instructions may update or read
values from the XER, and the condition register (CR) fields may be updated if the Rc bit of
the instruction is set.

These instructions treat the source operands as signed integers unless the instruction is
explicitly identified as performing an unsigned operation. For example, Multiply High-
Word Unsignedfiulhwu) and Divide Word Unsigneddfvwu) instructions interpret both
operands as unsigned integers.

The integer instructions that are coded to update the condition register, and the integer
arithmetic instructionaddic., set CR bits 0—3 (CRO) to characterize the result of the
operation. CRO is set to reflect a signed comparison of the result to zero.

The integer arithmetic instructiongddic, addic., subfic, addc, subfc, adde subfe,
addme, subfme addze andsubfze always set the XER bit, CA, to reflect the carry out of
bit 0. Integer arithmetic instructions with the overflow enable (OE) bit set in the instruction
encoding (instructions with o suffix) cause the XER[SO] and XER[OV] to reflect an
overflow of the result. These integer arithmetic instructions reflect the overflow of the 32-
bit result.

Instructions that select the overflow option (enable XER[OV]) or that set the XER carry bit
(CA) may delay the execution of subsequent instructions.

Unless otherwise noted, when CRO and the XER are set, they characterize the value placed
in the target register.
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4.2.1.1 Integer Arithmetic Instructions
Table 4-1 lists the integer arithmetic instructions for the PowerPC processors.

Table 4-1. Integer Arithmetic Instructions

Name Mnemonic Operand Operation
Syntax
Add Immediate |addi r D,rA,SIMM | The sum (rA|0) + SIMM is placed into rD.
Add Immediate |addis r D,rA,SIMM | The sum (rA|0) + (SIMM || 0x0000) is placed into rD.
Shifted
Add add rD,rA,rB The sum (rA) + (rB) is placed into rD.
ace. add Add
acco add. Add with CR Update. The dot suffix enables the update of
addo. CRO
addo Add with Overflow Enabled. The o suffix enables the overflow
bit (SO, OV) in the XER.
addo. Add with Overflow and CR Update. The o. suffix enables the
update of CRO and enables the overflow bit (SO,0V) in the
XER.
Subtract From | subf rD,rA,rB The sum = (rA) + (rB) +1 is placed into rD.
SUEI' subf Subtract From
subfo subf. Subtract from with CR Update. The dot suffix enables the
subfo. update of CRO.
subfo Subtract from with Overflow Enabled. The o suffix enables the
overflow bits (SO,0V) in the XER.
subfo. Subtract from with Overflow and CR Update. The o. suffix
enables the update of CRO and enables the overflow bits
(SO,0V) in the XER.
Add Immediate |addic r D,rA,SIMM | The sum (rA) + SIMM is placed into rD.
Carrying
Add Immediate |addic. r D,rA,SIMM | The sum (rA) + SIMM is placed into rD. CRO is updated.
Carrying and
Record
Subtract from subfic I D,rA,SIMM | The sum = (rA) + SIMM + 1 is placed into rD.
Immediate
Carrying
Add Carrying addc rD,rA,rB The sum (rA) + (rB) is placed into rD.
aggc. addc Add Carrying
a i d°° addc.  Add Carrying with CR Update. The dot suffix enables the
addco. update of CRO.
addco Add Carrying with Overflow Enabled. The o suffix enables the
overflow bits (SO,0V) in the XER.
addco. Add Carrying with Overflow and CR Update. The o. suffix
enables the update of CRO and enables the overflow bits
(SO,0V) in the XER.
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Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Operation
Syntax
Subtract from subfc rD,rA,rB The sum = (rA) + (rB) + 1 is placed into rD.
Carrying SUEIC' subfc Subtract from Carrying
zzbfgg subfc. Subtract from Carrying with CRO Update. The dot suffix
' enables the update of CRO.
subfco Subtract from Carrying with Overflow. The o suffix enables the
overflow bits (SO,0V) in the XER.
subfco.  Subtract from Carrying with Overflow and CRO Update. The
o. suffix enables the update of CRO and enables the overflow
bits (SO,0V) in the XER.
Add adde rD,rA,rB The sum (rA) + (rB) + XER[CA] is placed into rD.
Extended adde. adde Add Extended
addeo adde. Add Extended with CR Update. The dot suffix enables the
addeo.
update of CRO.
addeo Add Extended with Overflow. The o suffix enables the
overflow bits (SO,0V) in the XER.
addeo.  Add Extended with Overflow and CR Update. The o. suffix
enables the update of CRO and enables the overflow bits
(SO,0V) in the XER.
Subtract from subfe rD,rA,rB The sum = (rA) + (rB) + XER[CA] is placed into rD.
Extended subfe. subfe Subtract from Extended
subfeo subfe. Subtract from Extended with CR Update. The dot suffix
subfeo. enables the update of CRO.
subfeo  Subtract from Extended with Overflow. The o suffix enables
the overflow bits (SO,0V) in the XER.
subfeo.  Subtract from Extended with Overflow and CR Update. The o.
suffix enables the update of CRO and enables the overflow
(SO,0V) bits in the XER.
Add to Minus addme rD,rA The sum (rA) + XER[CA] added to OxFFFF_FFFF is placed into rD.
One Extended aggme. addme  Add to Minus One Extended
demgg addme. Add to Minus One Extended with CR Update. The dot suffix
) enables the update of CRO.
addmeo Add to Minus One Extended with Overflow. The o suffix
enables the overflow bits (SO,0V) in the XER.
addmeo. Add to Minus One Extended with Overflow and CR Update.
The o. suffix enables the update of CRO and enables the
overflow (SO,0V) bits in the XER.
Subtract from subfme rD,rA The sum = (rA) + XER[CA] added to OxFFFF_FFFF is placed into rD.
'\EA)'(?;:dgge zﬂmgo subfme  Subtract from M?nus One Extended _
subfmeo. subfme. Sub_tract from Minus One Extended with CR Update. The dot
suffix enables the update of CRO.
subfmeo Subtract from Minus One Extended with Overflow. The o
suffix enables the overflow bits (SO,0V) in the XER.
subfmeo. Subtract from Minus One Extended with Overflow and CR
Update. The o. suffix enables the update of CRO and enables
the overflow bits (SO,0V) in the XER.
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Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Operation
Syntax
Add to Zero addze rD,rA The sum (rA) + XER[CA] is placed into rD.
Extended Zggigb addze Add to Zero Extended _ _
addzeo addze. Add to Zero Extended with CR Update. The dot suffix enables
' the update of CRO.
addzeo Add to Zero Extended with Overflow. The o suffix enables the
overflow bits (SO,0V) in the XER.
addzeo. Add to Zero Extended with Overflow and CR Update. The o.
suffix enables the update of CRO and enables the overflow
bits (SO,0V) in the XER.
Subtract from subfze rD,rA The sum = (rA) + XER[CA] is placed into rD.
Zero Extended zzgzgo subfze Subtract from Zero Extended _ _
subfzeo subfze.  Subtract from Zero Extended with CR Update. The dot suffix
' enables the update of CRO.
subfzeo  Subtract from Zero Extended with Overflow. The o suffix
enables the overflow bits (SO,0V) in the XER.
subfzeo. Subtract from Zero Extended with Overflow and CR Update.
The o. suffix enables the update of CRO and enables the
overflow bits (SO,0V) in the XER.
Negate neg rD,rA The sum = (rA) + 1 is placed into rD.
neg. neg Negate
nego neg. Negate with CR Update. The dot suffix enables the update of
nego. CRO.
nego Negate with Overflow. The o suffix enables the overflow bits
(SO,0V) in the XER.
nego. Negate with Overflow and CR Update. The o. suffix enables
the update of CRO and enables the overflow bits (SO,0V) in
the XER.
Multiply Low mulli r D,rA,SIMM | The low-order 32 bits of the 64-bit product (rA) LISIMM are placed into
Immediate rD.
This instruction can be used with mulhw x to calculate a full 64-bit
product.
Multiply Low mullw rD,rA,rB The low order 32-bits of the 64 bit product (rA) LJ(rB) are placed into
mullw. register rD.
mullwo L . . ,
This instruction can be used with mulhw x to calculate a full 64-bit
mullwo.
product.
mullw Multiply Low
muliw. Multiply Low with CR Update. The dot suffix enables the
update of CRO.
mullwo  Multiply Low with Overflow. The o suffix enables the overflow
bits (SO,0V) in the XER.
mullwo.  Multiply Low with Overflow and CR Update. The o. suffix
enables the update of the condition register and enables the
overflow bits (SO,0V) in the XER.
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Table 4-1. Integer Arithmetic Instructions (Continued)

Operand

Name Mnemonic
Syntax

Operation

Multiply High mulhw rD,rA,rB The contents of rA and rB are interpreted as 32-bit signed integers. The
Word mulhw. 64-bit product is formed. The high-order 32 bits of the 64-bit product are
placed into rD.

mulhw Multiply High Word
mulhw.  Multiply High Word with CR Update. The dot suffix enables
the update of CRO.

Multiply High mulhwu rD,rA,rB The contents of rA and of rB are interpreted as 32-bit unsigned integers.
Word Unsigned | mulhwu. The 64-bit product is formed. The high-order 32-bits of the 64-bit product
are placed into rD.

mulhwu  Multiply High Word Unsigned
mulhwu.  Multiply High Word Unsigned with CR Update. The dot suffix
enables the update of CRO.

Divide Word divw rD,rA,rB The dividend is the signed value of rA. The divisor is the signed value of
divw. rB. The low-order 32-bits of the 64 bit quotient are placed into rD. The
divwo remainder is not supplied as a result.

divwo. divw  Divide Word

divw.  Divide Word with CR Update. The dot suffix enables the update
of CRO.

divwo Divide Word with Overflow. The o suffix enables the overflow
bits (SO,0V) in the XER.

divwo. Divide Word with Overflow and CR Update. The o. suffix
enables the update of CRO and enables the overflow bits
(SO,0V) in the XER.

Divide Word divwu rD,rA,rB The dividend is the value in rA. The divisor is the value in rB. The low-
Unsigned divwu. order 32-bits of the 64 bit quotient are placed into rD. The remainder is
divwuo not supplied as a result.

divwuo. divwu Divide Word Unsigned

divwu. Divide Word Unsigned with CR Update. The dot suffix
enables the update of CRO.

divwuo  Divide Word Unsigned with Overflow. The o suffix enables the
overflow bits (SO,0V) in the XER.

divwuo. Divide Word Unsigned with Overflow and CR Update. The o.
suffix enables the update of CRO and enables the overflow
bits (SO,0V) in the XER.

Although there is no “Subtract Immediate” instruction, its effect can be achieved by using
an addi instruction with the immediate operand negated. Simplified mnemonics are
provided that include this negation. Teebf instructions subtract the second operamf) (

from the third operand B). Simplified mnemonics are provided in which the third operand
Is subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” for
examples.

4.2.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register
r A with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of registBr The comparison is signed for tieenpi
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and cmp instructions, and unsigned for thempli and cmpl instructions. Table 4-2

summarizes the integer compare instructions.

The integer compare instructions (shown in Table 4-2) set one of the leftmost three bits of
the designated CR field, and clear the other two. XER[SO] is copied into bit 3 of the CR

field.

Table 4-2. Integer Compare Instructions
Name Mnemonic Operand Syntax Operation

Compare cmpi crf D,L,rA,SIMM | The value in register rA is compared with the sign-extended value of

Immediate the SIMM operand, treating the operands as signed integers. The
result of the comparison is placed into the CR field specified by
operand crfD.

Compare cmp crf D,L,rA,rB The value in register rA is compared with the value in register rB,
treating the operands as signed integers. The result of the comparison
is placed into the CR field specified by operand crfD.

Compare cmpli crf D,L,rA,UIMM | The value in register rA is compared with 0x0000 || UIMM, treating the

Logical operands as unsigned integers. The result of the comparison is placed

Immediate into the CR field specified by operand crfD.

Compare cmpl crf D,L,rA,rB The value in register rA is compared with the value in register rB,

Logical treating the operands as unsigned integers. The result of the
comparison is placed into the CR field specified by operand crfD.

ThecrfD operand can be omitted if the result of the comparison is to be placed in CRO.

Otherwise the target CR field must be specified in the instruatdD field, using an

explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, “Simplified Mnemonics.”

4.2.1.3 Integer Logical Instructions

The logical instructions shown in Table 4-3 perform bit-parallel operations on 32-bit
operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructionsandi. andandis. set CR field CRO (bits O to 2) to characterize the result of the
logical operation. Logical instructions without CR update and the remaining logical
instructions do not modify the CR. Logical instructions do not affect the XER[SO],
XER[OV], and XER[CA] bits.
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See Appendix F, “Simplified Mnemonics,” for simplified mnemonic examples for integer
logical operations.

Table 4-3. Integer Logical Instructions

Name Mnemonic Operand Operation
Syntax
AND andi. rA,rS,UIMM | The contents of rS are ANDed with 0x0000 || UIMM and the result is placed
Immediate into rA.
CRO is updated.
AND andis. r A,rS,UIMM | The contents of rS are ANDed with UIMM || 0x0000 and the result is placed
Immediate into rA.
Shifted CRO is updated.
OR ori rArS,UIMM | The contents of rS are ORed with 0x0000 || UIMM and the result is placed
Immediate into rA.
The preferred no-op is ori 0,0,0
OR oris r A,rS,UIMM | The contents of rS are ORed with UIMM || 0x0000 and the result is placed
Immediate into rA.
Shifted
XOR XOri r A,rS,UIMM | The contents of rS are XORed with 0x0000 || UIMM and the result is placed
Immediate into rA.
XOR XOris r A,rS,UIMM | The contents of rS are XORed with UIMM || 0x0000 and the result is placed
Immediate into rA.
Shifted
AND and rA,rS,rB The contents of rS are ANDed with the contents of register rB and the result
and. is placed into rA.
and AND
and. AND with CR Update. The dot suffix enables the update of CRO.
OR or rA,rS,rB The contents of rS are ORed with the contents of rB and the result is placed
or. into rA.
or OR
or. OR with CR Update. The dot suffix enables the update of CRO.
XOR xor rA,rS,rB The contents of rS are XORed with the contents of rB and the result is
XOr. placed into rA.
xor XOR
XOr. XOR with CR Update. The dot suffix enables the update of CRO.
NAND nand rA,rS,rB The contents of rS are ANDed with the contents of rB and the one’s
nand. complement of the result is placed into rA.
nand  NAND
nand. NAND with CR Update. The dot suffix enables the update of CRO.
Note: t nand x, with rS = rB, can be used to obtain the one's complement.
NOR nor rA,rS,rB The contents of rS are ORed with the contents of rB and the one’s
nor. complement of the result is placed into rA.
nor NOR
nor. NOR with CR Update. The dot suffix enables the update of CRO.
Note:t nor x, with rS = rB, can be used to obtain the one's complement.
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Table 4-3. Integer Logical Instructions (Continued)

Operand

Name Mnemonic
Syntax

Operation

Equivalent eqv rA,rS,rB The contents of rS are XORed with the contents of rB and the
eqgv. complemented result is placed into rA.

eqv Equivalent
eqv. Equivalent with CR Update. The dot suffix enables the update of
CRO.

AND with andc rArS,rB The contents of rS are ANDed with the one’s complement of the contents of
Complement | andc. rB and the result is placed into rA.

andc  AND with Complement
andc. AND with Complement with CR Update. The dot suffix enables the
update of CRO.

OR with orc rArS,rB The contents of rS are ORed with the complement of the contents of rB and
Complement | orc. the result is placed into rA.

orc OR with Complement
orc. OR with Complement with CR Update. The dot suffix enables the
update of CRO.

Extend Sign | extsb rArS The contents of the low-order eight bits of rS are placed into the low-order
Byte extsh. eight bits of rA. Bit 24 is placed into the remaining high-order bits of rA.

extsb  Extend Sign Byte
extsb. Extend Sign Byte with CR Update. The dot suffix enables the
update of CRO.

Extend Sign |extsh rArS The contents of the low-order 16 bits of rS are placed into rA. Bit 16 is
Half Word extsh. placed into the remaining high-order bits of rA.

extsh  Extend Sign Half Word
extsh. Extend Sign Half Word with CR Update. The dot suffix enables the
update of CRO.

Count cntlzw rArS A count of the number of consecutive zero bits starting at bit 0 of rS is
Leading cntlzw. placed into rA. This number ranges from 0 to 32, inclusive.

Zeros Word If Rc = 1 (dot suffix), LT is cleared in CRO.

cntlzw  Count Leading Zeros Word
cntlzw. Count Leading Zeros Word with CR Update. The dot suffix enables
the update of the CR.

4.2.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. The rotation operations rotate a 32-bit quantity left by a
specified number of bit positions. Bits that exit from position 0 enter at position 31.

The rotate and shift instructions employ a mask generator. The mask is 32 bits long and
consists of ‘1’ bits from a start bit, Mstart, through and including a stop bit, Mstop, and ‘0’
bits elsewhere. The values of Mstart and Mstop range from 0 to 31. If Mstart > Mstop, the
‘1’ bits wrap around from position 31 to position 0. Thus the mask is formed as follows:

if Mstart < Mstop then
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mask[mstart—-mstop] = ones

mask(all other bits] = zeros
else

mask[mstart—31] = ones

mask[0—mstop] = ones

mask(all other bits] = zeros

It is not possible to specify an all-zero mask. The use of the mask is described in the
following sections.

If CR updating is enabled, rotate and shift instructions set CR0O[0-2] according to the
contents ofr A at the completion of the instruction. Rotate and shift instructions do not
change the values of XER[OV] and XER[SO] bits. Rotate and shift instructions, except
algebraic right shifts, do not change the XER[CA] bit.

See Appendix F, “Simplified Mnemonics,” for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

4.2.1.4.1 Integer Rotate Instructions

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is either zeroed or unchanged), or ANDed with a mask before being

placed into the target register.

Rotate left instructions allow apparent right-rotation of the contents of a register to be
performed by a left-rotation of 32r; wherenis the number of bits by which to rotate right.
The integer rotate instructions are summarized in Table 4-4.

Table 4-4. Integer Rotate Instructions

Name Mnemonic [Operand Syntax Operation
Rotate Left rlwinm rA,rS,SH,MB,ME | The contents of register rS are rotated left by the number of bits
Word riwinm. specified by operand SH. A mask is generated having 1 bits from
Immediate the hit specified by operand MB through the bit specified by
then AND with operand ME and 0 bits elsewhere. The rotated data is ANDed with
Mask the generated mask and the result is placed into register rA.

rlwinm Rotate Left Word Immediate then AND with Mask
rlwinm. Rotate Left Word Immediate then AND with Mask with
CR Update. The dot suffix enables the update of CRO.
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Table 4-4. Integer Rotate Instructions (Continued)

Name Mnemonic [Operand Syntax Operation
Rotate Left rlwnm rA,rS,rB,MB,ME [The contents of rS are rotated left by the number of bits specified
Word then rlwnm. by operand in the low-order five bits of rB. A mask is generated
AND with having 1 bits from the bit specified by operand MB through the bit
Mask specified by operand ME and 0 bits elsewhere. The rotated word

is ANDed with the generated mask and the result is placed into rA.

riwnm Rotate Left Word then AND with Mask
rlwnm. Rotate Left Word then AND with Mask with CR Update.
The dot suffix enables the update of CRO.

Rotate Left rlwimi rA,rS,SH,MB,ME | The contents of rS are rotated left by the number of bits specified
Word rlwimi. by operand SH. A mask is generated having 1 bits from the bit
Immediate specified by operand MB through the bit specified by operand ME
then Mask and 0 bits elsewhere. The rotated word is inserted into rA under
Insert control of the generated mask.

rlwimi Rotate Left Word Immediate then Mask

rlwimi. Rotate Left Word Immediate then Mask Insert with CR

Update. The dot suffix enables the update of CRO.

4.2.1.4.2 Integer Shift Instructions

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics”) are provided to make coding of such shifts simpler and easier to understand.

Any shift right algebraic instruction, followed 3ddze can be used to divide quickly by
2", The setting of XER[CA] by the shift right algebraic instruction is independent of mode.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts.”

The integer shift instructions are summarized in Table 4-5.

Table 4-5. Integer Shift Instructions

Operand

Name Mnemonic
Syntax

Operation

Shift Left slw rArS,rB The contents of rS are shifted left the number of bits specified by the low-
Word slw. order six bits of rB. Bits shifted out of position O are lost. Zeros are supplied
to the vacated positions on the right. The 32-bit result is placed into rA.

slw Shift Left Word
slw. Shift Left Word with CR Update. The dot suffix enables the
update of CRO.

Shift Right srw rArS,rB The contents of rS are shifted right the number of bits specified by the low-
Word Srw. order six bits of rB. Bits shifted out of position 31 are lost. Zeros are supplied
to the vacated positions on the left. The 32-bit result is placed into rA.

Srw Shift Right Word

Srw. Shift Right Word with CR Update. The dot suffix enables the
update of CRO.
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Table 4-5. Integer Shift Instructions (Continued)

Name Mnemonic Operand Operation
Syntax
Shift Right srawi rA,rS,SH | The contents of rS are shifted right the number of bits specified by operand
Algebraic srawi. SH. Bits shifted out of position 31 are lost. Bit 0 of rS is replicated to fill the
Word vacated positions on the left. The 32-hit result is placed into rA.
Immediate srawi  Shift Right Algebraic Word Immediate
srawi. Shift Right Algebraic Word Immediate with CR Update. The dot
suffix enables the update of CRO.
Shift Right sraw rArS,rB The contents of rS are shifted right the number of bits specified by the low-
Algebraic sraw. order six bits of rB. Bits shifted out of position 31 are lost. Bit 0 of rS is
Word replicated to fill the vacated positions on the left. The 32-bit result is placed

into rA.

sraw Shift Right Algebraic Word
sraw. Shift Right Algebraic Word with CR Update. The dot suffix
enables the update of CRO.

4.2.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

* Floating-point arithmetic instructions

* Floating-point multiply-add instructions

» Floating-point rounding and conversion instructions
* Floating-point compare instructions

» Floating-point status and control register instructions
* Floating-point move instructions

NOTE:

The PowerPC architecture supports a floating-point system as defined in the IEEE-754
standard, but requires software support to conform with that standard. Floating-point
operations conform to the IEEE-754 standard, with the exception of operations performed
with thefmadd, fres, fsel, andfrsqrte instructions, or if software sets the non-IEEE mode

bit (NI) in the FPSCR. Refer to Section 3.3, “Floating-Point Execution Models—UISA,”
for detailed information about the floating-point formats and exception conditions. Also,
refer to Appendix D, “Floating-Point Models,” for more information on the floating-point

MSR[FP] must be set in order for any of these instructions (including the
floating-point loads and stores) to be executed.

If MSR[FP] = 0 when any floating-point instruction is attempted, the floating-

point unavailable exception is taken (see Section 6.4.8, “Floating-Point
Unavailable Exception (0x00800)").

See Section 4.2.3, “Load and Store Instructions,” for information about floating-

point loads and stores.

execution models used by the PowerPC architecture.
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4.2.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 4-6.

Table 4-6. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Operation
Syntax
Floating fadd frD,frA,frB The floating-point operand in register frA is added to the floating-point
Add fadd. operand in register frB. If the most significant bit of the resultant significand
(Double- is not a one the result is normalized. The result is rounded to the target
Precision) precision under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.
fadd Floating Add (Double-Precision)
fadd. Floating Add (Double-Precision) with CR Update. The dot suffix
enables the update of CR1.
Floating fadds frD,frA,frB The floating-point operand in register frA is added to the floating-point
Add Single |fadds. operand in register fr B. If the most significant bit of the resultant significand
is not a one, the result is normalized. The result is rounded to the target
precision under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.
fadds Floating Add Single
fadds. Floating Add Single with CR Update. The dot suffix enables the
update of CR1.
Floating fsub frD,frAfrB The floating-point operand in register frB is subtracted from the floating-
Subtract fsub. point operand in register frA. If the most significant bit of the resultant
(Double- significand is not 1, the result is normalized. The result is rounded to the
Precision) target precision under control of the floating-point rounding control field RN
of the FPSCR and placed into register frD.
fsub Floating Subtract (Double-Precision)
fsub. Floating Subtract (Double-Precision) with CR Update. The dot
suffix enables the update of CR1.
Floating fsubs frD,frA,frB The floating-point operand in register frB is subtracted from the floating-
Subtract fsubs. point operand in register frA. If the most significant bit of the resultant
Single significand is not 1, the result is normalized. The result is rounded to the
target precision under control of the floating-point rounding control field RN
of the FPSCR and placed into frD.
fsubs Floating Subtract Single
fsubs. Floating Subtract Single with CR Update. The dot suffix enables
the update of CR1.
Floating fmul frD,frA,frC The floating-point operand in register frA is multiplied by the floating-point
Multiply fmul. operand in register frC.
I(:)Dou_bl_e- fmul Floating Multiply (Double-Precision)
recision) fmul. Floating Multiply (Double-Precision) with CR Update. The dot
suffix enables the update of CR1.
Floating fmuls frD,frAfrC The floating-point operand in register frA is multiplied by the floating-point
Multiply fmuls. operand in register frC.
Single fmuls Floating Multiply Single
fmuls. Floating Multiply Single with CR Update. The dot suffix enables
the update of CR1.
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Table 4-6. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand Operation
Syntax
Floating fdiv frD,frA,frB The floating-point operand in register frA is divided by the floating-point
Divide fdiv. operand in register frB. No remainder is preserved.
l(fiou_b'_e'n fdiv Floating Divide (Double-Precision)
ecision) fdiv. Floating Divide (Double-Precision) with CR Update. The dot
suffix enables the update of CR1.
Floating fdivs frD,frAfrB The floating-point operand in register frA is divided by the floating-point
Divide fdivs. operand in register frB. No remainder is preserved.
Single fdivs Floating Divide Single
fdivs. Floating Divide Single with CR Update. The dot suffix enables
the update of CR1.
Floating fsqrt frD,frB The square root of the floating-point operand in register frB is placed into
Square fsqrt. register frD.
RDOOth fsqrt Floating Square Root (Double-Precision)
f:) ouble- fsqrt. Floating Square Root (Double-Precision) with CR Update. The
recision) dot suffix enables the update of CR1.
This instruction is optional.
Floating fsqrts frD,frB The square root of the floating-point operand in register frB is placed into
Square fsqrts. register frD.
g;oﬁ fsqrts Floating Square Root Single
gie fsqrts. Floating Square Root Single with CR Update. The dot suffix
enables the update of CR1.
This instruction is optional.
Floating fres frD,frB A single-precision estimate of the reciprocal of the floating-point operand in
Reciprocal |fres. register frB is placed into frD. The estimate placed into frD is correct to a
Estimate precision of one part in 256 of the reciprocal of frB.
Single fres Floating Reciprocal Estimate Single
fres. Floating Reciprocal Estimate Single with CR Update. The dot
suffix enables the update of CR1.
This instruction is optional.
Floating frsgrte frD,frB A double-precision estimate of the reciprocal of the square root of the
Reciprocal |frsqrte. floating-point operand in register frB is placed into frD. The estimate
Square placed into frD is correct to a precision of one part in 32 of the reciprocal of
Root the square root of frB.
Estimate frsqrte Floating Reciprocal Square Root Estimate
frsgrte.  Floating Reciprocal Square Root estimate with CR Update. The
dot suffix enables the update of CR1.
This instruction is optional.
Floating fsel fr D,fr A,frC,frB | The floating-point operand in frA is compared to the value zero. If the
Select operand is greater than or equal to zero, frD is set to the contents of frC. If
the operand is less than zero or is a NaN, frD is set to the contents of frB.
The comparison ignores the sign of zero (that is, regards +0 as equal to
-0).
fsel Floating Select
fsel. Floating Select with CR Update. The dot suffix enables the
update of CR1.
This instruction is optional.
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4.2.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding
operation. The fractional part of the intermediate product is 106 bits wide, and all 106 bits
take part in the add/subtract portion of the instruction.

Status bits are set as follows:

« Overflow, underflow, and inexact exception bits, the FR and FI bits, and the FPRF
field are set based on the final result of the operation, and not on the result of the

multiplication.
» Invalid operation exception bits are set as if the multiplication and the addition we

performed using two separate instructioimsyls, followed byfaddsor fsubs). That

Is, multiplication of infinity by zero or of anything by an SNaN, and/or addition of

an SNaN, cause the corresponding exception bits to be set.

The floating-point multiply-add instructions are summarized in Table 4-7.

Table 4-7. Floating-Point Multiply-Add Instructions

Name Mnemonic | Operand Syntax Operation
Floating |fmadd frD,frAfrC,frB The floating-point operand in register frA is multiplied by the floating-
Multiply- | fmadd. point operand in register fr C. The floating-point operand in register frB
Add is added to this intermediate result.
(Double- . - i .
Precision) fmadd Floating Multiply-Add (Double-Precision)

fmadd. Floating Multiply-Add (Double-Precision) with CR Update.
The dot suffix enables the update of the CR1.

Floating |fmadds frD,frAfrC,frB The floating-point operand in register fr A is multiplied by the floating-

Multiply- | fmadds. point operand in register fr C. The floating-point operand in register frB
Add is added to this intermediate result.
Single

fmadds  Floating Multiply-Add Single
fmadds. Floating Multiply-Add Single with CR Update. The dot suffix
enables the update of the CR1.

Floating |fmsub frD,frAfrC,frB The floating-point operand in register fr A is multiplied by the floating-
Multiply- | fmsub. point operand in register fr C. The floating-point operand in register frB
Subtract is subtracted from this intermediate result.
I(Dl::ggiks)lign) fmsub Floating Multiply-Subtract (Double-Precision)

fmsub. Floating Multiply-Subtract (Double-Precision) with CR

Update. The dot suffix enables the update of the CR1.

Floating |fmsubs frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
Multiply- | fmsubs. point operand in register fr C. The floating-point operand in register frB
Subtract is subtracted from this intermediate result.
Single

fmsubs  Floating Multiply-Subtract Single
fmsubs.  Floating Multiply-Subtract Single with CR Update. The dot
suffix enables the update of the CR1.
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Table 4-7. Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic | Operand Syntax Operation
Floating |fnmadd frD,frAfrC,frB The floating-point operand in register frA is multiplied by the floating-
Negative |fnmadd. point operand in register fr C. The floating-point operand in register frB
Multiply- is added to this intermediate result.
Agld bl fnrmadd Floating Negative Multiply-Add (Double-Precision)
|(3 ouble- fnmadd.  Floating Negative Multiply-Add (Double-Precision) with CR
recision) Update. The dot suffix enables update of the CR1.
Floating |fnmadds frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
Negative |fnmadds. point operand in register fr C. The floating-point operand in register frB
Multiply- is added to this intermediate result.
Add

Sinal fnrmadds Floating Negative Multiply-Add Single
ingle fnmadds. Floating Negative Multiply-Add Single with CR Update. The
dot suffix enables the update of the CR1.

Floating |fnmsub frD,frAfrC,frB The floating-point operand in register frA is multiplied by the floating-

Negative |fnmsub. point operand in register frC. The floating-point operand in register frB

Multiply- is subtracted from this intermediate result.

(SDU(?LTSS fnmsub  Floating Negative Multiply-Subtract (Double-Precision)

Precision) fnmsub. Floating Negative Multiply-Subtract (Double-Precision) with
CR Update. The dot suffix enables the update of the CR1.

Floating |fnmsubs frD,frAfrC,frB The floating-point operand in register frA is multiplied by the floating-

Negative |fnmsubs. point operand in register frC. The floating-point operand in register frB

Multiply- is subtracted from this intermediate result.

Subtract

fnmsubs Floating Negative Multiply-Subtract Single
fnmsubs. Floating Negative Multiply-Subtract Single with CR Update.
The dot suffix enables the update of the CR1.

Single

For more information on multiply-add instructions, refer to Section D.2, “Execution Model
for Multiply-Add Type Instructions.”

4.2.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precisiofisf) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The floating-
point convert instructions convert a 64-bit double-precision floating-point number to a 32-
bit signed integer number.

The PowerPC architecture defines bits 0-31 of floating-point regisieias undefined

when executing the Floating Convert to Integer Woictify) and Floating Convert to

Integer Word with Round toward Zerdc{iwz) instructions. The floating-point rounding
instructions are shown in Table 4-8.
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Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models.”

Table 4-8. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Operation
Syntax
Floating Round | frsp frD,frB The floating-point operand in frB is rounded to single-precision using the
to Single- frsp. rounding mode specified by FPSCR[RN] and placed into frD.
Precision frsp Floating Round to Single-Precision
frsp. Floating Round to Single-Precision with CR Update. The dot
suffix enables the update of the CR1.
Floating Convert | fctiw frD,frB The floating-point operand in register frB is converted to a 32-bit signed
to Integer Word | fctiw. integer, using the rounding mode specified by FPSCR[RN], and placed in
the low-order 32 bits of frD. Bits 0-31 of frD are undefined.
fetiw Floating Convert to Integer Word
fctiw. Floating Convert to Integer Word with CR Update. The dot suffix
enables the update of the CR1.
Floating Convert | fctiwz frD,frB The floating-point operand in register frB is converted to a 32-bit signed
to Integer Word | fctiwz. integer, using the rounding mode Round toward Zero, and placed in the low-
with Round order 32 bits of frD. Bits 0-31 of frD are undefined.
toward Zero fctiwz Floating Convert to Integer Word with Round toward Zero
fctiwz. Floating Convert to Integer Word with Round toward Zero with
CR Update. The dot suffix enables the update of the CR1.

4.2.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers
and the comparison ignores the sign of zero (that is +0 = —0). The comparison can be
ordered or unordered. The comparison sets one bit in the designated CR field and clears the
other three bits. The FPCC (floating-point condition code) in bits 16-19 of the FPSCR
(floating-point status and control register) is set in the same way.

The CR field and the FPCC are interpreted as shown in Table 4-9.
Table 4-9. CR Bit Settings

Bit Name Description

0 FL (frA) < (frB)

1 FG (frA) > (frB)

2 FE (frA) = (frB)

3 FU (frA)? (frB) (unordered)
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The floating-point compare instructions are summarized in Table 4-10.

Table 4-10. Floating-Point Compare Instructions

Name Mnemonic Operand Operation
Syntax

Floating fcmpu crf D,frA,frB | The floating-point operand in fr A is compared to the floating-point operand
Compare in frB. The result of the compare is placed into crf D and the FPCC.
Unordered
Floating fcmpo crf D,frA,frB | The floating-point operand in fr A is compared to the floating-point operand
Compare in frB. The result of the compare is placed into crf D and the FPCC.
Ordered

4.2.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
Instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. In particular:

» All exceptions caused by the previously initiated instructions are recorded in the
FPSCR before the FPSCR instruction is initiated.

» Allinvocations of the floating-point exception handler caused by the previously
initiated instructions have occurred before the FPSCR instruction is initiated.

* No subsequent floating-point instruction that depends on or alters the settings of any
FPSCR bits appears to be initiated until the FPSCR instruction has completed.

Floating-point memory access instructions are not affected by the execution of the FPSCR
Instructions.

The FPSCR instructions are summarized in Table 4-11.

Table 4-11. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Operation
Syntax

Move from mffs frD The contents of the FPSCR are placed into bits 32—63 of frD. Bits 0-31 of
FPSCR mffs. frD are undefined.

mffs Move from FPSCR

mffs. Move from FPSCR with CR Update. The dot suffix enables the

update of the CR1.

Move to mcrfs crf D,crfS The contents of FPSCR field specified by operand crfS are copied to the
Condition CR field specified by operand crf D. All exception bits copied (except FEX
Register from and VX bits) are cleared in the FPSCR.
FPSCR
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Table 4-11. Floating-Point Status and Control Register Instructions (Continued)

Operand

Name Mnemonic
Syntax

Operation

Move to mtfsfi crfD,IMM The contents of the IMM field are placed into FPSCR field crfD. The
FPSCR Field | mtfsfi. contents of FPSCR[FX] are altered only if crfD = 0.

Immediate mtfsfi Move to FPSCR Field Immediate
mtfsfi. Move to FPSCR Field Immediate with CR Update. The dot
suffix enables the update of the CR1.

Move to mtfsf FM,frB Bits 32-63 of frB are placed into the FPSCR under control of the field
FPSCR Fields | mtfsf. mask specified by FM. The field mask identifies the 4-bit fields affected.
Let i be an integer in the range 0-7. If FM[]] = 1, FPSCR field / (FPSCR
bits 4Lf through 4[J+3) is set to the contents of the corresponding fields of
the lower order 32-bits of frB.

The contents of FPSCR[FX] are altered only if FM[0] = 1.

mtfsf Move to FPSCR Fields
mtfsf. Move to FPSCR Fields with CR Update. The dot suffix enables
the update of the CR1.

Move to mtfsbO crbD The FPSCR bit location specified by operand crb D is cleared.

FPSCRBIt0 | mtfsbO. Bits 1 and 2 (FEX and VX) cannot be reset explicitly.

mtfsbO Move to FPSCR Bit 0
mtfsb0.  Move to FPSCR Bit 0 with CR Update. The dot suffix enables
the update of the CR1.

Move to mtfsbl crbD The FPSCR bit location specified by operand crb D is set.
FPSCRBIt1 mtfsbl. Bits 1 and 2 (FEX and VX) cannot be set explicitly.

mtfsbl ~ Move to FPSCR Bit 1
mtfsbl.  Move to FPSCR Bit 1 with CR Update. The dot suffix enables
the update of the CR1.

4.2.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another, altering the sign bit
(bit 0) as described for thimeg, fabs, andfnabsinstructions in Table 4-12. THeeg, fabs,
andfnabsinstructions may alter the sign bit of a NaN. The floating-point move instructions
do not modify the FPSCR. The CR update option in these instructions controls the placing
of result status into CR1. If the CR update option is enabled, CR1 is set; otherwise, CR1 is
unchanged.

Table 4-12 provides a summary of the floating-point move instructions.

Table 4-12. Floating-Point Move Instructions

Name Mnemonic | Operand Syntax Operation
Floating fmr frD,frB The contents of frB are placed into frD.
II;/Iov_et frmr. fmr Floating Move Register
eqister fmr. Floating Move Register with CR Update. The dot suffix
enables the update of the CR1.
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Table 4-12. Floating-Point Move Instructions (Continued)

Floating |fneg frD,frB The contents of frB with bit O inverted are placed into frD.
Negate fneg. fneg Floating Negate
fneg. Floating Negate with CR Update. The dot suffix enables the

update of the CR1.

Floating |fabs frD,frB The contents of fr B with bit O cleared are placed into frD.

C:IS oelute fabs. fabs Floating Absolute Value

u fabs. Floating Absolute Value with CR Update. The dot suffix

enables the update of the CR1.

Floating |fnabs frD,frB The contents of frB with bit 0 set are placed into frD.

Negative | fnabs. fnabs Floating Negative Absolute Value

Absolute

fnabs. Floating Negative Absolute Value with CR Update. The dot

Value suffix enables the update of the CR1.

4.2.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

* Integer load instructions

* Integer store instructions

* Integer load and store with byte-reverse instructions
* Integer load and store multiple instructions

* Floating-point load instructions

» Floating-point store instructions

* Memory synchronization instructions

4.2.3.1 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode (register contents + immediate), register indirect with index mode
(register contents + register contents), or register indirect mode (register contents only). See
Section 4.1.4.2, “Effective Address Calculation,” for information about calculating
effective addresses.

NOTE: In some implementations, operations that are not naturally aligned may suffer
performance degradation. Refer to Section 6.4.6.1, “Integer Alignment
Exceptions,” for additional information about load and store address alignment
exceptions.
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4.2.3.1.1 Register Indirect with Immediate Index Addressing for Integer
Loads and Stores

Instructions using this addressing mode contain a signed 16-bit immediate index
(d operand) which is sign extended, and added to the contents of a general-purpose register
specified in the instructiorr A operand) to generate the effective address. Ifthéeld of

the instruction specifie®, a value of zero is added to the immediate index (d operand) in
place of the contents af. The option to specify A or 0 is shown in the instruction
descriptions ag A|0).

Figure 4-1 shows how an effective address is generated when using register indirect
immediate index addressing.

0 56 1011 15 16 31
Instruction Encoding: | opcode | rbirs | rA d

0 15 16 \

Sign Extension d
Yes n
A
e
No
0 31 0 31

31

-

GPR (rA) Effective Address
Y
0 31
Store »| Memory
GPR (rDIrS) B Load Interface

Figure 4-1. Register Indirect with Immediate Index Addressing for Integer
Loads/Stores

4.2.3.1.2 Register Indirect with Index Addressing for Integer Loads and
Stores

Instructions using this addressing mode cause the contents of two general-purpose registers
(specified as operand# andr B) to be added in the generation of the effective address. A
zero in place of the A operand causes a zero to be added to the contents of the general-
purpose register specified in operarigl(or the value zero folswi andstswiinstructions).

The option to specifyA or 0 is shown in the instruction descriptions 1a%]Q).
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Figure 4-2 shows how an effective address is generated when using register indirect with
index addressing.

_ 0 56 1011 1516 20 21 30 31
[[] Reserved Instruction Encoding: Opcode | rDFS| rA rB | Subopcode |0

0 ] 31

l GPR (1B)
@ =] 1
No
0 31 J 0 31

GPR (rA) Effective Address
Y
0 31
Store »| Memory
GPR (rDIrS) B Load Interface

Figure 4-2. Register Indirect with Index Addressing for Integer Loads/Stores

4.2.3.1.3 Register Indirect Addressing for Integer Loads and Stores

Instructions using this addressing mode use the contents of the general-purpose register
specified by the A operand as the effective address. A zero inrfAeoperand causes an
effective address of zero to be generated. The option to spe&ifyr 0 is shown in the
instruction descriptions asA|0).
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Figure 4-3 shows how an effective address is generated when using register indirect

addressing.
0 56 1011 1516 2021 30 31
[] Reserved Instruction Encoding: | opcode | rors| ra | nB | Subopcode |0
Vs 0 31
rA=07? »00000000000000000000000000000004
No
0 31
GPR (rA)
0 Y 31
> Effective Address
0 31 l

Store

»| Memory

GPR (rDIrS)

Load

Interface

-

Figure 4-3. Register Indirect Addressing for Integer Loads/Stores

4.2.3.2 Integer Load Instructions

For integer load instructions, the byte, half word, or word addressed by the EA (effective
address) is loaded intd. Many integer load instructions have an update form, in which

r A is updated with the generated effective address. For these fornds, ifOandrA# rD

(otherwise invalid), the EA is placed inté&\ and the memory element (byte, half word, or

word) addressed by the EA is loaded infb

NOTE: The PowerPC architecture defines load with update instructions with operand

rA =0, orrA=rD as invalid forms.

The default byte and bit ordering is big-endian in the PowerPC architecture; see
Section 3.1.2, “Byte Ordering,” for information about little-endian byte ordering.

In some implementations of the architecture, the load algebraic instrudienh@ax) and
the load with updatdlzu, Ibzux, lhau, lhaux, Ihzu, Ihzux, lwzu, Iwzux) instructions may

execute with greater latency than other types of load instructions. Moreover, the load with
update instructions may take longer to execute in some implementations than the
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corresponding pair of a non-update load followed by an add instruction to update the

register.

Table 4-13 summarizes the integer load instructions.

Table 4-13. Integer Load Instructions

Name Mnemonic Operand Operation
Syntax

Load Byte and |lbz rD,d(rA) |The EA is the sum (rA|0) + d. The byte in memory addressed by the EA is

Zero loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared.

Load Byte and | lbzx rD,rA,rB | The EA is the sum (rA|0) + (rB). The byte in memory addressed by the EA is

Zero Indexed loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared.

Load Byte and |Ibzu rD,d(rA) |The EAis the sum (rA) + d. The byte in memory addressed by the EA is

Zero with loaded into the low-order eight bits of rD. The remaining bits in rD are

Update cleared. The EA is placed into rA.

Load Byte and | Ibzux r D,rA,rB | The EA is the sum (rA) + (rB). The byte in memory addressed by the EA is

Zero with loaded into the low-order eight bits of rD. The remaining bits in rD are

Update Indexed cleared. The EA is placed into rA.

Load Half Word | lhz rD,d(rA) | The EAis the sum (rA|0) + d. The half word in memory addressed by the EA

and Zero is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared.

Load Half Word | Ihzx rD,rArB | The EA is the sum (rA|0) + (rB). The half word in memory addressed by the

and Zero EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are

Indexed cleared.

Load Half Word | Ihzu rD,d(rA) |The EAis the sum (rA) + d. The half word in memory addressed by the EA is

and Zero with loaded into the low-order 16 bits of rD. The remaining bits in rD are cleared.

Update The EA is placed into rA.

Load Half Word | Ihzux r D,rA,rB | The EAis the sum (rA) + (rB). The half word in memory addressed by the EA

and Zero with is loaded into the low-order 16 bits of rD. The remaining bits in rD are

Update Indexed cleared. The EA is placed into rA.

Load Half Word | Iha rD,d(rA) |The EAis the sum (rA|0) + d. The half word in memory addressed by the EA

Algebraic is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled
with a copy of the most significant bit of the loaded half word.

Load Half Word | Ihax rD,rA,rB | The EA is the sum (rA|O) + (rB). The half word in memory addressed by the

Algebraic EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are

Indexed filled with a copy of the most significant bit of the loaded half word.

Load Half Word | Ihau rD,d(rA) |The EA is the sum (rA) + d. The half word in memory addressed by the EA is

Algebraic with loaded into the low-order 16 bits of rD. The remaining bits in rD are filled with

Update a copy of the most significant bit of the loaded half word. The EA is placed
into rA.

Load Half Word | Ihaux r D,rArB | The EA is the sum (rA) + (rB). The half word in memory addressed by the EA

Algebraic with is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled

Update Indexed with a copy of the most significant bit of the loaded half word. The EA is
placed into rA.

Load Word and | Iwz rD,d(rA) |The EA is the sum (rA[0) + d. The word in memory addressed by the EA is

Zero loaded into rD.
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Table 4-13. Integer Load Instructions (Continued)

Name Mnemonic Operand Operation
Syntax

Load Word and | lwzx rD,rArB | The EA is the sum (rA|O) + (rB). The word in memory addressed by the EA is
Zero Indexed loaded into rD.
Load Word and |Iwzu rD,d(rA) |The EA is the sum (rA) + d. The word in memory addressed by the EA is
Zero with loaded into rD. The EA is placed into rA.
Update
Load Word and | lwzux r D,rA,rB | The EA is the sum (rA) + (rB). The word in memory addressed by the EA is
Zero with loaded into rD. The EA is placed into rA. 4
Update Indexed

4.2.3.3 Integer Store Instructions

For integer store instructions, the contents$fare stored into the byte, half word, or word
in memory addressed by the EA (effective address). Many store instructions have an update
form, in whichrA is updated with the EA. For these forms, the following rules apply:

* If rA#0, the effective address is placed info

* If rS=rA, the contents of regist&fS are copied to the target memory element, then
the generated EA is placed inta (rS).

In general, the PowerPC architecture defines a sequential execution model. However, when
a store instruction modifies a memory location that contains an instruction, software
synchronizationi§ync) is required to ensure that subsequent instruction fetches from that
location obtain the modified version of the instruction.

If a program modifies the instructions it intends to execute, it should call the appropriate
system library program before attempting to execute the modified instructions to ensure
that the modifications have taken effect with respect to instruction fetching.

The PowerPC architecture defines store with update instructions AvithO as an inalid

form. In addition, it defines integer store instructions with the CR update option enabled
(Rcfield, bit 31, in the instruction encoding = 1) to be an invalid form. Table 4-14 provides
a summary of the integer store instructions.

Table 4-14. Integer Store Instructions

Name Mnemonic Operand Operation
Syntax

Store Byte stb rS,d(rA) |The EAis the sum (rA|O) + d. The contents of the low-order eight bits
of rS are stored into the byte in memory addressed by the EA.

Store Byte Indexed | stbx r S,rA,rB | The EAis the sum (rA|0) + (rB). The contents of the low-order eight
bits of rS are stored into the byte in memory addressed by the EA.

Store Byte with stbu r S,d(rA) |The EAisthe sum (rA) + d. The contents of the low-order eight bits of

Update rS are stored into the byte in memory addressed by the EA. The EA is
placed into rA.
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Table 4-14. Integer Store Instructions (Continued)

Name Mnemonic Operand Operation
Syntax

Store Byte with stbux r S,fA,rB | The EAis the sum (rA) + (rB). The contents of the low-order eight bits

Update Indexed of rS are stored into the byte in memory addressed by the EA. The
EA is placed into rA.

Store Half Word sth rS,d(rA) |The EAis the sum (rA|0) + d. The contents of the low-order 16 bits of
rS are stored into the half word in memory addressed by the EA.

Store Half Word sthx r S,rA,rB | The EAis the sum (rA|0) + (rB). The contents of the low-order 16 bits

Indexed of rS are stored into the half word in memory addressed by the EA.

Store Half Word with | sthu r S,d(rA) |The EAisthe sum (rA) + d. The contents of the low-order 16 bits of rS

Update are stored into the half word in memory addressed by the EA. The EA
is placed into rA.

Store Half Word with | sthux r SfArB | The EAis the sum (rA) + (rB). The contents of the low-order 16 bits of

Update Indexed rS are stored into the half word in memory addressed by the EA. The
EA is placed into rA.

Store Word stw rS,d(rA) |The EA is the sum (rA|0) + d. The contents of rS are stored into the
word in memory addressed by the EA.

Store Word Indexed | stwx r S,rA,rB | The EAis the sum (rA|0) + (rB). The contents of rS are stored into the
word in memory addressed by the EA.

Store Word with stwu r S,d(rA) |The EAis the sum (rA) + d. The contents of rS are stored into the

Update word in memory addressed by the EA. The EA is placed into rA.

Store Word with stwux r S,rA,rB | The EA is the sum (rA) + (rB). The contents of rS are stored into the

Update Indexed word in memory addressed by the EA. The EA is placed into rA.

4.2.3.4 Integer Load and Store with Byte-Reverse Instructions
Table 4-15 describes integer load and store with byte-reverse instructions.

NOTE: In some PowerPC implementations, load byte-reverse instructions may have
greater latency than other load instructions.

When used in a PowerPC system operating with the default big-endian byte order, these
instructions have the effect of loading and storing data in little-endian order. Likewise,
when used in a PowerPC system operating with little-endian byte order, these instructions
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have the effect of loading and storing data in big-endian order. For more information about

big-endian and little-endian byte ordering, see Section 3.1.2, “Byte Ordering.”

Table 4-15. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Operand Operation
Syntax
Load Half [Ihbrx r D,rA,rB | The EA is the sum (rA|0) + (rB). The high-order eight bits of the half word
Word Byte- addressed by the EA are loaded into the low-order eight bits of rD. The next eight
Reverse higher-order bits of the half word in memory addressed by the EA are loaded into
Indexed the next eight lower-order bits of rD. The remaining rD bits are cleared.
Load Word | Iwbrx r D,rA,rB | The EA is the sum (rA|O) + (rB). Bits 0—7 of the word in memory addressed by
Byte- the EA are loaded into the low-order eight bits of rD. Bits 8—15 of the word in
Reverse memory addressed by the EA are loaded into bits 16—23 of rD. Bits 16—23 of the
Indexed word in memory addressed by the EA are loaded into bits 8—15. Bits 24—31 of
the word in memory addressed by the EA are loaded into bits 0-7.
Store Half |sthbrx r S,rA,rB | The EA is the sum (rA|0) + (rB). The contents of the low-order eight bits(24-31)
Word Byte- of rS are stored into the high-order eight bits(0-7) of the half word in memory
Reverse addressed by the EA. The contents of the next lower-order eight bits(16-23) of rS
Indexed are stored into the next eight bits(8-15) of the half word in memory addressed by
the EA.
Store stwbrx I S,rA,rB | The effective address is the sum (rA|0) + (rB). The contents of the low-order
Word Byte- eight bits (24-31) of rS are stored into bits 0-7 of the word in memory addressed
Reverse by EA. The contents of the next eight lower-order bits(16-23) of rS are stored into
Indexed bits 8-15 of the word in memory addressed by the EA. The contents of the next
eight lower-order bits(8-15) of rS are stored into bits 16—23 of the word in
memory addressed by the EA. The contents of the next eight bits(0-7) of rS are
stored into bits 24-31 of the word addressed by the EA.

4.2.3.5 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address translation of the second page.
Table 4-16 summarizes the integer load and store multiple instructions.

In the load/store multiple instructions, the combination of the EAdN@rS) is such that

the low-order byte of GPR31 is loaded from or stored into the last byte of an aligned quad
word in memory; if the effective address is not correctly aligned, it may take significantly
longer to execute.

In some PowerPC implementations operating with little-endian byte order, execution of an
Imw or stmw instruction causes the system alignment error handler to be invoked; see
Section 3.1.2, “Byte Ordering,” for more information.
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The PowerPC architecture defines the load multiple wiongv{ instruction withr A in the
range of registers to be loaded, including the case in wiAichO, as an invalid form.

Table 4-16. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Operation
Syntax
Load Multiple Word Imw rD,d(rA) The EA is the sum (rA|0) + d. n= (32 —rD).
Store Multiple Word stmw r S,d(rA) The EA is the sum (rA|0) + d. n= (32 —rS).

4.2.3.6 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 4-17
summarizes the integer load and store string instructions.

Load and store string instructions execute more efficiently wiikear rS = 5, and the last
register loaded or stored is less than or equal to 12.

In some PowerPC implementations operating with little-endian byte order, execution of a
load or string instruction causes the system alignment error handler to be invoked; see
Section 3.1.2, “Byte Ordering,” for more information.

Table 4-17. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax Operation
Load String Word Immediate Iswi r D,rA,NB The EA is (rA]0).
Load String Word Indexed Iswx r D,rA,rB The EA is the sum (rA|0) + (rB).
Store String Word Immediate stswi r S,rANB The EA is (rA|0).
Store String Word Indexed stswx r SrArB The EA is the sum (rA|0) + (rB).

Load string and store string instructions may involve operands that are not word-aligned.
As described in Section 6.4.6, “Alignment Exception (0x00600),” a misaligned string
operation suffers a performance penalty compared to an aligned operation of the same type.
A non—-word-aligned string operation that crosses a double-word boundary is also slower
than a word-aligned string operation.

4.2.3.7 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads and stores are not supported for direct-store interface accesses.
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The use of floating-point loads and stores for direct-store interface accesses results in an

alignment exception.

NOTE: The direct-store facility is being phased out of the architecture and is not likely
to be supported in future devices.

4.2.3.7.1 Register Indirect (contents) with Immediate Index Addressing

for Floating-Point Loads and Stores
Instructions using this addressing mode contain a signed 16-bit immediate index

(d operand) which is sign extended to 32 bits, and added to the contents of a GPR spe
in the instruction (A operand) to generate the effective address. IfriAdield of the

instruction specified), a value of zero is added to the immediate index (d operand) in place
of the contents of0. The option to specifyA or 0 is shown in the instruction descriptions

as (A|0).

Figure 4-4 shows how an effective address is generated when using register indirect with
iImmediate index addressing for floating-point loads and stores.

Instruction Encoding:

0

56

1011 1516

31

Opcode

frD/frS

rA

o Yes n

No

31

15 16

31

Sign Extension

31

GPR (rA)

|-

Effective Address

31

FPR (frD/frS)

Store

l

Load

<

Figure 4-4. Register Indirect with Immediate Index Addressing for Floating-Point

Loads/Stores

4.2.3.7.2 Register Indirect (contents) with Index Addressing for Floating-

Point Loads and Stores

Memory
Access

Instructions using this addressing mode add the contents of two GPRs (specified in

operands A andrB) to generate the effective address. A zero inrtAeperand causes a
zero to be added to the contents of the GPR specified in opeBnthis is shown in the

instruction descriptions asA|0).
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Figure 4-5 shows how an effective address is generated when using register indirect with
index addressing.

0 56 1011 1516 2021 30 31
D Reserved Instruction EnCOdmg: Opcode | frD/frS rA rB Subopcode | 0

l 0 ] 31

y GPR (rB)
es
- @ B l
{?
No
0 31J 0 31

GPR (rA) Effective Address

l

Store »| Memory
FPR (frD/frS) Load Access

<
¢

Figure 4-5. Register Indirect with Index Addressing for Floating-Point Loads/Stores

The PowerPC architecture defines floating-point load and store with update instructions
(Ifsu, Ifsux, Ifdu, Ifdux, stfsu, stfsux, stfdu, stfdux) with operand A = 0 as invalid forms

of the instructions. In addition, it defines floating-point load and store instructions with the
CR updating option enabled (Rc bit, bit 31 = 1) to be an invalid form.

The PowerPC architecture defines that the FPSCR[UE] bit should not be used to determine
whether denormalization should be performed on floating-point stores.

4.2.3.8 Floating-Point Load Instructions

There are two forms of the floating-point load instruction—single-precision and double-
precision operand formats. Because the FPRs support only the floating-point double-
precision format, single-precision floating-point load instructions convert single-precision
data to double-precision format before loading the operands into the target FPR. This
conversion is described fully in Section D.6, “Floating-Point Load Instructions.”
Table 4-18 provides a summary of the floating-point load instructions.

NOTE: The PowerPC architecture defines load with update instructions Avitt0 as
an invalid form.
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Table 4-18. Floating-Point Load Instructions

Name Mnemonic Operand Operation
Syntax

Load Floating- | Ifs fr D,d(rA) | The EA is the sum (rA|0) + d.

Point Single The word in memory addressed by the EA is interpreted as a floating-point
single-precision operand. This word is converted to floating-point double-
precision format and placed into frD.

Load Floating- | Ifsx fr D,rA,rB | The EA is the sum (rA|0) + (rB).

:D?jmt Sclingle The word in memory addressed by the EA is interpreted as a floating-point

ndexe single-precision operand. This word is converted to floating-point double-
precision format and placed into frD.

Load Floating- | Ifsu fr D,d(rA) |The EA is the sum (rA) + d.

\';?t"?tUS'ggtle The word in memory addressed by the EA is interpreted as a floating-point

paate single-precision operand. This word is converted to floating-point double-
precision format and placed into frD.
The EA is placed into the register specified by rA.

Load Floating- | Ifsux fr D,rA,rB | The EA is the sum (rA) + (rB).

Pgmt Single The word in memory addressed by the EA is interpreted as a floating-point

with Update . . : - . .

Indexed single-precision operand. This word is converted to floating-point double-

exe precision format and placed into frD.
The EA is placed into the register specified by rA.

Load Floating- | Ifd fr D,d(rA) | The EAis the sum (rA|0) + d.

Point Double . . . .

The double word in memory addressed by the EA is placed into register
frD.

Load Floating- | Ifdx fr D,rA,rB | The EA is the sum (rA|0) + (rB).

Point Double The double word in memory addressed by the EA is placed into register

Indexed frD

Load Floating- | Ifdu fr D,d(rA) | The EA is the sum (rA) + d.

Point Double . . . .

- The double word in memory addressed by the EA is placed into register

with Update D
The EA is placed into the register specified by rA.

Load Floating- | Ifdux fr D,rA,rB | The EA is the sum (rA) + (rB).

Point Double . . . .

) The double word in memory addressed by the EA is placed into register
with Update
frD.

Indexed

The EA is placed into the register specified by rA.

4.2.3.9 Floating-Point Store Instructions

This section describes floating-point store instructions. There are three basic forms of the
store instruction—single-precision, double-precision, and integer. The integer form is
supported by thstfiwx instruction.
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NOTE: Thestfiwx instruction is defined as optional by the PowerPC architecture to
ensure backwards compatibility with earlier processors; however, it will likely be
required for subsequent PowerPC processors.

Because the FPRs support only floating-point, double-precision format for floating-point
data, single-precision floating-point store instructions convert double-precision data to
single-precision format before storing the operands. The conversion steps are described
fully in Section D.7, “Floating-Point Store Instructions.” Table 4-19 provides a summary of
the floating-point store instructions.

NOTE: The PowerPC architecture defines store with update instructions &vitt0 as
an invalid form.

Table 4-19 provides the floating-point store instructions for the PowerPC processors.

Table 4-19. Floating-Point Store Instructions

Name Mnemonic |Operand Syntax Operation
Store Floating- | stfs fr S,d(rA) The EA is the sum (rA|0) + d.
Point Single The contents of frS are converted to single-precision and stored
into the word in memory addressed by the EA.
Store Floating- | stfsx fr S,rA,rB The EA is the sum (rA|0) + (rB).
Point Single The contents of frS are converted to single-precision and stored
Indexed into the word in memory addressed by the EA.
Store Floating- | stfsu fr S,d(rA) The EA is the sum (rA) + d.
Point Single The contents of frS are converted to single-precision and stored
with Update into the word in memory addressed by the EA.
The EA is placed into rA.
Store Floating- | stfsux fr S,rA,rB The EA is the sum (rA) + (rB).
Point Single . .
- The contents of frS are converted to single-precision and stored
with Update . .
into the word in memory addressed by the EA.
Indexed
The EA is placed into the rA.
Store Floating- | stfd fr S,d(rA) The EA is the sum (rA|0) + d.
Point Double The contents of frS are stored into the double word in memory
addressed by the EA.
Store Floating- | stfdx fr S,rA,rB The EA is the sum (rA|0) + (rB).
:Dc:j'm Ddouble The contents of frS are stored into the double word in memory
ndexe addressed by the EA.
Store Floating- | stfdu fr S,d(rA) The EA is the sum (rA) + d.
P(.)t'I:tUDzu?le The contents of frS are stored into the double word in memory
wi pdate addressed by the EA.
The EA is placed into rA.
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Table 4-19. Floating-Point Store Instructions (Continued)

Name Mnemonic |Operand Syntax Operation
Store Floating- | stfdux fr S,rA,rB The EA is the sum (rA) + (rB).
P(_)tlr?tUD(;u?le The contents of frS are stored into the double word in memory
wi pdate addressed by EA.
Indexed
The EA is placed into register rA.
Store Floating- | stfiwx fr S,rA,rB The EA is the sum (rA|0) + (rB).

Point as
Integer Word
Indexed

The contents of the low-order 32 bits of frS are stored, without
conversion, into the word in memory addressed by the EA.

Note: The stfiwx instruction is defined as optional by the PowerPC
architecture to ensure backwards compatibility with earlier
processors; however, it will likely be required for subsequent
PowerPC processors.

4.2.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by

checking the bit in the CR and taking the action defined for the branch instruction.

If an interlock is detected, the branch is considered unresolved and the direction of the
branch may either be predicted using thbit (as described in Table 4-20) or by using
dynamic prediction. The interlock is monitored while instructions are fetched for the
predicted branch. When the interlock is cleared, the processor determines whether the
prediction was correct based on the value of the CR bit. If the prediction is correct, the
branch is considered completed and instruction fetching continues along the predicted path.
If the prediction is incorrect, the fetched instructions are purged, and instruction fetching

continues along the alternate path.

4.2.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the PowerPC processors ignore the two low-order
bits of the generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

e Branch relative
* Branch conditional to relative address

* Branch to absolute address

» Branch conditional to absolute address
» Branch conditional to link register
» Branch conditional to count register
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4.2.4.1.1 Branch Relative Addressing Mode

Instructions that use branch relative addressing generate the next instruction address by
sign extending and appending 0b0O0 to the immediate displacement operand LI, and adding
the resultant value to the current instruction address. Branches using this addressing mode
have the absolute addressing option disabled (AA field, bit 30, in the instruction
encoding = 0). The link register (LR) update option can be enabled (LK field, bit 31, in the
instruction encoding = 1). This option causes the effective address of the instruction
following the branch instruction to be placed in the LR.

Figure 4-6 shows how the branch target address is generated when using the branch relative
addressing mode.

0 56 29 30 31
Instruction Encoding: 18 LI AA|LK|
0 5 6 y 29 30 31
Sign Extension LI ofo
0 31

Current Instruction Address

E] Reserved Branch Target Address

Figure 4-6. Branch Relative Addressing

4.2.4.1.2 Branch Conditional to Relative Addressing Mode

If the branch conditions are met, instructions that use the branch conditional to relative
addressing mode generate the next instruction address by sign extending and appending
0b0O0 to the immediate displacement operand (BD) and adding the resultant value to the
current instruction address. Branches using this addressing mode have the absolute
addressing option disabled (AA field, bit 30, in the instruction encoding = 0). The link
register update option can be enabled (LK field, bit 31, in the instruction encoding = 1).
This option causes the effective address of the instruction following the branch instruction
to be placed in the LR.
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Figure 4-7 shows how the branch target address is generated when using the branch
conditional relative addressing mode.

0 56 1011 1516 30 31
16 BO BI BD AA[LK [] Reserved

——

No

Instruction Encoding:

0 31
Next Sequential Instruction Address

Condition
Met?

0 15 16 29 30 31

Sign Extension BD 0|0
0 31 Y
Current Instruction Address +

0 31

Branch Target Address

Figure 4-7. Branch Conditional Relative Addressing

4.2.4.1.3 Branch to Absolute Addressing Mode

Instructions that use branch to absolute addressing mode generate the next instruction
address by sign extending and appending 0b00 to the LI operand. Branches using this
addressing mode have the absolute addressing option enabled (AA field, bit 30, in the
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instruction encoding = 1). The link register update option can be enabled (LK field, bit 31,
in the instruction encoding = 1). This option causes the effective address of the instruction
following the branch instruction to be placed in the LR.

Figure 4-8 shows how the branch target address is generated when using the branch to
absolute addressing mode.

0 56 29 30 31

Instruction Encoding: 18 LI AALK|
0 5 6 Y 29 30 31

Sign Extension LI ofo0

0 v 29 30 31

Branch Target Address ofo

Figure 4-8. Branch to Absolute Addressing

4.2.4.1.4 Branch Conditional to Absolute Addressing Mode

If the branch conditions are met, instructions that use the branch conditional to absolute
addressing mode generate the next instruction address by sign extending and appending
0bO0O to the BD operand.

Branches using this addressing mode have the absolute addressing option enabled (AA
field, bit 30, in the instruction encoding = 1).

The link register update option can be enabled (LK field, bit 31, in the instruction
encoding = 1).

This option causes the effective address of the instruction following the branch instruction
to be placed in the LR.
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Figure 4-9 shows how the branch target address is generated when using the branch
conditional to absolute addressing mode.

0 56 1011 1516 29 30 31
Instruction Encoding: 16 BO BI BD AA|LK

—

No

0 31

Condition Next Sequential Instruction Address |
0 15°16 29 30 31
Sign Extension BD ofo0
0 Y 29 30 31
Branch Target Address ofo

Figure 4-9. Branch Conditional to Absolute Addressing

4.2.4.1.5 Branch Conditional to Link Register Addressing Mode

If the branch conditions are met, the branch conditional to link register instruction generates
the next instruction address by using the contents of the LR and clearing the two low-order

bits to zero. The result becomes the effective address from which the next instructions are
fetched.

The link register update option can be enabled (LK field, bit 31, in the instruction encoding
= 1). This option causes the effective address of the instruction following the branch
Instruction to be placed in the LR. This is done even if the branch is not taken.
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Figure 4-10 shows how the branch target address is generated when using the branch
conditional to link register addressing mode.

0 56 1011 1516 2021 30 31
19 Bo | Bl |00000 16 |k [] Reserved

Instruction Encoding:

0 31
Next Sequential Instruction Address

Condition
Met?

0 29 30 31
LR

\
A
(=}
(<}

Branch Target Address

Figure 4-10. Branch Conditional to Link Register Addressing

4.2.4.1.6 Branch Conditional to Count Register Addressing Mode

If the branch conditions are met, the branch conditional to count register instruction
generates the next instruction address by using the contents of the count register (CTR) and

clearing the two low-order bits to zero. The result becomes the effective address from which
the next instructions are fetched.

The link register update option can be enabled (LK field, bit 31, in the instruction
encoding = 1). This option causes the effective address of the instruction following the
branch instruction to be placed in the LR. This is done even if the branch is not taken.

Figure 4-11 shows how the branch target address is generated when using the branch
conditional to count register addressing mode.
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0 56 1011 1516 2021 30 31
Instruction Encoding: | 19 BO | BI |[00000 528  [LK [[] Reserved

31
Next Sequential Instruction Address

0 29 3031
CTR »( || ) ofo

Branch Target Address

Figure 4-11. Branch Conditional to Count Register Addressing

4.2.4.2 Conditional Branch Control

For branch conditional instructions, tB® operand specifies the conditions under which
the branch is taken. The first four bits of tB® operand specify how the branch is affected

by or affects the condition and count registers. The fifth bit, shown in Table 4-20 as having
the valuey, is used by some PowerPC implementations for branch prediction as described
below.

The encodings for the BO operands are shown in Table 4-20. If the BO field specifies that
the CTR is to be decremented, the entire 32-bit CTR is decremented.

Table 4-20. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR#0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR#0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTRZO0.

1201y Decrement the CTR, then branch if the decremented CTR = 0.

121zz Branch always.
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Table 4-20. BO Operand Encodings (Continued)

BO Description

In this table, z indicates a bit that is ignored.
Note: The z bits should be cleared, as they may be assigned a meaning in some future version of the
PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by some
PowerPC implementations to improve performance.

The branch always encoding of the BO operand does not hydvie. a

Clearing they bit indicates a predicted behavior for the branch instruction as follows:

» Forbcx with a negative value in the displacement operand, the branch is predicted
taken.

* Inall other casedicx with a non-negative value in the displacement operhalix,
or becetrx), the branch is predicted not taken.

Setting they bit reverses the preceding indications.

The sign of the displacement operand is used as described above even if the target is an
absolute address. The default value foryh®t should be 0, and should only be set to 1 if
software has determined that the prediction corresponding=td is more likely to be
correct than the prediction corresponding/te 0. Software that does not compute branch
predictions should clear thyebit.

In most cases, the branch should be predicted to be taken if the value of the following
expression is 1, and predicted to fall through if the value is O.

((BO[O] & BO[2]) | S) = BO[4]

In the expression above, S (bit 16 of the branch conditional instruction coding) is the sign
bit of the displacement operand if the instruction has a displacement operand and is O if the
operand is reserved. BO[4] is thyebit, or O for the branch always encoding of the BO
operand. (Advantage is taken of the fact that dolr x andbcctrx, bit 16 of the instruction

is part of a reserved operand and therefore must be 0.)

The 5-bit Bl operand in branch conditional instructions specifies which of the 32 bits in the
CR represents the bit to test.

When the branch instructions contain immediate addressing operands, the branch target
addresses can be computed sufficiently ahead of the branch execution and instructions can
be fetched along the branch target path (if the branch is predicted to be taken or is an
unconditional branch). If the branch instructions use the link or count register contents for
the branch target address, instructions along the branch-taken path of a branch can be
fetched if the link or count register is loaded sufficiently ahead of the branch instruction
execution.
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Branching can be conditional or unconditional. The branch target address is first calculated
from the contents of the count or link register or from the branch immediate field.
Optionally, a branch return address can be loaded into the LR register (this sets the return
address for subroutine calls). When this option is selected (LK=1) the LR is loaded with the
effective address of the instruction following the branch instruction.

Some processors may keep a stack of the link register values most recently set by branch
and link instructions, with the possible exception of the form shown below for obtaining

the address of the next instruction. To benefit from this stack, the following programmin
conventions should be used. h

In the following examples, let A, B, and Glue represent subroutine labels:
* Obtaining the address of the next instruction— use the following form of branch and
link:
bcl 20,31,$+4
* Loop counts:

Keep loop counts in the count register, and use one of the branch conditional
instructions to decrement the count and to control branching (for example,
branching back to the start of a loop if the decremented counter value is nonzero).

» Computed GOTOs, case statements, etc.:

Use the count register to hold the address to branch to, and usedineénstruction
with the link register option disabled (LK = 0) to branch to the selected address.

» Direct subroutine linkage—where A calls B and B returns to A. The two branches
should be as follows:

— A calls B: use a branch instruction that enables the link register (LK = 1).

— B returns to A: use thieclr instruction with the link register option disabled
(LK = 0) (the return address is in, or can be restored to, the link register).

» Indirect subroutine linkage:

Where A calls Glue, Glue calls B, and B returns to A rather than to Glue. (Such a
calling sequence is common in linkage code used when the subroutine that the
programmer wants to call, here B, is in a different module from the caller: the binder
inserts “glue” code to mediate the branch.) The three branches should be as follows:

— A calls Glue: use a branch instruction that sets the link register with the link
register option enabled (LK = 1).

— Glue calls B: place the address of B in the count register, and usecthe
instruction with the link register option disabled (LK = 0).

— B returns to A: use thieclr instruction with the link register option disabled
(LK =0) (the return address is in, or can be restored to, the link register).
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4.2.4.3 Branch Instructions
Table 4-21 describes the branch instructions provided by the PowerPC processors.

Table 4-21. Branch Instructions

Name Mnemonic | Operand Syntax Operation
Branch b target_addr b Branch. Branch to the address computed as the sum of the
ba immediate address and the address of the current instruction.
bl ba Branch Absolute. Branch to the absolute address specified.
bla bl Branch then Link. Branch to the address computed as the sum
of the immediate address and the address of the current
instruction. The instruction address following this instruction is
placed into the link register (LR).
bla Branch Absolute then Link. Branch to the absolute address
specified. The instruction address following this instruction is
placed into the LR.
Branch bc BO,Bl,target_addr | The Bl operand specifies the bit in the CR to be used as the condition
Conditional |bca of the branch. The BO operand is used as described in Table 4-20.
Eﬁ:a bc Branch Conditional. Branch conditionally to the address
computed as the sum of the immediate address and the
address of the current instruction.
bca  Branch Conditional Absolute. Branch conditionally to the
absolute address specified.
bcl Branch Conditional then Link. Branch conditionally to the
address computed as the sum of the immediate address and
the address of the current instruction. The instruction address
following this instruction is placed into the LR.
bcla  Branch Conditional Absolute then Link. Branch conditionally to
the absolute address specified. The instruction address
following this instruction is placed into the LR.
Branch belr BO,BI The Bl operand specifies the bit in the CR to be used as the condition
Conditional | bclrl of the branch. The BO operand is used as described in Table 4-20,
to Link and the branch target address is LR[0-29] || 0b0O.
Register bclr  Branch Conditional to Link Register. Branch conditionally to
the address in the LR.
bclrl  Branch Conditional to Link Register then Link. Branch
conditionally to the address specified in the LR. The instruction
address following this instruction is then placed into the LR.
Branch bectr BO,BI The Bl operand specifies the bit in the CR to be used as the condition
Conditional |bcctrl of the branch. The BO operand is used as described in Table 4-20,
to Count and the branch target address is CTR[0-29] || 0b0O.
Register becetr  Branch Conditional to Count Register. Branch conditionally to
the address specified in the count register.
bectrl  Branch Conditional to Count Register then Link. Branch
conditionally to the address specified in the count register.
The instruction address following this instruction is placed into
the LR.
Note: If the “decrement and test CTR” option is specified (BO[2] = 0),
the instruction form is invalid.
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4.2.4.4 Simplified Mnemonics for Branch Processor Instructions

To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for the most frequently used forms of branch conditional, compare, trap, rotate
and shift, and certain other instructions. See Appendix F, “Simplified Mnemonics,” for a

list of simplified mnemonic examples.

4.2.4.5 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 4-22, and the Move Condition

Register Fieldrcrf) instruction are also defined as flow control instructions.

NOTE: If the LR update option is enabled for any of these instructions, the PowerP
architecture defines these forms of the instructions as invalid.
Table 4-22. Condition Register Logical Instructions
Name Mnemonic Operand Syntax Operation

Condition crand crb D,crbA,crbB | The CR bit specified by crb A is ANDed with the CR bit specified

Register AND by crb B. The result is placed into the CR bit specified by crb D.

Condition cror crb D,crbA,crbB | The CR bit specified by crb A is ORed with the CR bit specified

Register OR by crb B. The result is placed into the CR bit specified by crb D.

Condition crxor crb D,crb A,crbB | The CR bit specified by crb A is XORed with the CR bit specified

Register XOR by crb B. The result is placed into the CR bit specified by crb D.

Condition crnand crb D,crb A,crbB | The CR bit specified by crb A is ANDed with the CR bit specified

Register NAND by crb B. The complemented result is placed into the CR bit
specified by crb D.

Condition crnor crb D,crb A,crbB | The CR bit specified by crb A is ORed with the CR bit specified

Register NOR by crb B. The complemented result is placed into the CR bit
specified by crb D.

Condition creqv crb D,crb A, crbB | The CR bit specified by crb A is XORed with the CR bit specified

Register by crb B. The complemented result is placed into the CR bit

Equivalent specified by crb D.

Condition crandc crb D,crb A, crb B | The CR bit specified by crb A is ANDed with the complement of

Register AND the CR bit specified by crb B and the result is placed into the CR

with Complement bit specified by crb D.

Condition crorc crb D,crb A, crb B | The CR bit specified by crb A is ORed with the complement of

Register OR with the CR bit specified by crb B and the result is placed into the CR

Complement bit specified by crb D.

Move Condition mcrf crf D,crfS The contents of crf S are copied into crf D. No other condition

Register Field register fields are changed.
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4.2.4.6 Trap Instructions

The trap instructions shown in Table 4-23 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues

normally. See Appendix F, “Simplified Mnemonics,” for a complete set of simplified
mnemonics.

Table 4-23. Trap Instructions

Name Mnemonic Operand Operand Syntax
Syntax

Trap Word twi TO,rA,SIMM | The contents of rA are compared with the sign-extended SIMM operand.

Immediate If any bit in the TO operand is set and its corresponding condition is met
by the result of the comparison, the system trap handler is invoked.

Trap Word tw TO,rA,rB The contents of rA are compared with the contents of rB. If any bit in the
TO operand is set and its corresponding condition is met by the result of
the comparison, the system trap handler is invoked.

4.2.4.7 System Linkage Instruction—UISA

Table 4-24 describes the System Ca)) (nstruction that permits a program to call on the
system to perform a service. See Section 4.4.1, “System Linkage Instructions—OEA,” for
a complete description of tlsg instruction.

Table 4-24. System Linkage Instruction—UISA

Name | Mnemonic Operand Operation
Syntax
System | sc — This instruction calls the operating system to perform a service. When control is
Call returned to the program that executed the system call, the content of the registers

will depend on the register conventions used by the program providing the system
service. This instruction is context synchronizing as described in Section 4.1.5.1,
“Context Synchronizing Instructions.”

See Section 4.4.1, “System Linkage Instructions—OEA,” for a complete description
of the sc instruction.
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4.2.5 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs). See
Section 4.3.1, “Processor Control Instructions—VEA,” for thdtb instruction and
Section 4.4.2, “Processor Control Instructions—OEA,” for information about the
instructions used for reading from and writing to the MSR and SPRs.

4.2.5.1 Move to/from Condition Register Instructions
Table 4-25 summarizes the instructions for reading from or writing to the condition regi

Table 4-25. Move to/from Condition Register Instructions

Name Mnemonic Operand Operation
Syntax

Move to Condition | mtcrf CRM,rS The contents of rS are placed into the CR under control of the field

Register Fields mask specified by operand CRM. The field mask identifies the 4-bit
fields affected. Let /i be an integer in the range 0-7. If CRM()) = 1, CR
field i (CR bits 4 * ithrough 4 * i + 3) is set to the contents of the
corresponding field of rS.

Move to Condition | merxr crf D The contents of XER[0-3] are copied into the condition register field

Register from XER designated by crf D. All other CR fields remain unchanged. The
contents of XER[0-3] are cleared.

Move from mfcr rb The contents of the CR are placed into rD.

Condition Register

4.2.5.2 Move to/from Special-Purpose Register Instructions (UISA)

Table 4-26 provides a brief description of th@spr and mfspr instructions. For more
detailed information refer to Chapter 8, “Instruction set.”

Table 4-26. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Operand Operation
Syntax
Move to Special- mtspr SPR,rS | The value specified by rS are placed in the specified SPR.
Purpose Register
Move from Special- | mfspr r D,SPR | The contents of the specified SPR are placed in rD.
Purpose Register
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4.2.6 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms.

The number of cycles required to completesgnc instruction depends on system
parameters and on the processor's state when the instruction is issued. As a result, frequent
use of this instruction may degrade performance slightly.éi@®instruction may be more
appropriate thasyncfor many cases.

The PowerPC architecture defines #ymcinstruction with CR update enabled (Rc field,
bit 31 = 1) to be an invalid form.

The proper paired use of thearx with stwcx.instructions allows programmers to emulate
common semaphore operations such as test and set, compare and swap, exchange ory,
and fetch and add. Examples of these semaphore operations can be found in Appendix E,
“Synchronization Programming Examples.” Tlnarx instruction must be paired with anm
stwcex.instruction, with the same effective address specified by both instructions of the parr.
The only exception is that an unpairstivcx. instruction to any (scratch) effective address

can be used to clear any reservation held by the processor.

NOTE: The reservation granularity is implementation-dependent.

The concept behind the use of thearx andstwcx, instructions is that a processor may

load a semaphore from memory, compute a result based on the value of the semaphore, and
conditionally store it back to the same location. The conditional store is performed based
upon the existence of a reservation established by the preckdang instruction. If the
reservation exists when the store is executed, the store is performed and a bit is set in the
CR. If the reservation does not exist when the store is executed, the target memory location
is not modified and a bit is cleared in the CR.

The lwarx andstwcx,, primitives allow software to read a semaphore, compute a result
based on the value of the semaphore, store the new value back into the semaphore location
only if that location has not been modified since it was first read, and determine if the store
was successful. If the store was successful, the sequence of instructions from the read of the
semaphore to the store that updated the semaphore appear to have been executed atomically
(that is, no other processor or mechanism modified the semaphore location between the
read and the update), thus providing the equivalent of a real atomic operation. However, in
reality, other processors may have read from the location during this operation.

Thelwarx andstwcx. instructions require the EA to be aligned.

In general, thdwarx and stwcx. instructions should be used only in system programs,
which can be invoked by application programs as needed.

At most one reservation exists simultaneously on any processor. The address associated
with the reservation can be changed by a subseduamk instruction. The conditional
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store is performed based upon the existence of a reservation established by the preceding
lwarx instruction.

A reservation held by the processor is cleared (or may be cleared, in the case of the fourth
and fifth bullet items) by one of the following:

» The processor holding the reservation executes anlbthex instruction; this clears

the first reservation and establishes a new one.

* The processor holding the reservation execustw/ex. instruction whether its
address matches that of tiaarx.

* Some other processor executes a stodebz to the same reservation granule, or

modifies a referenced or changed bit in the same reservation granule.

» Some other processor executekhtst, dcbst, dcbf, ordchbi to the same reservation

granule; whether the reservation is cleared is undefined.

* Some other processor executekha to the same reservation granule. The
reservation is cleared if the instruction causes the target block to be newly
established in the data cache or to be modified; otherwise, whether the reservation
is cleared is undefined.

» Some other mechanism modifies a memory location in the same reservation granule.

NOTE:

Exceptions do not clear reservations; however, system software invoked by
exceptions may clear reservations.

Table 4-27 summarizes the memory synchronization instructions as defined in the UISA.
See Section 4.3.2, “Memory Synchronization Instructions—VEA,” for details about
additional memory synchronizatioai€io andisync) instructions.

Table 4-27. Memory Synchronization Instructions—UISA

Name Mnemonic Operand Operation
Syntax
Load Word Iwarx r D,rArB | The EA is the sum (rA|O) + (rB). The word in memory addressed by the EA is
and Reserve loaded into rD.
Indexed
Store Word | stwex. r S,rA,rB [ The EA is the sum (rA|O) + (rB).
ﬁ]?jgigl(;mal If a reservation exists and the effective address specified by the stwcx.

instruction is the same as that specified by the load and reserve instruction
that established the reservation, the contents of rS are stored into the word in
memory addressed by the EA, and the reservation is cleared.

If a reservation exists but the effective address specified by the stwcx.
instruction is not the same as that specified by the load and reserve
instruction that established the reservation, the reservation is cleared, and it is
undefined whether the contents of rS are stored into the word in memory
addressed by the EA.

If a reservation does not exist, the instruction completes without altering
memory or the contents of the cache.

Chapter 4. Addressing Modes and Instruction Set Summary 4-55



<

Table 4-27. Memory Synchronization Instructions—UISA (Continued)

Operand

Name Mnemonic
Syntax

Operation

Synchronize |sync — Executing a sync instruction ensures that all instructions preceding the sync
instruction appear to have completed before the sync instruction completes,
and that no subsequent instructions are initiated by the processor until after
the sync instruction completes. When the sync instruction completes, all
memory accesses caused by instructions preceding the sync instruction will
have been performed with respect to all other mechanisms that access
memory.

See Chapter 8, “Instruction set,” for more information.

4.2.7 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provided for
some of the most frequently used operations (such as no-op, load immediate, load address,
move register, and complement register). Assemblers should provide the simplified
mnemonics listed in Section F.9, “Recommended Simplified Mnemonics.” Programs
written to be portable across the various assemblers for the PowerPC architecture should
not assume the existence of mnemonics not described in this document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics.”

4.3 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache-control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

4.3.1 Processor Control Instructions—VEA

The VEA defines thenftb instruction (user-level instruction) for reading the contents of
the time base register; see Chapter 5, “Cache Model and Memory Coherency,” for more
information. Table 4-28 describes tmétb instruction.

Simplified mnemonics are provided (See Section F.8, “Simplified Mnemonics for Special-
Purpose Registers”) for thaftb instruction so it can be coded with the TBR name as part
of the mnemonic rather than requiring it to be coded as an operand. The simplified
mnemonics Move from Time Basenftb) and Move from Time Base Uppemftbu) are
variants of thanftb instruction rather than of th@fspr instruction. Thenftb instruction
serves as both a basic and simplified mnemonic. Assemblers recogm#tamnemonic

with two operands as the basic form, andraftb mnemonic with one operand as the
simplified form.
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Ttis not possible to read the entire 64-bit time base register in a single instructiomfithe

simplified mnemonic moves from the lower half of the time base register (TBL) to a GPR,
and themftbu simplified mnemonic moves from the upper half of the time base (TBU) to

a GPR.

Table 4-28. Move from Time Base Instruction

Name [Mnemonic

Operand Syntax

Operation

Move mftb
from
Time
Base

rD, TBR

register are copied to rD.

The TBR field denotes either time base lower or time base upper, encoded
as shown in Table 4-29 and Table 4-30. The contents of the designated

Table 4-29 summarizes the time base (TBL/TBU) register encodings to which user-level
access (usinmftb) is permitted (as specified by the VEA).

Table 4-29. User-Level TBR Encodings (VEA)

Decimal Value Register -
in TBR Field tor[ 0—4] tbr[5-9] Name Description
268 01100 01000 TBL Time base lower (read-only)
269 01101 01000 TBU Time base upper (read-only)

Table 4-30 summarizes the TBL and TBU register encodings to which supervisor-level
access (usinmtspr) is permitted.

Table 4-30. Supervisor-Level TBR Encodings (VEA)

Decimal Value in . -
SPR Field spr[0—4] spr[5-9] Register Name Description
284 11100 01000 TBL! Time base lower (write only)
285 11101 01000 TBU! Time base upper (write only)

IMoving from the time base (TBL and TBU) can also be accomplished with the mftb instruction.

4.3.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory opera s
are seen by other processors or memory access mechanisms. See Chapter 5, “Cache viodel
and Memory Coherency,” for additional information about these instructions and about
related aspects of memory synchronization.

System designs that use a second-level cache should take special care to recognize the
hardware signaling caused bysgnc operation and perform the appropriate actions to

guarantee that memory references that may be queued internally to the second-level cache
have been performed globally.
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In addition to thesyncinstruction (specified by UISA), the VEA defines the Enforce In-
Order Execution of 1/O dieig) and Instruction Synchronizeisync) instructions; see

Table 4-31. The number of cycles required to completeiaio instruction depends on
system parameters and on the processor's state when the instruction is issued. As a result,
frequent use of this instruction may degrade performance slightly.

The isync instruction causes the processor to wait for any preceding instructions to
complete, discard all prefetched instructions, and then branch to the next sequential
instruction afterisync (which has the effect of clearing the pipeline of prefetched
instructions).

Table 4-31 Memory Synchronization Instructions—VEA

Name Mnemonic Operand Operation
Syntax
Enforce In-Order | eieio — The eieio instruction provides an ordering function for the effects of loads
Execution of /0 and stores executed by a processor.
Instruction isync — Executing an isync instruction ensures that all previous instructions
Synchronize complete before the isync instruction completes, although memory

accesses caused by those instructions need not have been performed
with respect to other processors and mechanisms. It also ensures that the
processor initiates no subsequent instructions until the isync instruction
completes. Finally, it causes the processor to discard any prefetched
instructions, so subsequent instructions will be fetched and executed in
the context established by the instructions preceding the isync
instruction.

This instruction does not affect other processors or their caches.

4.3.3 Memory Control Instructions—VEA
Memory control instructions include the following types:

» Cache management instructions (user-level and supervisor-level)
» Segment register manipulation instructions
» Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA.
See Section 4.4.3, “Memory Control Instructions—OEA,” for more information about
supervisor-level cache, segment register manipulation, and translation lookaside buffer
management instructions.

4.3.3.1 User-Level Cache Instructions—VEA

The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches if they are implemented. See Chapter 5, “Cache Model and
Memory Coherency,” for more information about cache topics.

As with other memory-related instructions, the effect of the cache management instructions
on memory are weakly ordered. If the programmer needs to ensure that cache or other
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instructions have been performed with respect to all other processors and system
mechanisms, syncinstruction must be placed in the program following those instructions.

NOTE: When data address translation is disabled (MSR[DR] = 0), the Data Cache Block
Clear to Zerodchbz) and the Data Cache Block Allocatieba) instructions
allocate a cache block in the cache and may not verify that the physical ad S
(referred to as real address in the architecture specification) is valid. If a cache
block is created for an invalid physical address, a machine check condition may
result when an attempt is made to write that cache block back to memory. The
cache block could be written back as a result of the execution of an instruct
that causes a cache miss and the invalid addressed cache block is the targ &8
replacement or a Data Cache Block Staolebét) instruction.

Any cache control instruction that generates an effective address that corresponds to a
direct-store segment (segment descriptor[T] = 1) is treated as a no-op.

NOTE: The direct-store facility is being phased out of the architecture and will not likely
be supported for future processors.

Table 4-32 summarizes the cache instructions defined by the VEA.
NOTE: These instructions are accessible to user-level programs.

Table 4-32. User-Level Cache Instructions

Name Mnemonic Operand Operation
Syntax

Data dcbt rArB The EA is the sum (rA|0) + (rB).
cB:Iadlle This instruction is a hint that performance will probably be improved if the block
T oc h containing the byte addressed by EA is fetched into the data cache, because

ouc the program will probably soon load from the addressed byte.
Data dcbtst ArB The EA is the sum (rA|0) + (rB).
gfcl)irlle This instruction is a hint that performance will probably be improved if the block

containing the byte addressed by EA is fetched into the data cache, because

Touch for . .
Store the program will probably soon store into the addressed byte.
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Table 4-32. User-Level Cache Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Data
Cache
Block
Allocate

dcba

rArB

The EA is the sum (rA|0) + (rB).

If the cache block containing the byte addressed by the EA is in the data cache,
all bytes of the cache block are made undefined, but the cache block is still
considered valid.

Note: Programming errors can occur if the data in this cache block is
subsequently read or used inadvertently.

If the page containing the byte addressed by the EA is not in the data cache and
the corresponding page is marked caching allowed (I = 0), the cache block is
allocated (and made valid) in the data cache without fetching the block from
main memory, and the value of all bytes of the cache block is undefined.

If the page containing the byte addressed by the EA is marked caching inhibited
(WIM = x1x), this instruction is treated as a no-op.

If the cache block addressed by the EA is located in a page marked as memory
coherent (WIM = xx1) and the cache block exists in the caches of other
processors, memory coherence is maintained in those caches.

The dcba instruction is treated as a store to the addressed byte with respect to
address translation, memory protection, referenced and changed recording,
and the ordering enforced by eieio or by the combination of caching-inhibited
and guarded attributes for a page.

This instruction is optional in the PowerPC architecture.

(In the PowerPC OEA, the dcba instruction is additionally defined to clear all
bytes of a newly established block to zero in the case that the block did not
already exist in the cache.)

Data
Cache
Block Clear
to Zero

dcbz

rArB

The EA is the sum (rA|0) + (rB).

If the cache block containing the byte addressed by the EA is in the data cache,
all bytes of the cache block are cleared to zero.

If the page containing the byte addressed by the EA is not in the data cache and
the corresponding page is marked caching allowed (I = 0), the cache block is
established in the data cache without fetching the block from main memory, and
all bytes of the cache block are cleared to zero.

If the page containing the byte addressed by the EA is marked caching inhibited
(WIM = x1x) or write-through (WIM = 1xx), either all bytes of the area of main
memory that corresponds to the addressed cache block are cleared to zero, or
an alignment exception occurs.

If the cache block addressed by the EA is located in a page marked as memory
coherent (WIM = xx1) and the cache block exists in the caches of other
processors, memory coherence is maintained in those caches.

The dcbz instruction is treated as a store to the addressed byte with respect to
address translation, memory protection, referenced and changed recording,
and the ordering enforced by eieio or by the combination of caching-inhibited
and guarded attributes for a page.
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Table 4-32. User-Level Cache Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Data
Cache
Block Store

dcbst

r A,rB

The EA is the sum(rA|0) + (rB).

If the cache block containing the byte addressed by the EA is located in a page
marked memory coherent (WIM = xx1), and a cache block containing the byte
addressed by EA is in the data cache of any processor and has been modified,
the cache block is written to main memory.(Note: The architecture does not
stipulate that the modified status of the block be cleared, that decision is left to
the processor designer. Either action is logically correct.)

If the cache block containing the byte addressed by the EA is located in a page
not marked memory coherent (WIM = xx0), and a cache block containing the
byte addressed by EA is in the data cache of this processor and has been
modified, the cache block is written to main memory. (See note above.)

The function of this instruction is independent of the write-through/write-back
and caching-inhibited/caching-allowed modes of the cache block containing the
byte addressed by the EA.

The dcbst instruction is treated as a load from the addressed byte with respect
to address translation and memory protection. It may also be treated as a load
for referenced and changed bit recording except that referenced and changed
bit recording may not occur.

Data
Cache
Block Flush

dcbf

rArB

The EA is the sum (rA|0) + (rB).

The action taken depends on the memory mode associated with the target, and
on the state of the block. The following list describes the action taken for the
various cases, regardless of whether the page or block containing the
addressed byte is designated as write-through or if it is in the caching-inhibited
or caching-allowed mode.

» Coherency required (WIM = xx1)

— Unmodified block—Invalidates copies of the block in the caches of all
processors.

— Modified block—Copies the block to memory. Invalidates the copy of the
block in the cache where it is found.There should only be one modified
block.

— Absent block—If a modified copy of the block is in the cache of another
processor, causes it to be copied to memory and invalidated. If
unmodified copies are in the caches of other processors, causes those
copies to be invalidated.

* Coherency not required (WIM = xx0)

— Unmaodified block—Invalidates the block in the processor’s cache.

— Modified block—Copies the block to memory. Invalidates the block in the
processor’s cache.

— Absent block—Does nothing.

The function of this instruction is independent of the write-through/write-back
and caching-inhibited/caching-allowed modes of the cache block containing the
byte addressed by the EA.

The dcbf instruction is treated as a load from the addressed byte with respect
to address translation and memory protection. It may also be treated as a load
for referenced and changed bit recording except that referenced and changed
bit recording may not occur.
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Table 4-32. User-Level Cache Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Instruction
Cache
Block
Invalidate

icbi

rArB

The EA is the sum (rA|0) + (rB).

If the cache block containing the byte addressed by EA is located in a page
marked memory coherent (WIM = xx1), and a cache block containing the byte
addressed by EA is in the instruction cache of any processor, the cache block is
made invalid in all such instruction caches, so that the next reference causes
the cache block to be refetched.

If the cache block containing the byte addressed by EA is located in a page not
marked memory coherent (WIM = xx0), and a cache block containing the byte
addressed by EA is in the instruction cache of this processor, the cache block is
made invalid in that instruction cache, so that the next reference causes the
cache block to be refetched.

The function of this instruction is independent of the write-through/write-back
and caching-inhibited/caching-allowed modes of the cache block containing the
byte addressed by the EA.

The icbi instruction is treated as a load from the addressed byte with respect to
address translation and memory protection. It may also be treated as a load for
referenced and changed bit recording except that referenced and changed bit
recording may not occur.
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4.3.4 External Control Instructions
The external control instructions allow a user-level program to communicate with a special-

purpose device. Two instructions are provided and are summarized in Table 4-33.

Table 4-33. External Control Instructions

Name |Mnemonic Operand Operation
Syntax

External eciwx rD,rA,rB | The EA is the sum (rA|0) + (rB).

\(llv%r:gol In A load word request for the physical address corresponding to the EA is sent to

Indexed the device identified by the EAR[RID] (bits 26—31), bypassing the cache. The
word returned by the device is placed into rD. The EA sent to the device must be
word-aligned.
This instruction is treated as a load from the addressed byte with respect to
address translation, memory protection, referenced and changed recording, and
the ordering performed by eieio.
This instruction is optional.

External ecowx r S,rA,rB | The EA is the sum (rA|O) + (rB).

80?3\;)' d A store word request for the physical address corresponding to the EA and the

In:exe(()jr contents of rS are sent to the device identified by EAR[RID] (bits 26—31),

bypassing the cache. The EA sent to the device must be word-aligned.

This instruction is treated as a store to the addressed byte with respect to
address translation, memory protection, referenced and changed recording, and
the ordering performed by eieio . Software synchronization is required in order to
ensure that the data access is performed in program order with respect to data
accesses caused by other store or ecowx instructions, even though the
addressed byte is assumed to be caching-inhibited and guarded.

This instruction is optional.
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4.4 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the OEA also adhere to the UISA and the VEA. This
section describes the instructions provided by the OEA.

4.4.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 4-34yciAs¢ruction

is a user-level instruction that permits a user program to call on the system to perform a
service and causes the processor to take an exceptionfiTihstructions are supervisor-
level instructions that are useful for returning from an exception handler.

Table 4-34. System Linkage Instructions—OEA

Operand

Name Mnemonic
Syntax

Operation

System Call sc — When executed, the effective address of the instruction following the sc
instruction is placed into SRRO. Bits 1-4, and 10-15 of SRR1 are
cleared. Additionally, bits 16-23, 25-27, and 30-31 of the MSR are
placed into the corresponding bits of SRR1. Depending on the
implementation, additional bits of MSR may also be saved in SRR1.
Then a system call exception is generated. The exception causes the
MSR to be altered as described in Section 6.4, “Exception Definitions.”

The exception causes the next instruction to be fetched from offset
0xCO00 from the base physical address indicated by the old setting of
MSRJIP].

This instruction is context synchronizing.

Return from rfi — Bits 16-23, 25-27, and 30-31 of SRR1 are placed into the

Interrupt corresponding bits of the MSR. Depending on the implementation,
additional bits of MSR may also be restored from SRR1. If the new MSR
value does not enable any pending exceptions, the next instruction is
fetched, under control of the new MSR value, from the address
SRRO[0-29] || Ob0O.

If the new MSR value enables one or more pending exceptions, the
exception associated with the highest priority pending exception is
generated. At this time SRRO and SRR1 are left with their current values;
the MSR is loaded with new values as determined by the exception and
the processor branches to the exception handler to resolve the pending
exception.

This is a supervisor-level instruction and is context-synchronizing.

4.4.2 Processor Control Instructions—OEA

This section describes the processor control instructions that are used to read from and
write to the MSR and the SPRs.
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4.4.2.1 Move to/from Machine State Register Instructions
Table 4-35 summarizes the instructions used for reading from and writing to the MSR.

Table 4-35. Move to/from Machine State Register Instructions

Name Mnemonic Operand Operation
Syntax

Move to Machine mtmsr rs The contents of rS are placed into the MSR.

State Register This instruction is a supervisor-level instruction and is context
synchronizing except with respect to alterations to the POW and LE
bits. Refer to Section 2.3.17, “Synchronization Requirements for
Special Registers and for Lookaside Buffers,” for more information.

Move from Machine | mfmsr r D The contents of the MSR are placed into rD. This is a supervisor-level

State Register instruction.

4.4.2.2 Move to/from Special-Purpose Register Instructions (OEA)

Provided is a brief description of thmatspr andmfspr instructions (see Table 4-36). For

more detailed information, see Chapter 8, “Instruction set.” Simplified mnemonics are

provided for themtspr andmfspr instructions in Appendix F, “Simplified Mnemonics.”

For a discussion of context synchronization requirements when altering certain SPRs, refer
to Appendix E, “Synchronization Programming Examples.”

Table 4-36. Move to/from Special-Purpose Register Instructions (OEA)

Operand

Name Mnemonic Syntax Operation
Move to mtspr SPR,rS The SPR field denotes a special-purpose register. The contents of rS
Special- are placed into the designated SPR.
Purpose For this instruction, SPRs TBL and TBU are treated as separate 32-
Register . . ) .

bit registers; setting one leaves the other unaltered.

Move from mfspr r D,SPR The SPR field denotes a special-purpose register. The contents of
Special- the designated SPR are placed into rD.
Purpose
Register

Formtspr andmfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into
two 5-bit halves that are reversed in the instruction encoding, with the high-order 5 bits
appearing in bits 16—20 of the instruction encoding and the low-order 5 bits in bits 11-15.

For information on SPR encodings (both user- and supervisor-level), see Chapter 8,
“Instruction Set.”

NOTE: There are additional SPRs specific to each implementation; for implementation-
specific SPRs, see the user’'s manual for your particular processor.
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4.4.3 Memory Control Instructions—OEA
Memory control instructions include the following types of instructions:

» Cache management instructions (supervisor-level and user-level)
* Segment register manipulation instructions
» Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. See Section 4.3.3,
“Memory Control Instructions—VEA,” for more information about user-level cache
management instructions.

4.4.3.1 Supervisor-Level Cache Management Instruction

Table 4-37 summarizes the operation of the only supervisor-level cache management
instruction. See Section 4.3.3.1, “User-Level Cache Instructions—VEA,” for cache
instructions that provide user-level programs the ability to manage the on-chip caches.

NOTE: Any cache control instruction that generates an effective address that
corresponds to a direct-store segment (segment descriptor[T] = 1) is treated as a
no-op..
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Table 4-37. Cache Management Supervisor-Level Instruction

Operand

Name |Mnemonic Syntax Operation
Data dchi rArB The EA is the sum (rA|0) + (rB).
glacklle The action taken depends on the memory mode associated with the target, and
In\c/J:Iidate the state (modified, unmodified) of the cache block. The following list describes

the action to take if the cache block containing the byte addressed by the EA is or
is not in the cache.

e Coherency required (WIM = xx1)

— Unmodified cache block—Invalidates copies of the cache block in the
caches of all processors.

— Modified cache block—Invalidates the copy of the cache block in the
cache of the processor where the block is found. (there can only be one
modified block). The modified contents are discarded.

— Absent cache block—If copies are in the caches of any other processor,
causes the copies to be invalidated. (Discards any modified contents.)

¢ Coherency not required (WIM = xx0)

— Unmodified cache block—Invalidates the cache block in the local cache.

— Modified cache block—Invalidates the cache block in the local cache.
(Discards the modified contents.)

— Absent cache block—No action is taken.

When data address translation is enabled, MSR[DT]=1, and the logical (effective)
address has no translation, a data access exception occurs.

The function of this instruction is independent of the write-through and cache-
inhibited/allowed modes determined by the WIM bit settings of the block
containing the byte addressed by the EA.

This instruction is treated as a store to the addressed byte with respect to
address translation and protection, except that the change bit need not be set,
and if the change bit is not set then the reference bit need not be set.

4.4.3.2 Segment Register Manipulation Instructions

The instructions listed in Table 4-38 provide access to the segment registers segments 0
through 15. These instructions operate completely independently of the MSR[IR] and
MSRI[DR] bit settings. Refer to Section 2.3.17, “Synchronization Requirements for Special
Registers and for Lookaside Buffers,” for serialization requirements and other
recommended precautions to observe when manipulating the segment registers.
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Table 4-38. Segment Register Manipulation Instructions

Name Mnemonic Operand Operation
Syntax

Move to Segment mtsr SR,rS The contents of rS are placed into segment register specified by
Register operand SR.

This is a supervisor-level instruction.
Move to Segment mtsrin S,rB The contents of rS are copied to the segment register selected by bits
Register Indirect 0-3 of rB.

This is a supervisor-level instruction.
Move from Segment | mfsr r D,SR The contents of the segment register specified by operand SR are
Register placed into rD.

This is a supervisor-level instruction.
Move from Segment | mfsrin r D,rB The contents of the segment register selected by bits 0-3 of rB are
Register Indirect copied into rD.

This is a supervisor-level instruction.

4.4.3.3 Translation Lookaside Buffer Management Instructions

The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTEs) used by PowerPC processors to locate the logical-to-physical address
mapping for a particular access. These segment descriptors and PTEs reside in segment
registers and page tables in memory, respectively.

For performance reasons, many processors implement one or more translation lookaside
buffers on-chip. These are buffers (caches) that cache a portion of the page frame table. As
changes are made to the address translation tables, it is necessary to maintain coherency
between the TLB and the updated tables. This is done by invalidating TLB entries, or
occasionally by invalidating the entire TLB, and allowing the translation caching
mechanism to refetch from the tables.

Each PowerPC implementation that has a TLB provides means for invalidating an
individual TLB entry and/or invalidating the entire TLB.
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Refer to Chapter 7, “Memory Management,” for more information about TLB operation.
Table 4-39 summarizes the operation of the SLB and TLB instructions.

Table 4-39. Translation Lookaside Buffer Management Instructions

Operand

Name Mnemonic
Syntax

Operation

TLB tlbie rB The EA is the contents of rB. If the TLB contains an entry corresponding to the
Invalidate EA, that entry is removed from the TLB. The TLB search is performed

Entry regardless of the settings of MSR[IR] and MSR[DR]. Block address translation
for the EA, if any, is ignored.

This instruction causes the target TLB entry to be invalidated in all processors.

The operation performed by this instruction is treated as a caching inhibited
and guarded data access with respect to the ordering performed by eieio.

This is a supervisor-level instruction and optional in the PowerPC architecture.

TLB tibia — All TLB entries are made invalid. The TLB is invalidated regardless of the
Invalidate All settings of MSR[IR] and MSR[DR].

This instruction does not cause the entries to be invalidated in other
processors.

This is a supervisor-level instruction and optional in the PowerPC architecture.

TLB tibsync — Executing a tlbsync instruction ensures that all tlbie instructions previously
Synchronize executed by the processor executing the tlbsync instruction have completed
on all processors.

The operation performed by this instruction is treated as a caching inhibited
and guarded data access with respect to the ordering performed by eieio.

This is a supervisor-level instruction and optional in the PowerPC architecture.

Because the presence and exact semantics of the translation lookaside buffer management
instructions is implementation-dependent, system software should incorporate uses of the
instruction into subroutines to minimize compatibility problems.
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Chapter 5. Cache Model and Memory
Coherency

This chapter summarizes the cache model as defined by the virtual enviro
architecture (VEA) as well as the built-in architectural controls for maintaining mer“
coherency. This chapter describes the cache control instructions and special concerns Tor
memory coherency in single-processor and multiprocessor systems. Aspects [jlthe

operating environment architecture (OEA) as they relate to the cache model and m v oY
coherency are also covered. 5

The PowerPC architecture provides for relaxed memory coherency. Features such as write-
back caching and out-of-order execution allow software engineers to exploit the
performance benefits of weakly-ordered memory access. The architecture also provides the
means to control the order of accesses for order-critical operations.

In this chapter, the term multiprocessor is used in the context of maintaining cache
coherency. In this context, a system could include other devices that access system memory,
maintain independent caches, and function as bus masters.

Each cache management instruction operates on an aligned unit of memory. The VEA
defines this cacheable unit as a block. Since the term ‘block’ is easily confused with the unit
of memory addressed by the block address translation (BAT) mechanism, this chapter uses
the term ‘cache block’ to indicate the cacheable unit. The size of the cache block can vary
by instruction and by implementation. In addition, the unit of memory at which coherency

is maintained is called the coherence block. The size of the coherence block is also
implementation-specific. However, the coherence block is often the same size as the cache
block.

5.1 The Virtual Environment

The user instruction set architecture (UISA) relies upon a memory spac?@ bf/s for
applications. The VEA expands upon the memory model by introducing virtual memory,
caches, and shared memory multiprocessing. Although many applications will not neo
access the features introduced by the VEA, it is important that programmers are awarelat
they are working in a virtual environment where the physical memory may be shared by
multiple processes running on one or more processors.
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This section describes load and store ordering, atomicity, the cache model, memory
coherency, and the VEA cache management instructions. The features of the VEA are
accessible to both user-level and supervisor-level applications (referred to as problem state
and privileged state, respectively, in the architecture specification).

The mechanism for controlling the virtual memory space is defined by the OEA. The
features of the OEA are accessible to supervisor-level applications only (typically operating
systems). For more information on the address translation mechanism, refer to Chapter 7,
“‘Memory Management.”

5.1.1 Memory Access Ordering

The VEA specifies a weakly consistent memory model for shared memory multiprocessor
systems. This model provides an opportunity for significantly improved performance over

a model that has stronger consistency rules, but places the responsibility for access ordering
on the programmer. When a program requires strict access ordering for proper execution,
the programmer must insert the appropriate ordering or synchronization instructions into
the program.

The order in which the processor performs memory accesses, the order in which those
accesses complete in memory, and the order in which those accesses are viewed as
occurring by another processor may all be different. A means of enforcing memory access
ordering is provided to allow programs (or instances of programs) to share memory. Similar
means are needed to allow programs executing on a processor to share memory with some
other mechanism, such as an 1/0O device, that can also access memory.

Various facilities are provided that enable programs to control the order in which memory
accesses are performed by separate instructions. First, if separate store instructions access
memory that is designated as both caching-inhibited and guarded, the accesses are
performed in the order specified by the program. Refer to Section 5.1.4, “Memory
Coherency,” and Section5.2.1, “Memory/Cache Access Attributes,” for a complete
description of the caching-inhibited and guarded attributes. Additionally, two instructions,
eieio andsync are provided that enable the program to control the order in which the
memory accesses caused by separate instructions are performed.

No ordering should be assumed among the memory accesses caused by a single instruction
(that is, by an instruction for which multiple accesses are not atomic), and no means are
provided for controlling that order. Chapter 4, “Addressing Modes and Instruction Set
Summary,” contains additional information about $lgacandeieioinstructions.

5.1.1.1 Enforce In-Order Execution of I/O Instruction

Theeieioinstruction permits the program to control the order in which loads and stores are
performed when the accessed memory has certain attributes, as described in Chapter 8,
“Instruction Set.” For example&ieiocan be used to ensure that a sequence of load and store
operations to an I/O device’s control registers updates those registers in the desired order.
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Theeieioinstruction can also be used to ensure that all stores to a shared data structure are
visible to other processors before the store that releases the lock is visible to them.

The eieio instruction may complete before memory accesses caused by instructions
preceding theeieio instruction have been performed with respect to system memory or
coherent storage as appropriate.

If stronger ordering is desired, tegncinstruction must be used.

5.1.1.2 Synchronize Instruction
When a portion of memory that requires coherency must be forced to a known state, it is

necessary to synchronize memory with respect to other processors and mechanis |
synchronization is accomplished by requiring programs to indicate explicitly irﬁ
instruction stream, by insertingsync instruction, that synchronization is required. O
whensynccompletes are the effects of all coherent memory accesses previously executed

by the program guaranteed to have been performed with respect to all other processors and
mechanisms that access those locations coherently.

Thesyncinstruction ensures that all the coherent memory accesses, initiated by a program,
have been performed with respect to all other processors and mechanisms that access the
target locations coherently, before its next instruction is executed. A program can use this
instruction to ensure that all updates to a shared data structure, accessed coherently, are
visible to all other processors that access the data structure coherently, before executing a
store that will release a lock on that data structure. Execution afytheinstruction does

the following:

» Performs the functions described for #cinstruction in Section 4.2.6, “Memory
Synchronization Instructions—UISA."

» Ensuresthat consistency operations, and the effeatbipticbz, dcbst, dcbf, dcba,
anddcbi instructions previously executed by the processor execsymg have
completed on such other processors as the memory/cache access attributes of the
target locations require.

» Ensures that TLB invalidate operations previously executed by the processor
executing thesynchave completed on that processor. Bigacinstruction does not
wait for such invalidates to complete on other processors.

* Ensures that memory accesses due to instructions previously executed by the
processor executing tieyncare recorded in the R and C bits in the page table and
that the new values of those bits are visible to all processors and mechanisms; refer
to Section 7.5.3, “Page History Recording.”

The sync instruction is execution synchronizing. It is not context synchronizing, and
therefore need not discard prefetched instructions.
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For memory that does not require coherency, ghec instruction operates as described
above except that its only effect on memory operations is to ensure that all previous
memory operations have completed, with respect to the processor executisgnthe
instruction, to the level of memory specified by the memory/cache access attributes
(including the updating of R and C bits).

5.1.2 Atomicity

An access is atomic if it is always performed in its entirety with no visible fragmentation.
Atomic accesses are thus serialized—each happens in its entirety in some order, even when
that order is neither specified in the program nor enforced between processors.

Only the following single-register accesses are guaranteed to be atomic:

» Byte accesses (all bytes are aligned on byte boundaries)
» Half-word accesses aligned on half-word boundaries
* Word accesses aligned on word boundaries

No other accesses are guaranteed to be atomic. In particular, the accesses caused by the
following instructions are not guaranteed to be atomic:

* Load and store instructions with misaligned operands
o Imw, stmw, Iswi, Iswx, stswi, or stswxinstructions

» Floating-point double-word accesses

* Any cache management instructions

The lwarx/stwcx. instruction combination can be used to perform atomic memory
references. Thivarx instruction is a load from a word-aligned location that has two side
effects:

1. Areservation for a subsequehivcx. instruction is created.

2. The memory coherence mechanism is notified that a reservation exists for the
memory location accessed by tharx.

The stwcx. instruction is a store to a word-aligned location that is conditioned on the
existence of the reservation createdwsrx and on whether the same memory location is
specified by both instructions and whether the instructions are issued by the same
processor.

NOTE: When a reservation is made to a word in memory bywhex instruction, an
address is saved and a reservation is set. Both of these are necessary for the
memory coherence mechanism, however, some processors do not implement the
address compare for tisewvcx. instruction. Only the reservation need be
established in order for tretwcx. to be successful. This requires that exception
handlers clear reservations if control is passed to another program. Programmers
should read the specifications for each individual processor.
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In a multiprocessor system, every processor (other than the one exeevaimxgstwcx.)

that might update the location must configure the addressed page as memory coherency
required. Thelwarx/stwcx. instructions function in caching-inhibited, as well as in
caching-allowed, memory. If the addressed memory is in write-through mode, it is
implementation-dependent whether these instructions function correctly or cause the DSI
exception handler to be invoked.

NOTE: Exceptions are referred to as interrupts in the architecture specification.

The Iwarx/stwex. instruction combination is described in Section 4.2.6, “Memory
Synchronization Instructions—UISA,” and Chapter 8, “Instruction Set.”

5.1.3 Cache Model

The PowerPC architecture does not specify the type, organization, implementation, or even
the existence of a cache. The standard cache model has separate instruction and data caches,
also known as a Harvard cache model. However, the architecture allows for many different
cache types. Some implementations will have a unified cache (where there is a single cache
for both instructions and data). Other implementations may not have a cache at all.

The function of the cache management instructions depends on the implementation of the

cache(s) and the setting of the memory/cache access modes. For a program to execute
properly on all implementations, software should use the Harvard model. In cases where a

processor is implemented without a cache, the architecture guarantees that instructions
affecting the nonimplemented cache will not halt execution.

NOTE: dcbz may cause an alignment exception on some implementations. For example,
a processor with no cache may treat a cache instruction as a no-op. Or, a
processor with a unified cache may treati¢he instruction as a no-op. In this
manner, programs written for separate instruction and data caches will run on all
compliant implementations.

5.1.4 Memory Coherency

The primary objective of a coherent memory system is to provide the same image of
memory to all devices using the system. The VEA and OEA define coherency controls that
facilitate synchronization, cooperative use of shared resources, and task migration among
processors. These controls include the memory/cache access attribusyscthedeieio
instructions, and thévarx/stwcx. instruction pair. Without these controls, the processor
could not support a weakly-ordered memory access model.

A strongly-ordered memory access model hinders performance by requiring excessive
overhead, particularly in multiprocessor environments. For example, a processor

performing a store operation in a strongly-ordered system requires exclusive access to an
address before making an update, to prevent another device from using stale data.
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The VEA defines a page as a unit of memory for which protection and control attributes are
independently specifiable. The OEA (supervisor level) specifies the size of a page as
4 Kbytes.

NOTE: The VEA (user level) does not specify the page size.

5.1.4.1 Memory/Cache Access Modes

The OEA defines the set of memory/cache access modes and the mechanism to implement
these modes. Refer to Section 5.2.1, “Memory/Cache Access Attributes,” for more
information. However, the VEA specifies that at the user level, the operating system can be
expected to provide the following attributes for each page of memory:

*  Write-through or write-back

Caching-inhibited or caching-allowed
* Memory coherency required or memory coherency not required
» Guarded or not guarded

User-level programs specify the memory/cache access attributes through an operating
system service.

5.1.4.1.1 Pages Designated as Write-Through

When a page is designated as write-through, store operations update the data in the cache
and also update the data in main memory. The processor writes to the cache and through to
main memory. Load operations use the data in the cache, if it is present.

In write-back mode, the processor is only required to update data in the cache. The
processor may (but is not required to) update main memory. Load and store operations use
the data in the cache, if it is present. The data in main memory does not necessarily stay
consistent with that same location’s data in the cache. Many implementations automatically
update main memory in response to a memory access by another device (for example, a
snoop hit). In addition, thecbst anddcbf instructions can be used to explicitly force an
update of main memory.

The write-through attribute is meaningless for locations designated as caching-inhibited.

5.1.4.1.2 Pages Designated as Caching-Inhibited

When a page is designated as caching-inhibited, the processor bypasses the cache and
performs load and store operations to main memory. When a page is designated as caching-
allowed, the processor uses the cache and performs load and store operations to the cache
or main memory depending on the other memory/cache access attributes for the page.

It is important that all locations in a page are purged from the cache prior to changing the
memory/cache access attribute for the page from caching-allowed to caching-inhibited. It
Is considered a programming error if a caching-inhibited memory location is found in the
cache. Software must ensure that the location has not previously been brought into the
cache, or, if it has, that it has been flushed from the cache. If the programming error occurs,
the result of the access is boundedly undefined.
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5.1.4.1.3 Pages Designated as Memory Coherency Required

When a page is designated as memory coherency required, store operations to that location
are serialized with all stores to that same location by all other processors that also access
the location coherently.This can be implemented, for example, by an ownership protocol
that allows at most one processor at a time to store to the location. Moreover, the current
copy of a cache block that is in this mode may be copied to main storage any number of
times, for example, by successa@bst instructions.

Coherency does not ensure that the result of a store by one processor is visible immediately
to all other processors and mechanisms. Only after a program has executgghthe
instruction are the previous storage accesses it executed guaranteed to have been performed

with respect to all other processors and mechanisms.
5.1.4.1.4 Pages Designated as Memory Coherency Not Required

For a memory area that is configured such that coherency is not required, software must
ensure that the data cache is consistent with main storage before changing the mode or
allowing another device to access the area.

Executing adcbstor dcbf instruction specifying a cache block that is in this mode causes
the block to be copied to main memory if and only if the processor modified the contents
of a location in the block and the modified contents have not been written to main memory.

In a single-cache system, correct coherent execution may likely not require memory
coherency; therefore, using memory coherency not required mode improves performance.

5.1.4.1.5 Pages Designated as Guarded

The guarded attribute pertains to out-of-order execution. Refer to Section 5.2.1.5.3, “Out-
of-Order Accesses to Guarded Memory,” for more information about out-of-order
execution.

When a page is designated as guarded, instructions and data cannot be accessed out of
order. Additionally, if separate store instructions access memory that is both caching-
inhibited and guarded, the accesses are performed in the order specified by the program.
When a page is designated as not guarded, out-of-order fetches and accesses are allowed.

Guarded pages are traditionally used for memory-mapped I/O devices.
5.1.4.2 Coherency Precautions

Mismatched memory/cache attributes cause coherency paradoxes in both single-processor
and multiprocessor systems. When the memory/cache access attributes are changed, it is
critical that the cache contents reflect the new attribute settings. For example, if a block or
page that had allowed caching becomes caching-inhibited, the appropriate cache blocks
should be flushed to leave no indication that caching had previously been allowed.

Although coherency paradoxes are considered programming errors, specific

implementations may attempt to handle the offending conditions and minimize the negative

effects on memory coherency. Bus operations that are generated for specific instructions
and state conditions are not defined by the architecture.
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5.1.5 VEA Cache Management Instructions

The VEA defines instructions for controlling both the instruction and data caches. For
iImplementations that have a unified instruction/data cache, instruction cache control
instructions are valid instructions, but may function differently.

NOTE: Any cache control instruction that generates an EA that corresponds to a direct-
store segment (SR[T] =1) is treated as a no-op. However, the direct-store facility
Is being phased out of the architecture and will not likely be supported in future
devices. Thus, software should not depend on its effects.

This section briefly describes the cache management instructions available to programs at
the user privilege level. Additional descriptions of coding the VEA cache management
instructions is provided in Chapter 4, “Addressing Modes and Instruction Set Summary,”
and Chapter 8, “Instruction Set.” In the following instruction descriptions, the target is the
cache block containing the byte addressed by the effective address.

5.1.5.1 Data Cache Instructions

Data caches and unified caches must be consistent with other caches (data or unified),
memory, and I/O data transfers. To ensure consistency, aliased effective addresses (two
effective addresses that map to the same physical address) must have the same page offset.

NOTE: Physical address is referred to as real address in the architecture specification.

5.1.5.1.1 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst) Instructions

These instructions provide a method for improving performance through the use of
software-initiated prefetch hints. However, these instructions do not guarantee that a cache
block will be fetched.

A program uses thdcbt instruction to request a cache block fetch before it is needed by
the program. The program can then use the data from the cache rather than fetching from
main memory.

Thedcbtstinstruction behaves similarly to tlgebt instruction. A program usedcbtst to
request a cache block fetch to guarantee that a subsequent store will be to a cached location.

The processor does not invoke the exception handler for translation or protection violations
caused by either of the touch instructions. Additionally, memory accesses caused by these
instructions are not necessarily recorded in the page tables. If an access is recorded, then it
Is treated in a manner similar to that of a load from the addressed byte. Some
implementations may not take any action based on the execution of these instructions, or
they may prefetch the cache block corresponding to the EA into their cache. For
information about the R and C bits, see Section 7.5.3, “Page History Recording.”

Bothdcbt anddcbtstare provided for performance optimization. These instructions do not
affect the correct execution of a program, regardless of whether they succeed (fetch the
cache block) or fail (do not fetch the cache block). If the target block is not accessible to
the program for loads, then no operation occurs.
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5.1.5.1.2 Data Cache Block Set to Zero (dcbz) Instruction
Thedcbz instruction clears a single cache block as follows:

* If the target is in the data cache, all bytes of the cache block are cleared.

» Ifthe targetis not in the data cache and the corresponding page is caching-allowed,
the cache block is established in the data cache (without fetching the cache block
from main memory), and all bytes of the cache block are cleared.

» Ifthetargetis designated as either caching-inhibited or write-through, then either all
bytes in main memory that correspond to the addressed cache block are cleared, or
the alignment exception handler is invoked. The exception handler should clear all
the bytes in main memory that correspond to the addressed cache block.

» If the target is designated as coherency required, and the cache block exist
data cache(s) of any other processor(s), it is kept coherent in those caches.

The dcbz instruction is treated as a store to the addressed byte with respect to address
translation, protection, referenced and changed recording, and the ordering enforced by
eieioor by the combination of caching-inhibited and guarded attributes for a page.

Refer to Chapter 6, “Exceptions,” for more information about a possible delayed machine
check exception that can occur by usidgpz when the operating system has set up an
incorrect memory mapping.

5.1.5.1.3 Data Cache Block Store (dcbst) Instruction

The dcbst instruction permits the program to ensure that the latest version of the target
cache block is in main memory. THebst instruction executes as follows:

» Coherency required—If the target exists in the data cache of any processor and has
been modified, the data is written to main memory. Only one processor in a
multiprocessor system should have possession of a modified cache block.

» Coherency not required—If the target exists in the data cache of the executing
processor and has been modified, the data is written to main memory.

The PowerPC architecture does not specify whether the modified status of the cache block
Is left unchanged or is cleared (cleared implies valid-shared or valid-exclusive). That
decision is left to the implementation of individual processors. Either state is logically
correct.

The function of this instruction is independent of the write-through/write-back and
caching-inhibited/caching-allowed attributes of the target.

The memory access caused bgicbst instruction is not necessarily recorded in the page
tables. If the access is recorded, then it is treated as a load operation (not as a store
operation).
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5.1.5.1.4 Data Cache Block Flush (dcbf) Instruction

The action taken depends on the memory/cache access mode associated with the target, and
on the state of the cache block. The following list describes the action taken for the various
cases:

» Coherency required

Unmodified cache block—Invalidates copies of the cache block in the data caches
of all processors.

Modified cache block—Copies the cache block to memory. Invalidates the copy of
the cache block in the data cache of any processor where it is found. There should
only be one modified cache block in a coherency required multiprocessor system.

Target block not in cache—If a modified copy of the cache block is in the data cache
of another processaicbf causes the modified cache block to be copied to memory
and then invalidated. If unmodified copies are in the data caches of other processors,
dcbf causes those copies to be invalidated.

» Coherency not required

Unmodified cache block—Invalidates the cache block in the executing processor's
data cache.

Modified cache block—Copies the data cache block to memory and then invalidates
the cache block in the executing processor.

Target block not in cache—No action is taken.

The function of this instruction is independent of the write-through/write-back and
caching-inhibited/caching-allowed attributes of the target.

The memory access caused byaebf instruction is not necessarily recorded in the page
tables. If the access is recorded, then it is treated as a load operation (not as a store
operation).

5.1.5.2 Instruction-Cache Instructions

Instruction caches, if they exist, are not required to be consistent with data caches, memory,
or I/O data transfers. Software must use the appropriate cache management instructions to
ensure that instruction caches are kept coherent when instructions are modified by the
processor or by input data transfer. When a processor alters a memory location that may be
contained in an instruction cache, software must ensure that updates to memory are visible
to the instruction fetching mechanism. Although the instructions to enforce consistency
vary among implementations, the following sequence for a uniprocessor system is typical:

1. dcbst(update memory)

2. sync(wait for update)

3. ichi (invalidate copy in instruction cache)
4. isync (perform context synchronization)
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NOTE: Most operating systems will provide a system service for this function. These
operations are necessary because the memory may be designated as write-back.
Since instruction fetching may bypass the data cache, changes made to items in
the data cache may not otherwise be reflected in memory until after the
instruction fetch completes.

For implementations used in multiprocessor systems, variations on this sequence may be
recommended. For example, in a multiprocessor system with a unified instruction/data
cache (at any level), if instructions are fetched without coherency being enforced, the
preceding instruction sequence is inadequate. Becauséchheanstruction does not
invalidate blocks in a unified cache dabf instruction should be used instead oflebst

instruction for this case.

5.1.5.2.1 Instruction Cache Block Invalidate (icbi) Instruction
Theicbi instruction executes as follows:

» Coherency required

If the target is in the instruction cache of any processor, the cache block is made
invalid in all such processors, so that the next reference causes the cache block to be
refetched.

» Coherency not required

If the target is in the instruction cache of the executing processor, the cache block is
made invalid in the executing processor so that the next reference causes the cache
block to be refetched.

Theicbi instruction is provided for use in processors with separate instruction and data
caches. The effective address is computed, translated, and checked for protection violations
as defined in Chapter 7, “Memory Management.” If the target block is not accessible to the
program for loads, then a DSI exception occurs.

The function of this instruction is independent of the write-through/write-back and
caching-inhibited/caching-allowed attributes of the target.

The memory access caused byiei instruction is not necessarily recorded in the page
tables. If the access is recorded, then it is treated as a load operation. Implementations that
have a unified cache treat tlobi instruction as a no-op except that they may invalidate the
target cache block in the instruction caches of other processors (in coherency required
mode).
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5.1.5.2.2 Instruction Synchronize (isync) Instruction

The isync instruction provides an ordering function for the effects of all instructions
executed by a processor. Executing iggnc instruction ensures that all instructions
preceding thasync instruction have completed before tisync instruction completes,

except that memory accesses caused by those instructions need not have been performed
with respect to other processors and mechanisms. It also ensures that no subsequent
instructions are initiated by the processor until after iync instruction completes.
Finally, it causes the processor to discard any prefetched instructions, with the effect that
subsequent instructions will be fetched and executed in the context established by the
Instructions preceding thisync instruction. Theasync instruction has no effect on other
processors or on their caches.

5.2 The Operating Environment

The OEA defines the mechanism for controlling the memory/cache access modes
introduced in Section 5.1.4.1, “Memory/Cache Access Modes.” This section describes the
cache-related aspects of the OEA including the memory/cache access attributes, out-of-
order execution, direct-store interface considerations, andihienstruction. The features

of the OEA are accessible to supervisor-level applications only. The mechanism for
controlling the virtual memory space is described in Chapter 7, “Memory Management.”

The memory model of PowerPC processors provides the following features:

» Flexibility to allow performance benefits of weakly-ordered memory access

* A mechanism to maintain memory coherency among processors and between a
processor and I/O devices controlled at the block and page level

* Instructions that can be used to ensure a consistent memory state
» Guaranteed processor access order

The memory implementations in PowerPC systems can take advantage of the performance
benefits of weak ordering of memory accesses between processors or between processors
and other external devices without any additional complications. Memory coherency can
be enforced externally by a snooping bus design, a centralized cache directory design, or
other designs that can take advantage of the coherency features of PowerPC processors.

Memory accesses performed by a single processor appear to complete sequentially from
the view of the programming model but may complete out of order with respect to the
ultimate destination in the memory hierarchy. Order is guaranteed at each level of the
memory hierarchy for accesses to the same address from the same procesdobsthe

dcbf, icbi, isync, syng eieig lwarx, andstwcx. instructions allow the programmer to
ensure a consistent memory state.
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5.2.1 Memory/Cache Access Attributes

Allinstruction and data accesses are performed under the control of the four memory/cache
access attributes:

» Write-through (W attribute)

* Caching-inhibited (I attribute)

* Memory coherency (M attribute)
* Guarded (G attribute)

These attributes are maintained in the PTEs and BATs by the operating system for each
page and block respectively. The W and | attributes control how the processor performing
an access uses its own cache. Thetlibute ensures that coherency is maintained fo

copies of the addressed memory location. When an access requires coherem
processor performing the access must inform the coherency mechanisms throughout the
system that the access requires memory coherency. The G attribute prevents out-of-order
loading and prefetching from the addressed memory location.

NOTE: The memory/cache access attributes are relevant only when an effective address
Is translated by the processor performing the access. Also not all combinations
of settings of these bits is supported. The attributes are not saved along with data
in the cache (for cacheable accesses), nor are they associated with subsequent
accesses made by other processors.

The operating system maintains the memory/cache access attribute for each page or block
as required. The WIMG attributes occupy four bits in the BAT registers for block address
translation and in the PTEs for page address translation. The WIMG bits are defined as
follows:

» The operating system uses théspr instruction to store the WIMG bits in the BAT
registers for block address translation. The IBAT register pairs implement the W or
G bits; however, attempting to set either bit in IBAT registers causes boundedly-
undefined results.

» The operating system stores the WIMG bits for each page into the PTEs in system
memory as it sets up the page tables.

NOTE: For data accesses performed in real addressing mode (MSR[DR] = 0), the
WIMG bits are assumed to be 0b0011 (the data is write-back, caching is enabled,
memory coherency is enforced, and memory is guarded). For instruction
accesses performed in real addressing mode (MSR[IR] = 0), the WIMG bits are
assumed to be 0b0001 (the data is write-back, caching is enabled, memory
coherency is not enforced, and memory is guarded).

Chapter 5. Cache Model and Memory Coherency 5-13



5.2.1.1 Write-Through Attribute (W)

When an access is designated as write-through (W = 1), if the data is in the cache, a store
operation updates the cached copy of the data. In addition, the update is written to the
memory location. The definition of the memory location to be written to (in addition to the
cache) depends on the implementation of the memory system but can be illustrated by the
following examples:

» RAM—The store is sent to the RAM controller to be written into the target RAM.

* 1/O device—The store is sent to the memory-mapped I/O controller to be written to
the target register or memory location.

In systems with multilevel caching, the store must be written to at least a depth in the
memory hierarchy that is seen by all processors and devices.

Multiple store instructions may be combined for write-through accesses except when the
store instructions are separated byyac or eieio instruction. A store operation to a
memory location designated as write-through may cause any part of the cache block to be
written back to main memory.

Accesses that corresporm\V = O areconsidered write-back. For this case, although the
store operation is performed to the cache, the data is copied to memory only when a copy-
back operation is required. Use of the write-back mode (W = 0) can improve overall
performance for areas of the memory space that are seldom referenced by other processors
or devices in the system.

Accesses to the same memory location using two effective addresses for which the W bit
setting differs meet the memory-coherency requirements if the accesses are performed by
a single processor. If the accesses are performed by two or more processors, coherence is
enforced by the hardware only if the write-through attribute is the same for all the accesses.

5.2.1.2 Caching-Inhibited Attribute (1)

If I =1, the memory access is completed by referencing the location in main memory,
bypassing the cache. During the access, the addressed location is not loaded into the cache
nor is the location allocated in the cache.

Itis considered a programming error if a copy of the target location of an access to caching-
inhibited memory is resident in the cache. Software must ensure that the location has not
been previously loaded into the cache, or, if it has, that it has been flushed from the cache.

Data accesses from more than one instruction may be combined for cache-inhibited
operations, except when the accesses are separatedylyg anstruction, or by areieio
instruction when the page or block is also designated as guarded.

Instruction fetchesgcbz instructions, and load and store operations to the same memory
location using two effective addresses for which the | bit setting differs must meet the
requirement that a copy of the target location of an access to caching-inhibited memory not

5-14 PowerPC Microprocessor 32-bit Family: The Programming Environments



be in the cache. Violation of this requirement is considered a programming error; software
must ensure that the location has not previously been brought into the cache or, if it has,
that it has been flushed from the cache. If the programming error occurs, the result of the
access is boundedly undefined. It is not considered a programming error if the target
location of any other cache management instruction to caching-inhibited memory is in the
cache.

5.2.1.3 Memory Coherency Attribute (M)

This attribute is provided to allow improved performance in systems where hardware-
enforced coherency is relatively slow, and software is able to enforce the required
coherency. When M =0, there are no requirements to enforce data coherency. When M =1,
the processor enforces data coherency. 5

When the M attribute is set, and the access is performed to memory, there is a hardware
indication to the rest of the system that the access is global. Other processors affected by

the access must then respond to this global access. For example, in a snooping bus design,
the processor may assert some type of global access signal. Other processors affected by
the access respond and signal whether the data is being shared. If the data in another
processor is modified, then the location is updated and the access is retried.

Because instruction memory does not have to be coherent with data memory, some
implementations may ignore the M attribute for instruction accesses. In a single-processor
(or single-cache) system, performance might be improved by designating all pages as
memory coherency not required.

Accesses to the same memory location using two effective addresses for which the M bit
settings differ may require explicit software synchronization before accessing the location
with M = 1 if the location has previously been accessed with M = 0. Any such requirement

is system-dependent. For example, no software synchronization may be required for
systems that use bus snooping. In some directory-based systems, software may be required
to executalcbf instructions on each processor to flush all storage locations accessed with
M = 0 before accessing those locations with M = 1.

5.2.1.4 W, I, and M Bit Combinations

Table 5-1 summarizes the six combinations of the WIM bits supported by the OEA. The
combinations where WIM = 11x are not supported.

NOTE: Either a zero or one setting for the G bit is allowed for each of these WIM bit
combinations.

Table 5-1. Combinations of W, |, and M Bits

WIM Setting Meaning

000 The processor may cache data (or instructions).
A load or store operation whose target hits in the cache may use that entry in the cache.
The processor does not need to enforce memory coherency for accesses it initiates.

Chapter 5. Cache Model and Memory Coherency 5-15



Table 5-1. Combinations of W, |, and M Bits (Continued)

WIM Setting Meaning

001 Data (or instructions) may be cached.
A load or store operation whose target hits in the cache may use that entry in the cache.
The processor enforces memory coherency for accesses it initiates.

010 Caching is inhibited.
The access is performed to memory, completely bypassing the cache.
The processor does not need to enforce memory coherency for accesses it initiates.

011 Caching is inhibited.
The access is performed to memory, completely bypassing the cache.
The processor enforces memory coherency for accesses it initiates.

100 Data (or instructions) may be cached.

A load operation whose target hits in the cache may use that entry in the cache.

Store operations are written to memory. The target location of the store may be cached and is
updated on a hit.

The processor does not need to enforce memory coherency for accesses it initiates.

101 Data (or instructions) may be cached.

A load operation whose target hits in the cache may use that entry in the cache.

Store operations are written to memory. The target location of the store may be cached and is
updated on a hit.

The processor enforces memory coherency for accesses it initiates.

5.2.1.5 The Guarded Attribute (G)

When the guarded bit is set, the memory area (block or page) is designated as guarded. This
setting can be used to protect certain memory areas from read accesses made by the
processor that are not dictated directly by the program. If there are areas of physical
memory that are not fully populated (in other words, there are holes in the physical memory
map within this area), this setting can protect the system from undesired accesses caused
by out-of-order load operations or instruction prefetches that could lead to the generation
of the machine check exception. Also, the guarded bit can be used to prevent out-of-order
(speculative) load operations or prefetches from occurring to certain peripheral devices that
produce undesired results when accessed in this way.

5.2.1.5.1 Performing Operations Out of Order

An operation is said to be performed in-order if it is guaranteed to be required by the
sequential execution model. Any other operation is said to be performed out of order.

Operations are performed out of order by the hardware on the expectation that the results
will be needed by an instruction that will be required by the sequential execution model.
Whether the results are really needed is contingent on everything that might divert the
control flow away from the instruction, such as branch, trap, system call,riand
instructions, and exceptions, and on everything that might change the context in which the
instruction is executed.

Typically, the hardware performs operations out of order when it has resources that would
otherwise be idle, so the operation incurs little or no cost. If subsequent events such as
branches or exceptions indicate that the operation would not have been performed in the
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sequential execution model, the processor abandons any results of the operation (except as
described below).

Most operations can be performed out of order, as long as the machine appears to follow
the sequential execution model. Certain out-of-order operations are restricted, as follows.

e Stores

A store instruction may not be executed out of order in a manner such that the
alteration of the target location can be observed by other processors or mechanisms.

» Accessing guarded memory

The restrictions for this case are given in Section 5.2.1.5.3, “Out-of-Order Acc
to Guarded Memory.” ﬁ

No error of any kind other than a machine check exception may be reported due to an
operation that is performed out of order, until such time as it is known that the operation is
required by the sequential execution model. The only other permitted side effects (other
than machine check) of performing an operation out of order are the following:

» Referenced and changed bits may be set as described in Section 7.2.5, “Page History
Information.”

* Nonguarded memory locations that could be fetched into a cache by in-order
execution may be fetched out of order into that cache.

5.2.1.5.2 Guarded Memory

Memory is said to be well behaved if the corresponding physical memory exists and is not
defective, and if the effects of a single access to it are indistinguishable from the effects of
multiple identical accesses to it. Data and instructions can be fetched out of order from
well-behaved memory without causing undesired side effects.

Memory is said to be guarded if either (a) the G bit is 1 in the relevant PTE or DBAT
register, or (b) the processor is in real addressing mode (M3R[(For MSR[DR] = O for
instruction fetches or data accesses respectively). In case (b), all of memory is guarded for
the corresponding accesses. In general, memory that is not well-behaved should be
guarded. Because such memory may represent an I/O device or may include locations that
do not exist, an out-of-order access to such memory may cause an I/O device to perform
incorrect operations or may result in a machine check.

NOTE: If separate store instructions access memory that is both caching-inhibited and
guarded, the accesses are performed in the order specified by the program. If an
aligned, elementary load or store to caching-inhibited, guarded memory has
accessed main memory and an external, decrementer, or imprecise-mode
floating-point enabled exception is pending, the load or store is completed before
the exception is taken.
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5.2.1.5.3 Out-of-Order Accesses to Guarded Memory
The circumstances in which guarded memory may be accessed out of order are as follows:

e Load instruction

If a copy of the target location is in a cache, the location may be accessed in the
cache or in main memory.

e Instruction fetch

In real addressing mode (MSRJ[IR] = 0), an instruction may be fetched if any of the
following conditions is met:

— The instruction is in a cache. In this case, it may be fetched from that cache.

— The instruction is in the same physical page as an instruction that is required by
the sequential execution model or is in the physical page immediately following
such a page.

If MSR[IR] = 1, instructions may not be fetched from either no-execute segments or
guarded memory. If the effective address of the current instruction is mapped to
either of these kinds of memory when MSR[IR] = 1, an ISI exception is generated.
However, it is permissible for an instruction from either of these kinds of memory
to be in the instruction cache if it was fetched into that cache when its effective
address was mapped to some other kind of memory. Thus, for example, the
operating system can access an application's instruction segments as no-execute
without having to invalidate them in the instruction cache.

Additionally, instructions are not fetched from direct-store segments (only applies
when MSR[IR] = 1). If aninstruction fetch is attempted from a direct-store segment,
an ISI exception is generated.

NOTE: The direct-store facility is being phased out of the architecture and will not likely
be supported in future devices. Thus, software should not depend on its effects.

Software should ensure that only well-behaved memory is loaded into a cache, either by
marking as caching-inhibited (and guarded) all memory that may not be well-behaved, or
by marking such memory caching-allowed (and guarded) and referring only to cache
blocks that are well-behaved.

If a physical page contains instructions that will be executed in real addressing mode
(MSR[IR] = 0), software should ensure that this physical page and the next physical page
contain only well-behaved memory.
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5.2.2 1/0O Interface Considerations
The PowerPC architecture defines two mechanisms for accessing 1/O:

* Memory-mapped I/O interface operations where SR[T] = 0. These operations are
considered to address memory space and are therefore subject to the same coherency
control as memory accesses. Depending on the specific I/O interface, the
memory/cache access attributes (WIMG) and the degree of access ordering
(requiringeieioor syncinstructions) need to be considered. This is the
recommended way of accessing I/O.

» Direct-store segment operations where SR[T] = 1. These operations are considered
to address the noncoherent and noncacheable direct-store segment space; therefore,
hardware need not maintain coherency for these operations, and the cache -
bypassed completely. Although the architecture defines this direct-store S5
functionality, it is being phased out of the architecture and will not likely be
supported in future devices. Thus, its use is discouraged, and new software should
not use it or depend on its effects.

5.2.3 OEA Cache Management Instruction—
Data Cache Block Invalidate (dcbi)

As described in Section 5.1.5, “WEA Cache Management Instructions,” the VEA defines
instructions for controlling both the instruction and data caches, The OEA defines one
instruction, the data cache block invalidatilfi) instruction, for controlling the data
cache. This section briefly describes the cache management instruction available to
programs at the supervisor privilege level. Additional descriptions of codingithe
instruction are provided in Chapter 4, “Addressing Modes and Instruction Set Summary,”
and Chapter 8, “Instruction Set.” In the following description, the target is the cache block
containing the byte addressed by the effective address.

Any cache management instruction that generates an EA that corresponds to a direct-store
segment (SR[T] = 1) is treated as a no-op.

NOTE: The direct-store facility is being phased out of the architecture and will not likely
be supported in future devices. Thus, software should not depend on its effects.

The action taken depends on the memory/cache access mode associated with the target, and
on the state of the cache block. The following list describes the action taken for the various
cases:

» Coherency required

Unmodified cache block—Invalidates copies of the cache block in the data caches
of all processors.

Modified cache block—Invalidates the copy of the cache block in the data cache of
the processor where it is found. (Discards the modified data in the cache block.)
There can only be one modified cache block in a coherency required system.
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Target block not in cache—If copies of the target are in the data caches of other
processorsjchi causes those copies to be invalidated, regardless of whether the data
Is modified (see modified cache block above) or unmodified.

» Coherency not required

Unmodified cache block—Invalidates the cache block in the executing processor's
data cache.

Modified cache block—Invalidates the cache block in the executing processor's data
cache. (Discards the modified data in the cache block.)

Target block not in cache—No action is taken.

The processor treats tliebi instruction as a store to the addressed byte with respect to
address translation and protection. It is not necessary to set the referenced and changed bits.

The function of this instruction is independent of the write-through/write-back and
caching-inhibited/caching-allowed attributes of the target. To ensure coherency, aliased
effective addresses (two effective addresses that map to the same physical address) must
have the same page offset.
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Chapter 6. EXxceptions

The operating environment architecture (OEA) portion of the PowerPC architecture defines
the mechanism by which PowerPC processors implement exceptions (referred ta_as
interrupts in the architecture specification). Exception conditions may be defined at r
levels of the architecture. For example, the user instruction set architecture (UISA) defines

conditions that may cause floating-point exceptions; the OEA defines the mechar‘“

which the exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the floating-point status and control register
(FPSCR). Additionally, certain exception conditions can be explicitly enabled or disabled
by software.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction-
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentially.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until all instructions currently in the execute stage successfully
complete execution and report their results.

NOTE: Exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested. It is up to the exception handler to save
the appropriate machine state if it is desired to allow control to ultimately return
to the excepting program.

In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the
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next exception condition is encountered. This method of recognizing and handling
exception conditions sequentially guarantees that the machine state is recoverable and
processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the information
stored in SRRO and SRR1 soon after the exception is taken to prevent this information from
being lost due to another exception being taken.

In this chapter, the following terminology is used to describe the various stages of exception

processing:
Recognition Exception recognition occurs when the condition that can cause an
exception is identified by the processor.
Taken An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the context is
“ saved and the instruction at the appropriate vector offset is fetched

and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervisor
mode (referred to as privileged state in the architecture
specification).
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6.1 Exception Classes

As specified by the PowerPC architecture, all exceptions can be described as either precise
or imprecise and either synchronous or asynchronous. Asynchronous exceptions are caused
by events external to the processor’s execution; synchronous exceptions are caused by
instructions.

The PowerPC exception types are shown in Table 6-1.

Table 6-1. PowerPC Exception Classifications

Type Exception

Asynchronous/nonmaskable Machine Check
System Reset

Asynchronous/maskable External interrupt

Synchronous/Precise Instruction-caused exceptions, excluding floating-
point imprecise exceptions

Synchronous/Imprecise Instruction-caused imprecise exceptions
(Floating-point imprecise exceptions)

Exceptions, their offsets, and conditions that cause them, are summarized in Table 6-2. The
exception vectors described in the table correspond to physical address locations,
depending on the value of MSR[IP]. Refer to Section 7.2.1.2, “Predefined Physical
Memory Locations,” for a complete list of the predefined physical memory areas.
Remaining sections in this chapter provide more complete descriptions of the exceptions
and of the conditions that cause them.
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Table 6-2. Exceptions and Conditions—Overview

Exception
Type

Vector Offset
(hex)

Causing Conditions

System reset

00100

The causes of system reset exceptions are implementation-dependent. If the
conditions that cause the exception also cause the processor state to be corrupted
such that the contents of SRRO and SRR1 are no longer valid or such that other
processor resources are so corrupted that the processor cannot reliably resume
execution, the copy of the RI bit copied from the MSR to SRR1 is cleared.

Machine
check

00200

The causes for machine check exceptions are implementation-dependent, but
typically these causes are related to conditions such a