
G522-0290-01
02/21/2000

PowerPC TM Microprocessor Family:

The Programming Environments
for 32-Bit Microprocessors

ii PowerPC Microprocessor 32-bit Family: The Programming Environments

1

© IBM 2000
Portions hereof © Motorola Inc. 2000. All rights reserved.

This document contains information on a new product under development by IBM. IBM reserve the right to change or discontinue this product
without notice. Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors.
There are no express or implied copyright or patent licenses granted hereunder by IBM to design, modify the design of, or fabricate circuits
based on the information in this document.

The PowerPC microprocessor family embodies the intellectual property of IBM. However, IBM does not assume any responsibility or liability as
to any aspects of the performance, operation, or other attributes of the microprocessor as marketed by the other party or by any third party. IBM
has neither assumed, created, or granted hereby any right or authority to any third party to assume or create any express or implied obligations
on its behalf. Information such as data sheets, as well as sales terms and conditions such as prices, schedules, and support, for the product
may vary as between parties selling the product. Accordingly, customers wishing to learn more information about the products as marketed by
a given party should contact that party.

IBM reserves the right to modify this manual and/or any of the products as described herein without further notice. NOTHING IN THIS MANUAL,
NOR IN ANY OF THE ERRATA SHEETS, DATA SHEETS, AND OTHER SUPPORTING DOCUMENTATION, SHALL BE INTERPRETED AS
THE CONVEYANCE BY IBM AN EXPRESS WARRANTY OF ANY KIND OR IMPLIED WARRANTY, REPRESENTATION, OR GUARANTEE
REGARDING THE MERCHANTABILITY OR FITNESS OF THE PRODUCTS FOR ANY PARTICULAR PURPOSE . IBM does not assume any
liability or obligation for damages of any kind arising out of the application or use of these materials. Any warranty or other obligations as to the
products described herein shall be undertaken solely by the marketing party to the customer, under a separate sale agreement between the
marketing party and the customer. In the absence of such an agreement, no liability is assumed by IBM or the marketing party for any damages,
actual or otherwise.

“Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals,” must be validated for each customer
application by customer’s technical experts. IBM does not convey any license under their respective intellectual property rights nor the rights of
others. IBM makes no claim, warranty, or representation, express or implied, that the products described in this manual are designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain
life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. Should
customer purchase or use the products for any such unintended or unauthorized application, customer shall indemnify and hold IBM and its
respective officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that IBM was negligent regarding the design or manufacture of the part.

IBM and IBM logo are registered trademarks, and IBM Microelectronics is a trademark of International Business Machines Corp. The PowerPC
name, PowerPC logotype, PowerPC 601, PowerPC 603, PowerPC 604 and PowerPC 604e are trademarks of International Business Machines
Corp. International Business Machines Corp. is an Equal Opportunity/Affirmative Action Employer.

International Business Machines Corporation:
IBM Microelectronics Division
1580 Route 52, Bldg. 504
Hopewell Junction, NY 12533-6531;

WWW Addresses :
http://www.chips.ibm.com/products/powerpc/
http://www.ibm.com/

0

2

3

4

5

6

7

8

A

B

C

D

E

F

GLO

INDEX

1

About This Book

Chapter 1.Overview

Chapter 2.PowerPC Register Set

Chapter 3.Operand Conventions

Chapter 4. Addressing Modes and
Instruction Set Summary

Chapter 5.Cache Model and Memory
Coherency

Chapter 6.Exceptions

Chapter 8.Instruction Set

Chapter 7.Memory Management

Appendix A. PowerPC Instruction
Set Listings

Appendix B.POWER Architecture
Cross Reference
Appendix C.Multiple-Precision
Shifts

Appendix D.Floating-Point Models

Appendix E.Synchronization Pro-
gramming Examples

Appendix F.Simplified Mnemonics

Glossary of Terms and Abbrevia-
tions

Index

iv PowerPC Microprocessor 32-bit Family: The Pro-
gramming Environments

0

1

2

3

4

5

6

7

8

A

B

C

D

E

F

GLO

INDEX

About This Book

Chapter 1.Overview

Chapter 2.PowerPC Register Set

Chapter 3.Operand Conventions

Chapter 4. Addressing Modes and Instruction Set

Chapter 5.Cache Model and Memory Coherency

Chapter 6.Exceptions

Chapter 8.Instruction Set

Chapter 7.Memory Management

Appendix A. PowerPC Instruction Set Listings

Appendix B.POWER Architecture Cross Reference

Appendix C.Multiple-Precision Shifts

Appendix D.Floating-Point Models

Appendix E.Synchronization Programming Examples

Appendix F.Simplified Mnemonics

Glossary of Terms and Abbreviations

Index

PowerPC Microprocessor 32-bit Family: The Programming Environments v

Table of Contents

Table of Contents- v
List of Tables - xvi
List of Figures - xxi

 About This Book
Audience - xxvii
Organization - xxvii
Suggested Reading - xxviii
General Information - xxviii
PowerPC Documentation - xxix
Conventions - xxxi
Acronyms and Abbreviations - xxxii
Terminology Conventions - xxxv

Chapter 1. Overview
1.1—PowerPC Architecture Overview - 1-2

1.1.1—The 64-Bit PowerPC Architecture and the 32-Bit Subset - 1-4
1.1.2—The Levels of the PowerPC Architecture- - - - - - - - - - - - 1-4
1.1.3—Latitude Within the Levels of the PowerPC Architecture - 1-6
1.1.4—Features Not Defined by the PowerPC Architecture - - - - 1-6

1.2—The PowerPC Architectural Models - 1-7
1.2.1—PowerPC Registers and Programming Model- - - - - - - - - 1-7
1.2.2—Operand Conventions- 1-9

1.2.2.1—Byte Ordering - 1-9
1.2.2.2—Data Organization in Memory and Data Transfers 1-10
1.2.2.3—Floating-Point Conventions- - - - - - - - - - - - - - - 1-10

1.2.3—PowerPC Instruction Set and Addressing Modes - - - - - - 1-10
1.2.3.1—PowerPC Instruction Set - - - - - - - - - - - - - - - - - 1-10
1.2.3.2—Calculating Effective Addresses- - - - - - - - - - - - 1-12

1.2.4—PowerPC Cache Model- 1-12
1.2.5—PowerPC Exception Model - 1-13
1.2.6—PowerPC Memory Management Model- - - - - - - - - - - - - 1-14

1.3—Changes to this Document - 1-15
1.3.1—The Phasing Out of the Direct-store Function- - - - - - - - - 1-15
1.3.2—General Additions to and Refinements of the Architecture 1-15

Chapter 2. PowerPC Register Set
2.1—PowerPC UISA Register Set - 2-1

2.1.1—General-Purpose Registers (GPRs) - - - - - - - - - - - - - - - - 2-3
2.1.2—Floating-Point Registers (FPRs)- - - - - - - - - - - - - - - - - - 2-4
2.1.3—Condition Register (CR) - 2-5

2.1.3.1—Condition Register CR0 Field Definition- - - - - - 2-6
2.1.3.2—Condition Register CR1 Field Definition- - - - - - 2-6
2.1.3.3—Condition Register CRn Field—Compare Instruction 2-7

2.1.4—Floating-Point Status and Control Register (FPSCR)- - - - 2-7
2.1.5—XER Register (XER) - 2-11

vi PowerPC Microprocessor 32-bit Family: The Programming Environments

1

Table of Contents (Continued)

2.1.6—Link Register (LR) - 2-12
2.1.7—Count Register (CTR) - 2-12

2.2—PowerPC VEA Register Set—Time Base - - - - - - - - - - - - - - - - - - 2-13
2.2.1—Reading the Time Base - 2-16
2.2.2—Computing Time of Day from the Time Base - - - - - - - - - 2-16

2.3—PowerPC OEA Register Set - 2-17
2.3.1—Machine State Register (MSR) - - - - - - - - - - - - - - - - - - - 2-20
2.3.2—Processor Version Register (PVR) - - - - - - - - - - - - - - - - 2-23
2.3.3—BAT Registers - 2-24
2.3.4—SDR1 - 2-27
2.3.5—Segment Registers - 2-28
2.3.6—Data Address Register (DAR) - - - - - - - - - - - - - - - - - - - 2-29
2.3.7—SPRG0–SPRG3 - 2-30
2.3.8—DSISR - 2-30
2.3.9—Machine Status Save/Restore Register 0 (SRR0) - - - - - - - 2-31
2.3.10—Machine Status Save/Restore Register 1 (SRR1) - - - - - - 2-31
2.3.11—Floating-Point Exception Cause Register (FPECR) - - - - 2-32
2.3.12—Time Base Facility (TB)—OEA - - - - - - - - - - - - - - - - - 2-32

2.3.12.1—Writing to the Time Base - - - - - - - - - - - - - - - - 2-32
2.3.13—Decrementer Register (DEC) - - - - - - - - - - - - - - - - - - - 2-33

2.3.13.1—Decrementer Operation - - - - - - - - - - - - - - - - - 2-33
2.3.13.2—Writing and Reading the DEC - - - - - - - - - - - - 2-34

2.3.14—Data Address Breakpoint Register (DABR) - - - - - - - - - 2-34
2.3.15—External Access Register (EAR) - - - - - - - - - - - - - - - - - 2-35
2.3.16—Processor Identification Register (PIR) - - - - - - - - - - - - 2-36
2.3.17—Synchronization Requirements for Special

 Registers and for Lookaside Buffers - - - - - - - - - - - - - - - 2-36
Chapter 3. Operand Conventions

3.1—Data Organization in Memory and Data Transfers - - - - - - - - - - - - 3-1
3.1.1—Aligned and Misaligned Accesses- - - - - - - - - - - - - - - - - 3-1
3.1.2—Byte Ordering - 3-2

3.1.2.1—Big-Endian Byte Ordering - - - - - - - - - - - - - - - - 3-2
3.1.2.2—Little-Endian Byte Ordering- - - - - - - - - - - - - - - 3-2

3.1.3—Structure Mapping Examples - 3-3
3.1.3.1—Big-Endian Mapping- 3-4
3.1.3.2—Little-Endian Mapping - - - - - - - - - - - - - - - - - - 3-5

3.1.4—PowerPC Byte Ordering - 3-6
3.1.4.1—Aligned Scalars in Little-Endian Mode - - - - - - - 3-6
3.1.4.2—Misaligned Scalars in Little-Endian Mode - - - - - 3-9
3.1.4.3—Nonscalars - 3-10
3.1.4.4—PowerPC Instruction Addressing in

Little-Endian Mode - 3-10
3.1.4.5—PowerPC Input/Output Data Transfer Addressing

in Little-Endian Mode- - - - - - - - - - - - - - - - - - - 3-11
3.2—Effect of Operand Placement on Performance—VEA - - - - - - - - - - 3-12

3.2.1—Summary of Performance Effects - - - - - - - - - - - - - - - - - 3-12
3.2.2—Instruction Restart - 3-14

PowerPC Microprocessor 32-bit Family: The Programming Environments vii

Table of Contents (Continued)

3.3—Floating-Point Execution Models—UISA - - - - - - - - - - - - - - - - - 3-15
3.3.1—Floating-Point Data Format- 3-16

3.3.1.1—Value Representation - - - - - - - - - - - - - - - - - - - 3-18
3.3.1.2—Binary Floating-Point Numbers - - - - - - - - - - - - 3-19
3.3.1.3—Normalized Numbers (NORM) - - - - - - - - - - - - 3-19
3.3.1.4—Zero Values (0)- 3-20
3.3.1.5—Denormalized Numbers (DENORM) - - - - - - - - 3-20
3.3.1.6—Infinities (±∞) - 3-21
3.3.1.7—Not a Numbers (NaNs) - - - - - - - - - - - - - - - - - - 3-21

3.3.2—Sign of Result - 3-22
3.3.3—Normalization and Denormalization - - - - - - - - - - - - - - - 3-23
3.3.4—Data Handling and Precision - 3-24
3.3.5—Rounding - 3-25
3.3.6—Floating-Point Program Exceptions - - - - - - - - - - - - - - - 3-28

3.3.6.1—Invalid Operation and Zero Divide Exception
Conditions - 3-35

3.3.6.1.1—Invalid Operation Exception Condition 3-37
3.3.6.1.2—Zero Divide Exception Condition - - - - 3-38

3.3.6.2—Overflow, Underflow, and Inexact Exception
Conditions - 3-39

3.3.6.2.1—Overflow Exception Condition - - - - - - 3-41
3.3.6.2.2—Underflow Exception Condition - - - - - 3-42
3.3.6.2.3—Inexact Exception Condition- - - - - - - - 3-43

Chapter 4. Addressing Modes and Instruction Set Summary
4.1—Conventions - 4-2

4.1.1—Sequential Execution Model - 4-2
4.1.2—Computation Modes- 4-3
4.1.3—Classes of Instructions - 4-3

4.1.3.1—Definition of Boundedly Undefined - - - - - - - - - 4-3
4.1.3.2—Defined Instruction Class - - - - - - - - - - - - - - - - 4-3

4.1.3.2.1—Preferred Instruction Forms - - - - - - - - 4-4
4.1.3.2.2—Invalid Instruction Forms - - - - - - - - - - 4-4
4.1.3.2.3—Optional Instructions - - - - - - - - - - - - - 4-4

4.1.3.3—Illegal Instruction Class - - - - - - - - - - - - - - - - - 4-5
4.1.3.4—Reserved Instructions - - - - - - - - - - - - - - - - - - - 4-5

4.1.4—Memory Addressing - 4-6
4.1.4.1—Memory Operands - 4-6
4.1.4.2—Effective Address Calculation - - - - - - - - - - - - - 4-6

4.1.5—Synchronizing Instructions - 4-7
4.1.5.1—Context Synchronizing Instructions - - - - - - - - - 4-7
4.1.5.2—Execution Synchronizing Instructions - - - - - - - - 4-8

4.1.6—Exception Summary- 4-9
4.2—PowerPC UISA Instructions- 4-10

4.2.1—Integer Instructions - 4-10
4.2.1.1—Integer Arithmetic Instructions - - - - - - - - - - - - 4-11
4.2.1.2—Integer Compare Instructions- - - - - - - - - - - - - - 4-14
4.2.1.3—Integer Logical Instructions- - - - - - - - - - - - - - - 4-15

viii PowerPC Microprocessor 32-bit Family: The Programming Environments

1

Table of Contents (Continued)

4.2.1.4—Integer Rotate and Shift Instructions - - - - - - - - - 4-17
4.2.1.4.1—Integer Rotate Instructions - - - - - - - - - 4-18
4.2.1.4.2—Integer Shift Instructions- - - - - - - - - - - 4-19

4.2.2—Floating-Point Instructions- 4-20
4.2.2.1—Floating-Point Arithmetic Instructions - - - - - - - - 4-21
4.2.2.2—Floating-Point Multiply-Add Instructions- - - - - - 4-23
4.2.2.3—Floating-Point Rounding and Conversion

Instructions - 4-24
4.2.2.4—Floating-Point Compare Instructions - - - - - - - - - 4-25
4.2.2.5—Floating-Point Status and Control Register

Instructions - 4-26
4.2.2.6—Floating-Point Move Instructions - - - - - - - - - - - 4-27

4.2.3—Load and Store Instructions - 4-28
4.2.3.1—Integer Load and Store Address Generation - - - - 4-28

4.2.3.1.1—Register Indirect with Immediate Index
Addressing for Integer
Loads and Stores - - - - - - - - - - - - - - - - 4-29

4.2.3.1.2—Register Indirect with Index Addressing
for Integer Loads and Stores - - - - - - - - 4-29

4.2.3.1.3—Register Indirect Addressing for Integer
Loads and Stores - - - - - - - - - - - - - - - - 4-30

4.2.3.2—Integer Load Instructions - - - - - - - - - - - - - - - - - 4-31
4.2.3.3—Integer Store Instructions- - - - - - - - - - - - - - - - - 4-33
4.2.3.4—Integer Load and Store with Byte-Reverse

Instructions - 4-34
4.2.3.5—Integer Load and Store Multiple Instructions - - - 4-35
4.2.3.6—Integer Load and Store String Instructions - - - - - 4-36
4.2.3.7—Floating-Point Load and Store Address Generation 4-36

4.2.3.7.1—Register Indirect (contents) with
Immediate Index Addressing for
Floating-Point Loads and Stores- - - - - - 4-37

4.2.3.7.2—Register Indirect (contents) with Index
Addressing for Floating-Point Loads
and Stores- 4-37

4.2.3.8—Floating-Point Load Instructions- - - - - - - - - - - - 4-38
4.2.3.9—Floating-Point Store Instructions- - - - - - - - - - - - 4-39

4.2.4—Branch and Flow Control Instructions - - - - - - - - - - - - - - 4-41
4.2.4.1—Branch Instruction Address Calculation - - - - - - - 4-41

4.2.4.1.1—Branch Relative Addressing Mode - - - - 4-42
4.2.4.1.2—Branch Conditional to Relative

Addressing Mode- - - - - - - - - - - - - - - - 4-42
4.2.4.1.3—Branch to Absolute Addressing Mode- - 4-43
4.2.4.1.4—Branch Conditional to Absolute

Addressing Mode- - - - - - - - - - - - - - - - 4-44
4.2.4.1.5—Branch Conditional to Link Register

Addressing Mode- - - - - - - - - - - - - - - - 4-45

PowerPC Microprocessor 32-bit Family: The Programming Environments ix

Table of Contents (Continued)

4.2.4.1.6—Branch Conditional to Count
Register Addressing Mode - - - - - - - - - 4-46

4.2.4.2—Conditional Branch Control- - - - - - - - - - - - - - - 4-47
4.2.4.3—Branch Instructions - 4-50
4.2.4.4—Simplified Mnemonics for Branch Processor

Instructions- 4-51
4.2.4.5—Condition Register Logical Instructions- - - - - - - 4-51
4.2.4.6—Trap Instructions - 4-52
4.2.4.7—System Linkage Instruction—UISA - - - - - - - - - 4-52

4.2.5—Processor Control Instructions—UISA - - - - - - - - - - - - - 4-53
4.2.5.1—Move to/from Condition Register Instructions - - 4-53
4.2.5.2—Move to/from Special-Purpose Register

Instructions (UISA) - 4-53
4.2.6—Memory Synchronization Instructions—UISA - - - - - - - - 4-54
4.2.7—Recommended Simplified Mnemonics - - - - - - - - - - - - - 4-56

4.3—PowerPC VEA Instructions - 4-56
4.3.1—Processor Control Instructions—VEA- - - - - - - - - - - - - - 4-56
4.3.2—Memory Synchronization Instructions—VEA - - - - - - - - 4-57
4.3.3—Memory Control Instructions—VEA - - - - - - - - - - - - - - 4-58

4.3.3.1—User-Level Cache Instructions—VEA- - - - - - - - 4-58
4.3.4—External Control Instructions- 4-63

4.4—PowerPC OEA Instructions - 4-64
4.4.1—System Linkage Instructions—OEA - - - - - - - - - - - - - - - 4-64
4.4.2—Processor Control Instructions—OEA- - - - - - - - - - - - - - 4-64

4.4.2.1—Move to/from Machine State Register Instructions 4-65
4.4.2.2—Move to/from Special-Purpose Register

Instructions (OEA) - 4-65
4.4.3—Memory Control Instructions—OEA - - - - - - - - - - - - - - 4-66

4.4.3.1—Supervisor-Level Cache Management Instruction 4-66
4.4.3.2—Segment Register Manipulation Instructions - - - 4-67
4.4.3.3—Translation Lookaside Buffer Management

Instructions- 4-68
Chapter 5. Cache Model and Memory Coherency

5.1—The Virtual Environment - 5-1
5.1.1—Memory Access Ordering - 5-2

5.1.1.1—Enforce In-Order Execution of I/O Instruction - - 5-2
5.1.1.2—Synchronize Instruction - - - - - - - - - - - - - - - - - 5-3

5.1.2—Atomicity- 5-4
5.1.3—Cache Model - 5-5
5.1.4—Memory Coherency - 5-5

5.1.4.1—Memory/Cache Access Modes- - - - - - - - - - - - - 5-6
5.1.4.1.1—Pages Designated as Write-Through - - 5-6
5.1.4.1.2—Pages Designated as Caching-Inhibited 5-6
5.1.4.1.3—Pages Designated as Memory

Coherency Required - - - - - - - - - - - - - 5-7
5.1.4.1.4—Pages Designated as Memory

Coherency Not Required - - - - - - - - - - 5-7

x PowerPC Microprocessor 32-bit Family: The Programming Environments

1

Table of Contents (Continued)

5.1.4.1.5—Pages Designated as Guarded - - - - - - - 5-7
5.1.4.2—Coherency Precautions - - - - - - - - - - - - - - - - - - 5-7

5.1.5—VEA Cache Management Instructions - - - - - - - - - - - - - - 5-8
5.1.5.1—Data Cache Instructions- - - - - - - - - - - - - - - - - - 5-8

5.1.5.1.1—Data Cache Block Touch (dcbt) and Data
Cache Block Touch for Store (dcbtst)
Instructions- 5-8

5.1.5.1.2—Data Cache Block Set to Zero (dcbz)
Instruction - 5-9

5.1.5.1.3—Data Cache Block Store (dcbst) Instruction 5-9
5.1.5.1.4—Data Cache Block Flush (dcbf) Instruction 5-10

5.1.5.2—Instruction-Cache Instructions - - - - - - - - - - - - - 5-10
5.1.5.2.1—Instruction Cache Block Invalidate (icbi)

Instruction - 5-11
5.1.5.2.2—Instruction Synchronize (isync)

Instruction - 5-12
5.2—The Operating Environment - 5-12

5.2.1—Memory/Cache Access Attributes - - - - - - - - - - - - - - - - - 5-13
5.2.1.1—Write-Through Attribute (W) - - - - - - - - - - - - - - 5-14
5.2.1.2—Caching-Inhibited Attribute (I) - - - - - - - - - - - - - 5-14
5.2.1.3—Memory Coherency Attribute (M)- - - - - - - - - - - 5-15
5.2.1.4—W, I, and M Bit Combinations - - - - - - - - - - - - - 5-15
5.2.1.5—The Guarded Attribute (G)- - - - - - - - - - - - - - - - 5-16

5.2.1.5.1—Performing Operations Out of Order- - - 5-16
5.2.1.5.2—Guarded Memory - - - - - - - - - - - - - - - 5-17
5.2.1.5.3—Out-of-Order Accesses to Guarded

Memory - 5-18
5.2.2—I/O Interface Considerations - 5-19
5.2.3—OEA Cache Management Instruction—Data Cache

Block Invalidate (dcbi) - 5-19
Chapter 6. Exceptions

6.1—Exception Classes - 6-3
6.1.1—Precise Exceptions - 6-6
6.1.2—Synchronization - 6-6

6.1.2.1—Context Synchronization - - - - - - - - - - - - - - - - - 6-6
6.1.2.2—Execution Synchronization - - - - - - - - - - - - - - - 6-7
6.1.2.3—Synchronous/Precise Exceptions- - - - - - - - - - - - 6-7
6.1.2.4—Asynchronous Exceptions - - - - - - - - - - - - - - - - 6-8

6.1.2.4.1—System Reset and Machine Check
Exceptions - 6-8

6.1.2.4.2—External Interrupt and Decrementer
Exceptions - 6-9

6.1.3—Imprecise Exceptions - 6-9
6.1.3.1—Imprecise Exception Status Description - - - - - - - 6-9
6.1.3.2—Recoverability of Imprecise Floating-Point

Exceptions - 6-10
6.1.4—Partially Executed Instructions - - - - - - - - - - - - - - - - - - - 6-11

PowerPC Microprocessor 32-bit Family: The Programming Environments xi

Table of Contents (Continued)

6.1.5—Exception Priorities - 6-12
6.2—Exception Processing - 6-14

6.2.1—Enabling and Disabling Exceptions - - - - - - - - - - - - - - - 6-17
6.2.2—Steps for Exception Processing - - - - - - - - - - - - - - - - - - 6-18
6.2.3—Returning from an Exception Handler- - - - - - - - - - - - - - 6-19

6.3—Process Switching - 6-19
6.4—Exception Definitions - 6-20

6.4.1—System Reset Exception (0x00100) - - - - - - - - - - - - - - - 6-21
6.4.2—Machine Check Exception (0x00200) - - - - - - - - - - - - - - 6-22
6.4.3—DSI Exception (0x00300) - 6-23
6.4.4—ISI Exception (0x00400)- 6-26
6.4.5—External Interrupt (0x00500) - 6-27
6.4.6—Alignment Exception (0x00600) - - - - - - - - - - - - - - - - - 6-28

6.4.6.1—Integer Alignment Exceptions - - - - - - - - - - - - - 6-31
6.4.6.1.1—Page Address Translation Access

Considerations - - - - - - - - - - - - - - - - - 6-31
6.4.6.1.2—Direct-Store Interface Access

Considerations - - - - - - - - - - - - - - - - - 6-31
6.4.6.2—Little-Endian Mode Alignment Exceptions - - - - 6-31
6.4.6.3—Interpretation of the DSISR as Set by

an Alignment Exception - - - - - - - - - - - - - - - - - 6-32
6.4.7—Program Exception (0x00700) - - - - - - - - - - - - - - - - - - 6-34
6.4.8—Floating-Point Unavailable Exception (0x00800) - - - - - - 6-35
6.4.9—Decrementer Exception (0x00900) - - - - - - - - - - - - - - - - 6-36
6.4.10—System Call Exception (0x00C00) - - - - - - - - - - - - - - - 6-37
6.4.11—Trace Exception (0x00D00)- 6-38
6.4.12—Floating-Point Assist Exception (0x00E00) - - - - - - - - - 6-40

Chapter 7. Memory Management
7.1—MMU Features- 7-2
7.2—MMU Overview- 7-2

7.2.1—Memory Addressing - 7-3
7.2.1.1—Predefined Physical Memory Locations- - - - - - - 7-3

7.2.2—MMU Organization - 7-4
7.2.3—Address Translation Mechanisms- - - - - - - - - - - - - - - - - 7-6
7.2.4—Memory Protection Facilities- 7-8
7.2.5—Page History Information - 7-10
7.2.6—General Flow of MMU Address Translation - - - - - - - - - 7-10

7.2.6.1—Real Addressing Mode and Block Address
Translation Selection - - - - - - - - - - - - - - - - - - - 7-11

7.2.6.2—Page and Direct-Store Address Translation
Selection - 7-11

7.2.6.2.1—Selection of Page Address
Translation- 7-14

7.2.6.2.2—Selection of Direct-Store Address
Translation- 7-14

7.2.7—MMU Exceptions Summary - 7-14
7.2.8—MMU Instructions and Register Summary- - - - - - - - - - - 7-16

xii PowerPC Microprocessor 32-bit Family: The Programming Environments

1

Table of Contents (Continued)

7.2.9—TLB Entry Invalidation - 7-18
7.3—Real Addressing Mode- 7-18
7.4—Block Address Translation - 7-19

7.4.1—BAT Array Organization - 7-20
7.4.2—Recognition of Addresses in BAT Arrays- - - - - - - - - - - - 7-22
7.4.3—BAT Register Implementation of BAT Array - - - - - - - - - 7-24
7.4.4—Block Memory Protection - 7-27
7.4.5—Block Physical Address Generation- - - - - - - - - - - - - - - - 7-31
7.4.6—Block Address Translation Summary- - - - - - - - - - - - - - - 7-32

7.5—Memory Segment Model - 7-32
7.5.1—Address Translation via Segment Descriptors - - - - - - - - - 7-33

7.5.1.1—Selection of Memory Segments - - - - - - - - - - - - 7-33
7.5.1.2—Selection of Direct-Store Segments - - - - - - - - - - 7-34

7.5.2—Page Address Translation Overview - - - - - - - - - - - - - - - 7-34
7.5.2.1—Segment Descriptor Definitions - - - - - - - - - - - - 7-35

7.5.2.1.1—Segment Descriptor Format- - - - - - - - - 7-35
7.5.2.2—Page Table Entry (PTE) Definitions - - - - - - - - - 7-37

7.5.2.2.1—PTE Format - - - - - - - - - - - - - - - - - - - 7-38
7.5.3—Page History Recording- 7-38

7.5.3.1—Referenced Bit - 7-39
7.5.3.2—Changed Bit - 7-40
7.5.3.3—Scenarios for Referenced and Changed Bit

Recording - 7-40
7.5.3.4—Synchronization of Memory Accesses and

Referenced and Changed Bit Updates - - - - - - - - 7-42
7.5.4—Page Memory Protection - 7-42
7.5.5—Page Address Translation Summary - - - - - - - - - - - - - - - 7-46

7.6—Hashed Page Tables- 7-48
7.6.1—Page Table Definition - 7-49

7.6.1.1—SDR1 Register Definitions- - - - - - - - - - - - - - - - 7-50
7.6.1.2—Page Table Size - 7-51
7.6.1.3—Page Table Hashing Functions - - - - - - - - - - - - - 7-52
7.6.1.4—Page Table Addresses - - - - - - - - - - - - - - - - - - - 7-54
7.6.1.5—Page Table Structure Summary- - - - - - - - - - - - - 7-56
7.6.1.6—Page Table Structure Example - - - - - - - - - - - - - 7-57
7.6.1.7—PTEG Address Mapping Examples - - - - - - - - - - 7-58

7.6.2—Page Table Search Process- 7-61
7.6.2.1—Flow for Page Table Search Operation- - - - - - - - 7-62

7.6.3—Page Table Updates - 7-63
7.6.3.1—Adding a Page Table Entry - - - - - - - - - - - - - - - 7-64
7.6.3.2—Modifying a Page Table Entry - - - - - - - - - - - - - 7-65

7.6.3.2.1—General Case - - - - - - - - - - - - - - - - - - 7-65
7.6.3.2.2—Clearing the Referenced (R) Bit - - - - - - 7-65
7.6.3.2.3—Modifying the Virtual Address - - - - - - 7-66

7.6.3.3—Deleting a Page Table Entry- - - - - - - - - - - - - - - 7-66
7.6.4—Segment Register Updates - 7-67

7.7—Direct-Store Segment Address Translation - - - - - - - - - - - - - - - - - 7-67

PowerPC Microprocessor 32-bit Family: The Programming Environments xiii

Table of Contents (Continued)

7.7.1—Segment Descriptors for Direct-Store Segments - - - - - - - 7-67
7.7.2—Direct-Store Segment Accesses - - - - - - - - - - - - - - - - - - 7-68
7.7.3—Direct-Store Segment Protection - - - - - - - - - - - - - - - - - 7-68
7.7.4—Instructions Not Supported in Direct-Store Segments - - - 7-68
7.7.5—Instructions with No Effect in Direct-Store Segments - - - 7-69
7.7.6—Direct-Store Segment Translation Summary Flow - - - - - 7-69

Chapter 8. Instruction Set
8.1—Instruction Formats- 8-1

8.1.1—Split-Field Notation - 8-2
8.1.2—Instruction Fields- 8-2
8.1.3—Notation and Conventions- 8-4
8.1.4—Computation Modes- 8-8

8.2—PowerPC Instruction Set - 8-8
Appendix A. PowerPC Instruction Set Listings

A.1—Instructions Sorted by Mnemonic- A-1
A.2—Instructions Sorted by Opcode - A-8
A.3—Instructions Grouped by Functional Categories - - - - - - - - - - - - - A-14
A.4—Instructions Sorted by Form - A-24
A.5—Instruction Set Legend - A-30

Appendix B. POWER Architecture Cross Reference
B.1—New Instructions, Formerly Supervisor-Level Instructions - - - - - - B-1
B.2—New Supervisor-Level Instructions- B-1
B.3—Reserved Bits in Instructions - B-2
B.4—Reserved Bits in Registers- B-2
B.5—Alignment Check- B-2
B.6—Condition Register - B-2
B.7—Inappropriate Use of LK and Rc bits - B-3
B.8—BO Field - B-3
B.9—Branch Conditional to Count Register - B-4
B.10—System Call/Supervisor Call - B-4
B.11—XER Register - B-4
B.12—Update Forms of Memory Access- B-4
B.13—Multiple Register Loads - B-5
B.14—Alignment for Load/Store Multiple - B-5
B.15—Load and Store String Instructions - B-5
B.16—Synchronization - B-5
B.17—Move to/from SPR - B-6
B.18—Effects of Exceptions on FPSCR Bits FR and FI - - - - - - - - - - - - B-6
B.19—Floating-Point Store Single Instructions- - - - - - - - - - - - - - - - - - B-7
B.20—Move from FPSCR- B-7
B.21—Clearing Bytes in the Data Cache - B-7
B.22—Segment Register Instructions - B-7
B.23—TLB Entry Invalidation - B-8
B.24—Floating-Point Exceptions - B-8
B.25—Timing Facilities - B-8

B.25.1—Real-Time Clock - B-8
B.25.2—Decrementer - B-9

xiv PowerPC Microprocessor 32-bit Family: The Programming Environments

1

Table of Contents (Continued)

B.26—Deleted Instructions - B-9
B.27—POWER Instructions Supported by the PowerPC Architecture- - - B-11

Appendix C. Multiple-Precision Shifts
C.1—Multiple-Precision Shifts in 32-Bit Implementations - - - - - - - - - - C-1

Appendix D. Floating-Point Models
D.1—Execution Model for IEEE Operations- D-1
D.2—Execution Model for Multiply-Add Type Instructions - - - - - - - - - D-4
D.3—Floating-Point Conversions - D-5

D.3.1—Conversion from Floating-Point Number to Signed
Fixed-Point Integer Word - D-5

D.3.2—Conversion from Floating-Point Number to Unsigned
Fixed-Point Integer Word - D-6

D.4—Floating-Point Models- D-6
D.4.1—Floating-Point Round to Single-Precision Model- - - - - - - D-6
D.4.2—Floating-Point Convert to Integer Model - - - - - - - - - - - - D-10
D.4.3—Floating-Point Convert from Integer Model - - - - - - - - - - D-12

D.5—Floating-Point Selection - D-13
D.5.1—Comparison to Zero - D-14
D.5.2—Minimum and Maximum- D-14
D.5.3—Simple If-Then-Else Constructions - - - - - - - - - - - - - - - - D-14
D.5.4—Notes - D-14

D.6—Floating-Point Load Instructions- D-15
D.7—Floating-Point Store Instructions- D-17

Appendix E. Synchronization Programming Examples
E.1—General Information - E-1
E.2—Synchronization Primitives- E-2

E.2.1—Fetch and No-Op - E-2
E.2.2—Fetch and Store - E-3
E.2.3—Fetch and Add - E-3
E.2.4—Fetch and AND - E-3
E.2.5—Test and Set- E-3

E.3—Compare and Swap - E-4
E.4—Lock Acquisition and Release- E-5
E.5—List Insertion - E-6

Appendix F. Simplified Mnemonics
F.1—Symbols - F-1
F.2—Simplified Mnemonics for Subtract Instructions - - - - - - - - - - - - - F-2

F.2.1—Subtract Immediate - F-2
F.2.2—Subtract - F-2

F.3—Simplified Mnemonics for Compare Instructions - - - - - - - - - - - - - F-3
F.3.1—Word Comparisons - F-3

F.4—Simplified Mnemonics for Rotate and Shift Instructions - - - - - - - - F-4
F.4.1—Operations on Words- F-5

F.5—Simplified Mnemonics for Branch Instructions - - - - - - - - - - - - - - F-5
F.5.1—BO and BI Fields - F-6
F.5.2—Basic Branch Mnemonics - F-6

PowerPC Microprocessor 32-bit Family: The Programming Environments xv

Table of Contents (Continued)

F.5.3—Branch Mnemonics Incorporating Conditions- - - - - - - - - F-12
F.5.4—Branch Prediction - F-17

F.6—Simplified Mnemonics for Condition Register Logical Instructions F-18
F.7—Simplified Mnemonics for Trap Instructions- - - - - - - - - - - - - - - - F-19
F.8—Simplified Mnemonics for Special-Purpose Registers - - - - - - - - - F-21
F.9—Recommended Simplified Mnemonics - - - - - - - - - - - - - - - - - - - F-22

F.9.1—No-Op (nop) - F-22
F.9.2—Load Immediate (li) - F-22
F.9.3—Load Address (la) - F-23
F.9.4—Move Register (mr) - F-23
F.9.5—Complement Register (not) - F-23
F.9.6—Move to Condition Register (mtcr)- - - - - - - - - - - - - - - - F-23

Index

xvi PowerPC Microprocessor 32-bit Family: The Programming Environments

1

List of Tables

About This Book
Table i. Acronyms and Abbreviated Terms - xxxii
Table ii. Terminology Conventions - xxxv
Table iii. Instruction Field Conventions - xxxv
Chapter 1. Overview
Table 1-1. UISA Changes—Rev. 0 to Rev. 0.1 - 1-15
Table 1-2. UISA Changes—Rev. 0.1 to Rev. 1.0 - 1-16
Table 1-3. VEA Changes—Rev. 0 to Rev. 0.1 - 1-16
Table 1-4. VEA Changes—Rev. 0.1 to Rev. 1.0 - 1-16
Table 1-5. OEA Changes—Rev. 0 to Rev. 0.1 - 1-16
Table 1-6. OEA Changes—Rev. 0.1 to Rev. 1.0 - 1-17
Chapter 2. PowerPC Register Set
Table 2-1. Bit Settings for CR0 Field of CR - 2-6
Table 2-2. Bit Settings for CR1 Field of CR - 2-6
Table 2-3. CRn Field Bit Settings for Compare Instructions - - - - - - - - - - - - - - 2-7
Table 2-4. FPSCR Bit Settings - 2-8
Table 2-5. Floating-Point Result Flags in FPSCR - 2-10
Table 2-6. XER Bit Definitions - 2-11
Table 2-7. BO Operand Encodings - 2-13
Table 2-8. MSR Bit Settings - 2-21
Table 2-9. Floating-Point Exception Mode Bits - 2-22
Table 2-10. State of MSR at Power Up - 2-23
Table 2-11. BAT Registers—Field and Bit Descriptions - - - - - - - - - - - - - - - - 2-25
Table 2-12. BAT Area Lengths - 2-25
Table 2-13. SDR1 Bit Settings - 2-27
Table 2-14. Segment Register Bit Settings (T = 0) - 2-28
Table 2-15. Segment Register Bit Settings (T = 1) - 2-29
Table 2-16. Conventional Uses of SPRG0–SPRG3 - 2-30
Table 2-17. DABR—Bit Settings - 2-34
Table 2-18. External Access Register (EAR) Bit Settings - - - - - - - - - - - - - - - - 2-36
Table 2-19. Data Access Synchronization - 2-37
Table 2-20. Instruction Access Synchronization - 2-38
Chapter 3. Operand Conventions
Table 3-1. Memory Operand Alignment - 3-1
Table 3-2. EA Modifications - 3-7
Table 3-3. Performance Effects of Memory Operand Placement,

Big-Endian Mode - 3-13
Table 3-4.Performance Effects of Memory Operand Placement,

Little-Endian Mode - 3-14
Table 3-5. IEEE Floating-Point Fields - 3-17
Table 3-6. Biased Exponent Format - 3-17
Table 3-7. Recognized Floating-Point Numbers - 3-18
Table 3-8. FPSCR Bit Settings—RN Field - 3-26
Table 3-9. FPSCR Bit Settings - 3-29
Table 3-10. Floating-Point Result Flags — FPSCR[FPRF] - - - - - - - - - - - - - - 3-31

xvii PowerPC Microprocessor 32-bit Family: The Programming Environments

1

List of Tables (Continued)
Table 3-11. MSR[FE0] and MSR[FE1] Bit Settings for FP Exceptions - - - - - - - 3-34
Table 3-12. Additional Actions Performed for Invalid FP Operations - - - - - - - - 3-38
Table 3-13. Additional Actions Performed for Zero Divide - - - - - - - - - - - - - - - 3-39
Table 3-14. Additional Actions Performed for Overflow Exception Condition - - 3-41
Table 3-15. Target Result for Overflow Exception Disabled Case - - - - - - - - - - 3-42
Table 3-16. Actions Performed for Underflow Conditions - - - - - - - - - - - - - - - 3-43
Chapter 4. Addressing Modes and Instruction Set Summary
Table 4-1. Integer Arithmetic Instructions - 4-11
Table 4-2. Integer Compare Instructions - 4-15
Table 4-3. Integer Logical Instructions - 4-16
Table 4-4. Integer Rotate Instructions - 4-18
Table 4-5. Integer Shift Instructions - 4-19
Table 4-6. Floating-Point Arithmetic Instructions - 4-21
Table 4-7. Floating-Point Multiply-Add Instructions - - - - - - - - - - - - - - - - - - - 4-23
Table 4-8. Floating-Point Rounding and Conversion Instructions - - - - - - - - - - 4-25
Table 4-9. CR Bit Settings - 4-25
Table 4-10. Floating-Point Compare Instructions - 4-26
Table 4-11. Floating-Point Status and Control Register Instructions - - - - - - - - - 4-26
Table 4-12. Floating-Point Move Instructions - 4-27
Table 4-13. Integer Load Instructions - 4-32
Table 4-14. Integer Store Instructions - 4-33
Table 4-15. Integer Load and Store with Byte-Reverse Instructions - - - - - - - - - 4-35
Table 4-16. Integer Load and Store Multiple Instructions - - - - - - - - - - - - - - - - 4-36
Table 4-17. Integer Load and Store String Instructions - - - - - - - - - - - - - - - - - 4-36
Table 4-18. Floating-Point Load Instructions - 4-39
Table 4-19. Floating-Point Store Instructions - 4-40
Table 4-20. BO Operand Encodings - 4-47
Table 4-21. Branch Instructions - 4-50
Table 4-22. Condition Register Logical Instructions - - - - - - - - - - - - - - - - - - - 4-51
Table 4-23. Trap Instructions - 4-52
Table 4-24. System Linkage Instruction—UISA - 4-52
Table 4-25. Move to/from Condition Register Instructions - - - - - - - - - - - - - - - 4-53
Table 4-26. Move to/from Special-Purpose Register Instructions (UISA) - - - - - 4-53
Table 4-27. Memory Synchronization Instructions—UISA - - - - - - - - - - - - - - - 4-55
Table 4-28. Move from Time Base Instruction - 4-57
Table 4-29. User-Level TBR Encodings (VEA) - 4-57
Table 4-30. Supervisor-Level TBR Encodings (VEA) - - - - - - - - - - - - - - - - - - 4-57
Table 4-31 Memory Synchronization Instructions—VEA - - - - - - - - - - - - - - - - 4-58
Table 4-32. User-Level Cache Instructions - 4-59
Table 4-33. External Control Instructions - 4-63
Table 4-34. System Linkage Instructions—OEA - 4-64
Table 4-35. Move to/from Machine State Register Instructions - - - - - - - - - - - - 4-65
Table 4-36. Move to/from Special-Purpose Register Instructions (OEA) - - - - - 4-65
Table 4-37. Cache Management Supervisor-Level Instruction - - - - - - - - - - - - - 4-67
Table 4-38. Segment Register Manipulation Instructions - - - - - - - - - - - - - - - - 4-68
Table 4-39. Translation Lookaside Buffer Management Instructions - - - - - - - - 4-69

PowerPC Microprocessor 32-bit Family: The Programming Environments xviii

List of Tables (Continued)

Chapter 5. Cache Model and Memory Coherency
Table 5-1. Combinations of W, I, and M Bits - 5-15
Chapter 6. Exceptions
Table 6-1. PowerPC Exception Classifications - 6-3
Table 6-2. Exceptions and Conditions—Overview - 6-4
Table 6-3. IEEE Floating-Point Program Exception Mode Bits - - - - - - - - - - - - 6-10
Table 6-4. Exception Priorities - 6-12
Table 6-5. MSR Bit Settings - 6-15
Table 6-6. MSR Setting Due to Exception - 6-20
Table 6-7. System Reset Exception—Register Settings - - - - - - - - - - - - - - - - - 6-21
Table 6-8. Machine Check Exception—Register Settings - - - - - - - - - - - - - - - 6-23
Table 6-9. DSI Exception—Register Settings - 6-25
Table 6-10. ISI Exception—Register Settings - 6-27
Table 6-11. External Interrupt—Register Settings - 6-28
Table 6-12. Alignment Exception—Register Settings - - - - - - - - - - - - - - - - - - 6-29
Table 6-13. DSISR(15–21) Settings to Determine Misaligned Instruction - - - - - 6-32
Table 6-14. Program Exception—Register Settings - 6-35
Table 6-15. Floating-Point Unavailable Exception—Register Settings - - - - - - - 6-36
Table 6-16. Decrementer Exception—Register Settings - - - - - - - - - - - - - - - - - 6-37
Table 6-17. System Call Exception—Register Settings - - - - - - - - - - - - - - - - - 6-37
Table 6-18. Trace Exception—Register Settings - 6-39
Table 6-19. Floating-Point Assist Exception—Register Settings - - - - - - - - - - - - 6-40
Chapter 7. Memory Management
Table 7-1. Predefined Physical Memory Locations - 7-4
Table 7-2. Value of Base for Predefined Memory Use - - - - - - - - - - - - - - - - - - 7-4
Table 7-3. Access Protection Options for Pages - 7-9
Table 7-4. Translation Exception Conditions - 7-15
Table 7-5. Other MMU Exception Conditions - 7-16
Table 7-6. Instruction Summary—Control MMU - 7-17
Table 7-7 MMU Registers - 7-18
Table 7-8. BAT Registers—Field and Bit Descriptions for 32-Bit

Implementations - 7-26
Table 7-9. Upper BAT Register Block Size Mask Encodings - - - - - - - - - - - - - 7-26
Table 7-10. Access Protection Control for Blocks - 7-28
Table 7-11. Access Protection Summary for BAT Array - - - - - - - - - - - - - - - - 7-29
Table 7-12. Segment Descriptor Types - 7-33
Table 7-13. Segment Register Bit Definition for Page Address Translation - - - - 7-36
Table 7-14. Segment Register Instructions - 7-36
Table 7-15. PTE Bit Definitions - 7-38
Table 7-16. Table Search Operations to Update History Bits - - - - - - - - - - - - - - 7-39
Table 7-17. Model for Guaranteed R and C Bit Settings - - - - - - - - - - - - - - - - - 7-41
Table 7-18. Access Protection Control with Key - 7-43
Table 7-19. Exception Conditions for Key and PP Combinations - - - - - - - - - - 7-44
Table 7-20. Access Protection Encoding of PP Bits for Ks = 0 and Kp = 1 - - - - 7-44
Table 7-21. SDR1 Register Bit Settings - 7-50

xix PowerPC Microprocessor 32-bit Family: The Programming Environments

1

List of Tables (Continued)
Table 7-22. Minimum Recommended Page Table Sizes - - - - - - - - - - - - - - - - - 7-52
Table 7-23. Segment Register Bit Definitions for Direct-Store Segments - - - - - - 7-67
Chapter 8. Instruction Set
Table 8-1. Split-Field Notation and Conventions - 8-2
Table 8-2. Instruction Syntax Conventions - 8-2
Table 8-3. Notation and Conventions - 8-4
Table 8-4. Instruction Field Conventions - 8-7
Table 8-5. Precedence Rules - 8-7
Table 8-6. BO Operand Encodings - 8-23
Table 8-7. BO Operand Encodings - 8-25
Table 8-8. BO Operand Encodings - 8-27
Table 8-9. PowerPC UISA SPR Encodings formfspr - - - - - - - - - - - - - - - - - - 8-132
Table 8-10. PowerPC OEA SPR Encodings formfspr - - - - - - - - - - - - - - - - - - 8-133
Table 8-11. TBR Encodings formftb - 8-137
Table 8-12. PowerPC UISA SPR Encodings formtspr - - - - - - - - - - - - - - - - - 8-145
Table 8-13. PowerPC OEA SPR Encodings formtspr - - - - - - - - - - - - - - - - - - 8-146
Appendix A. PowerPC Instruction Set Listings
Table A-1. Complete Instruction List Sorted by Mnemonic - - - - - - - - - - - - - - - - A-1
Table A-2. Complete Instruction List Sorted by Opcode - - - - - - - - - - - - - - - - - - A-8
Table A-3. Integer Arithmetic Instructions - A-14
Table A-4. Integer Compare Instructions - A-15
Table A-5. Integer Logical Instructions - A-15
Table A-6. Integer Rotate Instructions - A-15
Table A-7. Integer Shift Instructions - A-16
Table A-8. Floating-Point Arithmetic Instructions - A-16
Table A-9. Floating-Point Multiply-Add Instructions - A-16
Table A-10. Floating-Point Rounding and Conversion Instructions - - - - - - - - - - - A-17
Table A-11. Floating-Point Compare Instructions - A-17
Table A-12. Floating-Point Status and Control Register Instructions - - - - - - - - - - A-17
Table A-13. Integer Load Instructions - A-17
Table A-14. Integer Store Instructions - A-18
Table A-15. Integer Load and Store with Byte Reverse Instructions - - - - - - - - - - A-18
Table A-16. Integer Load and Store Multiple Instructions - - - - - - - - - - - - - - - - - A-19
Table A-17. Integer Load and Store String Instructions - - - - - - - - - - - - - - - - - - - A-19
Table A-18. Memory Synchronization Instructions - A-19
Table A-19. Floating-Point Load Instructions - A-19
Table A-20. Floating-Point Store Instructions - A-20
Table A-21. Floating-Point Move Instructions - A-20
Table A-22. Branch Instructions - A-20
Table A-23. Condition Register Logical Instructions - A-21
Table A-24. System Linkage Instructions - A-21
Table A-25. Trap Instructions - A-21
Table A-26. Processor Control Instructions - A-22
Table A-27. Cache Management Instructions - A-22
Table A-28. Segment Register Manipulation Instructions. - - - - - - - - - - - - - - - - - A-23
Table A-29. Lookaside Buffer Management Instructions - - - - - - - - - - - - - - - - - A-23

PowerPC Microprocessor 32-bit Family: The Programming Environments xx

List of Tables (Continued)

Table A-30. External Control Instructions - A-23
Table A-31. I-Form - A-24
Table A-32. B-Form - A-24
Table A-33. SC-Form - A-24
Table A-34. D-Form - A-24
Table A-35. X-Form - A-26
Table A-36. PowerPC Instruction Set Legend - A-30
Appendix B. POWER Architecture Cross Reference
Table B-1. Condition Register Settings - B-2
Table B-2. Deleted POWER Instructions - B-9
Table B-3. POWER Instructions Implemented in PowerPC Architecture - - - - - - B-11
Appendix D. Floating-Point Models
Table D-1. Interpretation of G, R, and X Bits - D-2
Table D-2. Location of the Guard, Round, and Sticky Bits—IEEE

Execution Model - D-3
Table D-3. Location of the Guard, Round, and Sticky Bits—Multiply-Add

Execution Model - D-4
Appendix F. Simplified Mnemonics
Table F-1. Condition Register Bit and Identification Symbol Descriptions - - - - - F-1
Table F-2. Simplified Mnemonics for Word Compare Instructions - - - - - - - - - - F-3
Table F-3. Word Rotate and Shift Instructions - F-5
Table F-4. Simplified Branch Mnemonics - F-7
Table F-5. Simplified Branch Mnemonics forbc andbca Instructions without

Link Register Update - F-8
Table F-6. Simplified Branch Mnemonics forbclr andbcclr Instructions without

Link Register Update - F-9
Table F-7. Simplified Branch Mnemonics forbcl andbcla Instructions with

Link Register Update - F-10
Table F-8. Simplified Branch Mnemonics forbclrl andbcctrl Instructions with

Link Register Update - F-11
Table F-9. Standard Coding for Branch Conditions - F-12
Table F-10. Simplified Branch Mnemonics with Comparison Conditions - - - - - - F-13
Table F-11. Simplified Branch Mnemonics forbc andbca Instructions without

 Comparison Conditions and Link Register Updating - - - - - - - - - - - - F-14
Table F-12. Simplified Branch Mnemonics forbclr andbcctr Instructions without

 Comparison Conditions and Link Register Updating - - - - - - - - - - - - F-15
Table F-13. Simplified Branch Mnemonics forbcl andbcla Instructions with

 Comparison Conditions and Link Register Update - - - - - - - - - - - - - F-16
Table F-14. Simplified Branch Mnemonics forbclrl andbcctl Instructions with

 Comparison Conditions and Link Register Update - - - - - - - - - - - - - F-17
Table F-15. Condition Register Logical Mnemonics - F-18
Table F-16. Standard Codes for Trap Instructions - F-19
Table F-17. Trap Mnemonics - F-20
Table F-18. TO Operand Bit Encoding - F-21
Table F-19. Simplified Mnemonics for SPRs - F-21

PowerPC Microprocessor 32-bit Family: The Programming Environments xxi

List of Figures

About This Book
Chapter 1. Overview
Figure 1-1. Programming Model—PowerPC Registers - - - - - - - - - - - - - - - - - - 1-8
Figure 1-2. Big-Endian Byte and Bit Ordering - 1-9
Chapter 2. PowerPC Register Set
Figure 2-1. UISA Programming Model—User-Level Registers - - - - - - - - - - - - - 2-2
Figure 2-2. Floating-Point Registers (FPRs) - 2-4
Figure 2-3. Condition Register (CR) - 2-5
Figure 2-4. Floating-Point Status and Control Register (FPSCR) - - - - - - - - - - - - 2-8
Figure 2-5. XER Register - 2-11
Figure 2-6. Link Register (LR) - 2-12
Figure 2-7. Count Register (CTR) - 2-12
Figure 2-8. VEA Programming Model—User-Level Registers Plus Time Base - - 2-14
Figure 2-9. Time Base (TB) - 2-15
Figure 2-10. OEA Programming Model—All Registers - - - - - - - - - - - - - - - - - - 2-18
Figure 2-11. Machine State Register (MSR) - 2-20
Figure 2-12. Processor Version Register (PVR) - 2-23
Figure 2-13. Upper BAT Register - 2-24
Figure 2-14. Lower BAT Register - 2-24
Figure 2-15. SDR1 - 2-27
Figure 2-16. Segment Register Format (T = 0) - 2-28
Figure 2-17. Segment Register Format (T = 1) - 2-28
Figure 2-18. Data Address Register (DAR) - 2-29
Figure 2-19. SPRG0–SPRG3 - 2-30
Figure 2-20. DSISR - 2-30
Figure 2-21. Machine Status Save/Restore Register 0 (SRR0) - - - - - - - - - - - - - - 2-31
Figure 2-22. Machine Status Save/Restore Register 1 (SRR1) - - - - - - - - - - - - - - 2-31
Figure 2-23. Decrementer Register (DEC) - 2-33
Figure 2-24. Data Address Breakpoint Register (DABR) - - - - - - - - - - - - - - - - - 2-34
Figure 2-25. External Access Register (EAR) - 2-35
Chapter 3. Operand Conventions
Figure 3-1. C Program Example—Data Structure S - 3-3
Figure 3-2. Big-Endian Mapping of StructureS - 3-4
Figure 3-3. Little-Endian Mapping of StructureS - 3-5
Figure 3-4. Little-Endian Mapping of StructureS —Alternate View - - - - - - - - - 3-6
Figure 3-5. Munged Little-Endian StructureS as Seen by the Memory Subsystem 3-7
Figure 3-6. Munged Little-Endian StructureS as Seen by Processor - - - - - - - - - - 3-8
Figure 3-7. True Little-Endian Mapping, Word Stored at Address 05 - - - - - - - - - 3-9
Figure 3-8. Word Stored at Little-Endian Address 05 as Seen by the Memory

Subsystem - 3-10
Figure 3-9. Floating-Point Single-Precision Format - 3-16
Figure 3-10. Floating-Point Double-Precision Format - - - - - - - - - - - - - - - - - - - 3-16
Figure 3-11. Approximation to Real Numbers - 3-18
Figure 3-12. Format for Normalized Numbers - 3-19

PowerPC Microprocessor 32-bit Family: The Programming Environments xxii

List of Figures (Continued)

Figure 3-13. Format for Zero Numbers - 3-20
Figure 3-14. Format for Denormalized Numbers - 3-20
Figure 3-15. Format for Positive and Negative Infinities - - - - - - - - - - - - - - - - - 3-21
Figure 3-16. Format for NaNs - 3-21
Figure 3-17. Representation of Generated QNaN - 3-22
Figure 3-18. Single-Precision Representation in an FPR - - - - - - - - - - - - - - - - - - 3-25
Figure 3-19. Relation of Z1 and Z2 - 3-26
Figure 3-20. Selection of Z1 and Z2 for the Four Rounding Modes - - - - - - - - - - 3-27
Figure 3-21. Rounding Flags in FPSCR - 3-28
Figure 3-22. Floating-Point Status and Control Register (FPSCR) - - - - - - - - - - - 3-28
Figure 3-23. Initial Flow for Floating-Point Exception Conditions - - - - - - - - - - - 3-36
Figure 3-24. Checking of Remaining Floating-Point Exception Conditions - - - - - 3-40
Chapter 4. Addressing Modes and Instruction Set Summary
Figure 4-1. Register Indirect with Immediate Index Addressing for Integer

Loads/Stores - 4-29
Figure 4-2. Register Indirect with Index Addressing for Integer Loads/Stores - - - 4-30
Figure 4-3. Register Indirect Addressing for Integer Loads/Stores - - - - - - - - - - - 4-31
Figure 4-4. Register Indirect with Immediate Index Addressing for

Floating-Point Loads/Stores - 4-37
Figure 4-5. Register Indirect with Index Addressing for

Floating-Point Loads/Stores - 4-38
Figure 4-6. Branch Relative Addressing - 4-42
Figure 4-7. Branch Conditional Relative Addressing - 4-43
Figure 4-8. Branch to Absolute Addressing - 4-44
Figure 4-9. Branch Conditional to Absolute Addressing - - - - - - - - - - - - - - - - - - 4-45
Figure 4-10. Branch Conditional to Link Register Addressing - - - - - - - - - - - - - - 4-46
Figure 4-11. Branch Conditional to Count Register Addressing - - - - - - - - - - - - - 4-47
Chapter 5. Cache Model and Memory Coherency
Chapter 6. Exceptions
Figure 6-1. Machine Status Save/Restore Register 0 - 6-15
Figure 6-2. Machine Status Save/Restore Register 1 - 6-15
Figure 6-3. Machine State Register (MSR) - 6-15
Chapter 7. Memory Management
Figure 7-1. MMU Conceptual Block Diagram - 7-5
Figure 7-2. Address Translation Types - 7-8
Figure 7-3. General Flow of Address Translation - 7-11
Figure 7-4. General Flow of Page and Direct-Store Address Translation - - - - - - - 7-13
Figure 7-5. BAT Array Organization - 7-21
Figure 7-6. BAT Array Hit/Miss Flow - 7-23
Figure 7-7. Format of Upper BAT Registers - 7-25
Figure 7-8. Format of Lower BAT Registers - 7-25
Figure 7-9. Memory Protection Violation Flow for Blocks - - - - - - - - - - - - - - - - 7-30
Figure 7-10. Block Physical Address Generation - 7-31
Figure 7-11. Block Address Translation Flow - 7-32
Figure 7-12. Page Address Translation Overview - 7-35

xxiii PowerPC Microprocessor 32-bit Family: The Programming Environments

1

List of Figures (Continued)

Figure 7-13. Segment Register Format for Page Address Translation. - - - - - - - - 7-35
Figure 7-14. Page Table Entry Format - 7-38
Figure 7-15. Memory Protection Violation Flow for Pages - - - - - - - - - - - - - - - 7-45
Figure 7-16. Page Address Translation Flow—TLB Hit - - - - - - - - - - - - - - - - - 7-47
Figure 7-17. Page Memory Protection Violation Conditions for

 Page Address Translation - 7-48
Figure 7-18. Page Table Definitions - 7-49
Figure 7-19. SDR1 Register Format - 7-50
Figure 7-20. Hashing Functions for Page Tables - 7-53
Figure 7-21. Generation of Addresses for Page Tables - - - - - - - - - - - - - - - - - - 7-55
Figure 7-22. Example Page Table Structure - 7-57
Figure 7-23. Example Primary PTEG Address Generation - - - - - - - - - - - - - - - 7-59
Figure 7-24. Example Secondary PTEG Address Generation - - - - - - - - - - - - - - 7-60
Figure 7-25. Page Table Search Flow - 7-62
Figure 7-26. Segment Register Format for Direct-Store Segments - - - - - - - - - - 7-67
Figure 7-27. Direct-Store Segment Translation Flow - - - - - - - - - - - - - - - - - - - 7-70
Chapter 8. Instruction Set
Figure 8-1. Instruction Description - 8-8
Appendix D. Floating-Point Models
Figure D-1. IEEE 64-Bit Execution Model - D-1
Figure D-2. Multiply-Add 64-Bit Execution Model - D-4

xxiv PowerPC Microprocessor 32-bit Family: The Programming Environments

1

This page deliberately left blank.

About This Book xxv

0

About This Book
The primary objective of this manual is to help programmers provide software that is
compatible across the family of 32-bit PowerPC™ processors. Because the PowerPC
architecture is designed to be flexible to support a broad range of both 32 and 64-bit
processors, this book provides a general description of features that are common to
PowerPC processors and indicates those features that are optional or that may be
implemented differently in the design of each processor.

This book is a revision of an earlier document titled: “PowerPC Microprocessor Family:
The Programming Environments” which describes both the 64- and the 32-bit versions of
the PowerPC architecture.The information in this manual defines only the 32-bit
version of the architecture. There is also a related document titled: “PowerPC
Microprocessor Family: The Programming Environments for 32-Bit Microprocessors”
which was developed by Motorola. Both books describe the 32-bit version of the PowerPC
architecture and reflect changes to the PowerPC architecture made subsequent to the
publication of“PowerPC Microprocessor Family: The Programming Environments”,Rev.
0 and Rev. 0.1.

To locate any published errata or updates for this and other documents, refer to the world-
wide web at http://www.chips.ibm.com/products/ppc, or at http://www.mot.com/powerpc/.

For designers working with a specific processor, this book should be used in conjunction
with the user’s manual for that processor. For information regarding variances between a
processor implementation and the version of the PowerPC architecture reflected in this
document, see the reference toImplementation Variances Relative to Rev. 1 of The
Programming Environments Manualdescribed in “PowerPC Documentation,” on Page
xxix.

This document distinguishes between the three levels, or programming environments, of
the PowerPC architecture, which are as follows:

• PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

• PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the

V

U

xxvi PowerPC Microprocessor 32-bit Family: The Programming Environments

0
memory model for an environment in which multiple processors or other devices
can access external memory, and defines aspects of the cache model and cache
control instructions from a user-level perspective. The resources defined by the VEA
are particularly useful for optimizing memory accesses and for managing resources
in an environment in which other processors and other devices can access external
memory.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but
may not necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that can cause a
floating-point exception are defined by the UISA, while the exception mechanism itself is
defined by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book. The level of the architecture to which text refers is indicated in the
outer margin, using the conventions shown in “Conventions,” on Page xxxi.

This book does not attempt to replace the PowerPC architecture specification, which
defines the architecture from the perspective of the three programming environments and
which remains the defining document for the PowerPC architecture. This book reflects
changes made to the architecture before August 6, 1996. These changes are described in
Section 1.3, “Changes to this Document.” For information about the architecture
specification, see “General Information,” on Page xxviii.

For ease in reference, this book and the processor user’s manuals have arranged the
architecture information into topics that build upon one another, beginning with a
description and complete summary of registers and instructions (for all three environments)
and progressing to more specialized topics such as the cache, exception, and memory
management models. As such, chapters may include information from multiple levels of
the architecture; for example, the discussion of the cache model uses information from both
the VEA and the OEA.

It is beyond the scope of this manual to describe individual PowerPC processors. It must be
kept in mind that each PowerPC processor is unique in its implementation of the PowerPC
architecture.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the

O

About This Book xxvii

0
readers’ responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative.

Audience
This manual is intended for system software and hardware developers and application
programmers who want to develop products for the 32-bit PowerPC processors. It is
assumed that the reader understands operating systems, microprocessor system design, and
the basic principles of RISC processing.

This book describes only the 32-bit portions of the PowerPC architecture. The information
in this manual is also presented separately inPowerPC Microprocessor Family: The
Programming Environments for 32-Bit Microprocessors.

Organization
Following is a summary and a brief description of the major sections of this manual:

• Chapter 1, “Overview,” is useful for those who want a general understanding of the
features and functions of the PowerPC architecture. This chapter describes the
flexible nature of the PowerPC architecture definition and provides an overview of
how the PowerPC architecture defines the register set, operand conventions,
addressing modes, instruction set, cache model, exception model, and memory
management model.

• Chapter 2, “PowerPC Register Set,” is useful for software engineers who need to
understand the PowerPC programming model for the three programming
environments and the functionality of the PowerPC registers.

• Chapter 3, “Operand Conventions,” describes PowerPC conventions for storing data
in memory, including information regarding alignment, single- and double-
precision floating-point conventions, and big- and little-endian byte ordering.

• Chapter 4, “Addressing Modes and Instruction Set Summary,” provides an overview
of the PowerPC addressing modes and a description of the PowerPC instructions.
Instructions are organized by function.

• Chapter 5, “Cache Model and Memory Coherency,” provides a discussion of the
cache and memory model defined by the VEA and aspects of the cache model that
are defined by the OEA.

• Chapter 6, “Exceptions,” describes the exception model defined in the OEA.

• Chapter 7, “Memory Management,” provides descriptions of the PowerPC address
translation and memory protection mechanism as defined by the OEA.

• Chapter 8, “Instruction Set,” functions as a handbook for the PowerPC instruction
set. Instructions are sorted by mnemonic. Each instruction description includes the
instruction formats and an individualized legend that provides such information as
the level(s) of the PowerPC architecture in which the instruction may be found and
the privilege level of the instruction.

xxviii PowerPC Microprocessor 32-bit Family: The Programming Environments

0
• Appendix A, “PowerPC Instruction Set Listings,” lists all the PowerPC instructions.

Instructions are grouped according to mnemonic, opcode, function, and form.

• Appendix B, “POWER Architecture Cross Reference,” identifies the differences
that must be managed in migration from the POWER architecture to the PowerPC
architecture.

• Appendix C, “Multiple-Precision Shifts,” describes how multiple-precision shift
operations can be programmed as defined by the UISA.

• Appendix D, “Floating-Point Models,” gives examples of how the floating-point
conversion instructions can be used to perform various conversions as described in
the UISA.

• Appendix E, “Synchronization Programming Examples,” gives examples showing
how synchronization instructions can be used to emulate various synchronization
primitives and how to provide more complex forms of synchronization.

• Appendix F, “Simplified Mnemonics,” provides a set of simplified mnemonic
examples and symbols.

• This manual also includes a glossary and an index.

Suggested Reading
This section lists additional reading that provides background for the information in this
manual as well as general information about the PowerPC architecture.

General Information
The following documentation provides useful information about the PowerPC architecture
and computer architecture in general:

• The following books are available from the Morgan-Kaufmann Publishers, 340 Pine
Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A.), (415)
392-2665 (International); internet address: mkp@mkp.com.

— The PowerPC Architecture: A Specification for a New Family of RISC
Processors, Second Edition, by International Business Machines, Inc.

Updates to the architecture specification are accessible via the world-wide web
at http://www.austin.ibm.com/tech/ppc-chg.html.

— PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Computer, Inc., International Business Machines, Inc.,
and Motorola, Inc.

About This Book xxix

0
— Macintosh Technology in the Common Hardware Reference Platform, by Apple

Computer, Inc.

— Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson,

• Inside Macintosh: PowerPC System Software,Addison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.),
(800) 637-0029 (Canada), (716) 871-6555 (International).

• PowerPC Programming for Intel Programmers,by Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404;
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

PowerPC Documentation
The PowerPC documentation is organized in the following types of documents:

• User’s manuals—These books provide details about individual PowerPC
implementations and are intended to be used in conjunction withThe Programming
Environments Manual. These include the following:

— PowerPC 601™ RISC Microprocessor User’s Manual: (IBM order #
52G7484/(MPR601UMU-02)

— PowerPC 602™ RISC Microprocessor User’s Manual: (IBM order
#MPR602UM-01)

— PowerPC 603e™ RISC Microprocessor User’s Manual with Supplement for
PowerPC 603 Microprocessor: (IBM order #MPR603EUM-01)

— PowerPC 604™ RISC Microprocessor User’s Manual:
(IBM order #MPR604UMU-01)

• The PowerPC Microprocessor Family: The Programming Environments,
provides information about resources defined by the PowerPC architecture that are
common to PowerPC processors. This document describes both the 32- and 64-bit
portions or the architecture.

• Implementation Variances Relative to Rev. 1 of The Programming Environments
Manual is available via the world-wide web at
http://www.chips.ibm.com/products/ppc.

• Addenda/errata to user’s manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and changes to
functionality of the follow-on part. These addenda are intended for use with the
corresponding user’s manuals. These include the following:

— Addendum to PowerPC 603e RISC Microprocessor User’s Manual: PowerPC
603e Microprocessor Supplement and User’s Manual Errata:(IBM order #
SA14-2034-00)

— Addendum to PowerPC 604 RISC Microprocessor User’s Manual: PowerPC
604e™ Microprocessor Supplement and User’s Manual Errata: (IBM order #
SA14-2056-01)

xxx PowerPC Microprocessor 32-bit Family: The Programming Environments

0
• Hardware specifications—Hardware specifications provide specific data regarding

bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations for each PowerPC implementation. These include the
following:

— PowerPC 601 RISC Microprocessor Hardware Specifications:
(IBM order # MPR601HSU-03)

— PowerPC 602 RISC Microprocessor Hardware Specifications:
(IBM order # SC229897-00)

— PowerPC 603 RISC Microprocessor Hardware Specifications:
(IBM order # MPR603HSU-03)

— PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware
Specifications: (IBM order # G522-0268-00)

— PowerPC 603e RISC Microprocessor Family: PID7V-603e Hardware
Specifications: (IBM order # G522-0267-00)

— PowerPC 604 RISC Microprocessor Hardware Specifications:
(IBM order #MPR604HSU-02)

— PowerPC 604e RISC Microprocessor Family: PID9V-604e Hardware
Specifications: (IBM order # SA14-2054-00)

• Technical Summaries—Each PowerPC implementation has a technical summary
that provides an overview of its features. This document is roughly the equivalent to
the overview (Chapter 1) of an implementation user’s manual. Technical summaries
are available for the 601, 602, 603, 603e, 604, and 604e as well as the following:

— PowerPC 620™ RISC Microprocessor Technical Summary: (IBM order # SA14-
2069-01)

• PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors:
(IBM order # G522-0291-00) provides a detailed functional description of the 60x
bus interface, as implemented on the 601, 603, and 604 family of PowerPC
microprocessors. This document is intended to help system and chipset developers
by providing a centralized reference source to identify the bus interface presented by
the 60x family of PowerPC microprocessors.

• PowerPC Microprocessor Family: The Programmer’s Reference Guide: (IBM order
MPRPPCPRG-01) is a concise reference that includes the register summary,
memory control model, exception vectors, and the PowerPC instruction set.

• PowerPC Microprocessor Family: The Programmer’s Pocket Reference Guide:
(IBM order # SA14-2093-00): This foldout card provides an overview of the
PowerPC registers, instructions, and exceptions for 32-bit implementations.

• Application notes—These short documents contain useful information about
specific design issues useful to programmers and engineers working with PowerPC
processors.

About This Book xxxi

0
• Documentation for support chips—These include the following:

— MPC105 PCI Bridge/Memory Controller User’s Manual:
MPC105UM/AD (Motorola order #)

— MPC106 PCI Bridge/Memory Controller User’s Manual:
MPC106UM/AD (Motorola order #)

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.chips.ibm.com/products/ppc or at http://www.mot.com/powerpc/.

Conventions
This document uses the following notational conventions:

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example,bcctrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

fr A, fr B, fr C Instruction syntax used to identify a source FPR

fr D Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refers to the little-endian mode enable bit in the machine
state register.

x In certain contexts, such as a signal encoding, this indicates a don’t
care.

n Used to express an undefined numerical value

¬ NOT logical operator

& AND logical operator

| OR logical operator

This symbol identifies text that is relevant with respect to the
PowerPC user instruction set architecture (UISA). This symbol is
used both for information that can be found in the UISA specification
as well as for explanatory information related to that programming
environment.

This symbol identifies text that is relevant with respect to the
PowerPC virtual environment architecture (VEA). This symbol is
used both for information that can be found in the VEA specification

U

V

xxxii PowerPC Microprocessor 32-bit Family: The Programming Environments

0
as well as for explanatory information related to that programming
environment.

This symbol identifies text that is relevant with respect to the
PowerPC operating environment architecture (OEA). This symbol is
used both for information that can be found in the OEA specification
as well as for explanatory information related to that programming
environment.

Indicates reserved bits or bit fields in a register. Although these bits
may be written to as either ones or zeroes, they are always read as
zeros.

Additional conventions used with instruction encodings are described in Table 8-2 on page
8-2. Conventions used for pseudocode examples are described in Table 8-3 on page 8-4.

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document. Note that the
meanings for some acronyms (such as SDR1 and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning

ALU Arithmetic logic unit

BAT Block address translation

BIST Built-in self test

BPU Branch processing unit

BUID Bus unit ID

CR Condition register

CTR Count register

DABR Data address breakpoint register

DAR Data address register

DBAT Data BAT

DEC Decrementer register

DSISR Register used for determining the source of a DSI exception

DTLB Data translation lookaside buffer

EA Effective address

EAR External access register

ECC Error checking and correction

FPECR Floating-point exception cause register

0 0 0 0

O

About This Book xxxiii

0

FPR Floating-point register

FPSCR Floating-point status and control register

FPU Floating-point unit

GPR General-purpose register

IBAT Instruction BAT

IEEE Institute of Electrical and Electronics Engineers

ITLB Instruction translation lookaside buffer

IU Integer unit

L2 Secondary cache

LIFO Last-in-first-out

LR Link register

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

MESI Modified/exclusive/shared/invalid—cache coherency protocol

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NaN Not a number

NIA Next instruction address

No-op No operation

OEA Operating environment architecture

PIR Processor identification register

PTE Page table entry

PTEG Page table entry group

PVR Processor version register

RISC Reduced instruction set computing

RTL Register transfer language

RWITM Read with intent to modify

SDR1 Register that specifies the page table base address for virtual-to-physical address translation

SIMM Signed immediate value

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

xxxiv PowerPC Microprocessor 32-bit Family: The Programming Environments

0

SLB Segment lookaside buffer

SPR Special-purpose register

SPRGn Registers available for general purposes

SR Segment register

SRR0 Machine status save/restore register 0

SRR1 Machine status save/restore register 1

STE Segment table entry

TB Time base register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

VA Virtual address

VEA Virtual environment architecture

XATC Extended address transfer code

XER Register used primarily for indicating conditions such as carries and overflows for integer operations

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

About This Book xxxv

0
Terminology Conventions
Table ii lists certain terms used in this manual that differ from the architecture terminology
conventions.

Table iii describes instruction field notation conventions used in this manual.

Table ii. Terminology Conventions

The Architecture Specification This Manual

Data storage interrupt (DSI) DSI exception

Extended mnemonics Simplified mnemonics

Instruction storage interrupt (ISI) ISI exception

Interrupt Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA, BB, BT crb A, crb B, crb D (respectively)

BF, BFA crf D, crf S (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)

xxxvi PowerPC Microprocessor 32-bit Family: The Programming Environments

0

Chapter 1. Overview 1-1

1

Chapter 1. Overview
10
10

The PowerPC™ architecture provides a software model that ensures software compatibility
among implementations of the PowerPC family of microprocessors. In this document, and
in other PowerPC documentation as well, the term ‘implementation’ refers to a hardware
device (typically a microprocessor) that complies with the specifications defined by the
architecture.

The PowerPC architecture was originally defined as a 32-bit architecture and was later
extended to 64-bits. The 32 and 64 pertains to the size of the integer register width and it’s
supporting registers. In both implementations the floating point registers have always been
64 bits. This book describes the 32 bit option only and is a subset of the document:
“PowerPC Microprocessor Family: The Programming Environments”.

In general, the architecture defines the following:

• Instruction set—The instruction set specifies the families of instructions (such as
load/store, integer arithmetic, and floating-point arithmetic instructions), the
specific instructions, and the forms used for encoding the instructions. The
instruction set definition also specifies the addressing modes used for accessing
memory.

• Programming model—The programming model defines the register set and the
memory conventions, including details regarding the bit and byte ordering, and the
conventions for how data (such as integer and floating-point values) are stored.

• Memory model—The memory model defines the size of the address space and of the
subdivisions (pages and blocks) of that address space. It also defines the ability to
configure pages and blocks of memory with respect to caching, byte ordering (big-
or little-endian), coherency, and various types of memory protection.

• Exception model—The exception model defines the common set of exceptions and
the conditions that can generate those exceptions. The exception model specifies
characteristics of the exceptions, such as whether they are precise or imprecise,
synchronous or asynchronous, and maskable or nonmaskable. The exception model
defines the exception vectors and a set of registers used when exceptions are taken.
The exception model also provides memory space for implementation-specific
exceptions. (

NOTE: Exceptions are referred to as interrupts in the architecture specification.

1-2 PowerPC Microprocessor 32-bit Family: The Programming Environments

1

• Memory management model—The memory management model defines how
memory is partitioned, configured, and protected. The memory management model
also specifies how memory translation is performed, the real, virtual, and physical
address spaces, special memory control instructions, and other characteristics.
(Physical address is referred to as real address in the architecture specification.)

• Time-keeping model—The time-keeping model defines facilities that permit the
time of day to be determined and the resources and mechanisms required for
supporting time-related exceptions.

These aspects of the PowerPC architecture are defined at different levels of the architecture,
and this chapter provides an overview of those levels—the user instruction set architecture
(UISA), the virtual environment architecture (VEA), and the operating environment
architecture (OEA).

To locate any published errata or updates for this document, refer to the website at
http://www.mot.com/powerpc/ or at http://www.chips.ibm.com/products/ppc.

1.1 PowerPC Architecture Overview
The PowerPC architecture, developed jointly by Motorola, IBM, and Apple Computer, is
based on the POWER architecture implemented by RS/6000™ family of computers. The
PowerPC architecture takes advantage of recent technological advances in such areas as
process technology, compiler design, and reduced instruction set computing (RISC)
microprocessor design to provide software compatibility across a diverse family of
implementations, primarily single-chip microprocessors, intended for a wide range of
systems, including battery-powered personal computers; embedded controllers; high-end
scientific and graphics workstations; and multiprocessing, microprocessor-based
mainframes.

To provide a single architecture for such a broad assortment of processor environments, the
PowerPC architecture is both flexible and scalable.

The flexibility of the PowerPC architecture offers many price/performance options.
Designers can choose whether to implement architecturally-defined features in hardware or
in software. For example, a processor designed for a high-end workstation has greater need
for the performance gained from implementing floating-point normalization and
denormalization in hardware than a battery-powered, general-purpose computer might.

The PowerPC architecture is scalable to take advantage of continuing technological
advances—for example, the continued miniaturization of transistors makes it more feasible
to implement more execution units and a richer set of optimizing features without being
constrained by the architecture.

Chapter 1. Overview 1-3

1

The PowerPC architecture defines the following features:

• Separate 32-entry register files for integer and floating-point instructions. The
general-purpose registers (GPRs) hold source data for integer arithmetic
instructions, and the floating-point registers (FPRs) hold source and target data for
floating-point arithmetic instructions.

• Instructions for loading and storing data between the memory system and either the
FPRs or GPRs

• Uniform-length instructions to allow simplified instruction pipelining and parallel
processing instruction dispatch mechanisms

• Nondestructive use of registers for arithmetic instructions in which the second, third,
and sometimes the fourth operand, typically specify source registers for calculations
whose results are typically stored in the target register specified by the first operand.

• A precise exception model (with the option of treating floating-point exceptions
imprecisely)

• Floating-point support that includes IEEE-754 floating-point operations

• A flexible architecture definition that allows certain features to be performed in
either hardware or with assistance from implementation-specific software
depending on the needs of the processor design

• The ability to perform both single- and double-precision floating-point operations

• User-level instructions for explicitly storing, flushing, and invalidating data in the
on-chip caches. The architecture also defines special instructions (cache block touch
instructions) for speculatively loading data before it is needed, reducing the effect of
memory latency.

• Definition of a memory model that allows weakly-ordered memory accesses. This
allows bus operations to be reordered dynamically, which improves overall
performance and in particular reduces the effect of memory latency on instruction
throughput.

• Support for separate instruction and data caches (Harvard architecture) and for
unified caches

• Support for both big- and little-endian addressing modes

• The architecture supports both 32-bit or 64-bit implementations. This document
typically describes the architecture in terms of the 32-bit implementations.

This chapter provides an overview of the major characteristics of the PowerPC architecture
in the order in which they are addressed in this book:

• Register set and programming model
• Instruction set and addressing modes
• Cache implementations
• Exception model
• Memory management

1-4 PowerPC Microprocessor 32-bit Family: The Programming Environments

1

1.1.1 The 64-Bit PowerPC Architecture and the 32-Bit Subset
The PowerPC architecture is a 64-bit architecture with a 32-bit subset. It is important to
distinguish the following modes of operations:

• 64-bit implementations/64-bit mode—The PowerPC architecture provides 64-bit
addressing, 64-bit integer data types, and instructions that perform arithmetic
operations on those data types, as well as other features to support the wider
addressing range. For example, memory management differs somewhat between 32-
and 64-bit processors. The processor is configured to operate in 64-bit mode by
setting a bit in the machine state register (MSR).

• Processors that implement only the 32-bit portion of the PowerPC architecture
provide 32-bit effective addresses, which is also the maximum size of integer data
types.

• 64-bit implementations/32-bit mode—For compatibility with 32-bit
implementations, 64-bit implementations can be configured to operate in 32-bit
mode by clearing the MSR[SF] bit. In 32-bit mode, the effective address is treated
as a 32-bit address, condition bits, such as overflow and carry bits, are set based on
32-bit arithmetic (for example, integer overflow occurs when the result exceeds
32 bits), and the count register (CTR) is tested by branch conditional instructions
following conventions for 32-bit implementations. All applications written for 32-
bit implementations will run without modification on 64-bit processors running in
32-bit mode.

1.1.2 The Levels of the PowerPC Architecture
The PowerPC architecture is defined in three levels that correspond to three programming
environments, roughly described from the most general, user-level instruction set
environment, to the more specific, operating environment.

This layering of the architecture provides flexibility, allowing degrees of software
compatibility across a wide range of implementations. For example, an implementation
such as an embedded controller may support the user instruction set, whereas it may be
impractical for it to adhere to the memory management, exception, and cache models.

The three levels of the PowerPC architecture are defined as follows:

• PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level (referred to as problem state in the architecture
specification) software should conform. The UISA defines the base user-level
instruction set, user-level registers, data types, floating-point memory conventions
and exception model as seen by user programs, and the memory and programming
models. The icon shown in the margin identifies text that is relevant with respect to
the UISA.

• PowerPC virtual environment architecture (VEA)—The VEA defines additional
user-level functionality that falls outside typical user-level software requirements.
The VEA describes the memory model for an environment in which multiple

U

V

Chapter 1. Overview 1-5

1

devices can access memory, defines aspects of the cache model, defines cache
control instructions, and defines the time base facility from a user-level perspective.
The icon shown in the margin identifies text that is relevant with respect to the VEA.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but
may not necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level (referred to as privileged state in the architecture specification) resources
typically required by an operating system. The OEA defines the PowerPC memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. The OEA also defines the time base feature from a supervisor-
level perspective. The icon shown in the margin identifies text that is relevant with
respect to the OEA.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

Implementations that adhere to the VEA level are guaranteed to adhere to the UISA level;
likewise, implementations that conform to the OEA level are also guaranteed to conform to
the UISA and the VEA levels.

All PowerPC devices adhere to the UISA, offering compatibility among all PowerPC
application programs. However, there may be different versions of the VEA and OEA than
those described here. For example, some devices, such as embedded controllers, may not
require some of the features as defined by this VEA and OEA, and may implement a
simpler or modified version of those features.

The general-purpose PowerPC microprocessors developed jointly by Motorola and IBM
(such as the PowerPC 601™, PowerPC 603™, PowerPC 603e™, PowerPC 604™,
PowerPC 604e™, and PowerPC 620™ microprocessors) comply both with the UISA and
with the VEA and OEA discussed here. In this book, these three levels of the architecture
are referred to collectively as the PowerPC architecture.

The distinctions between the levels of the PowerPC architecture are maintained clearly
throughout this document, using the conventions described in the section “Conventions” on
page xxxiii of the Preface.

O

1-6 PowerPC Microprocessor 32-bit Family: The Programming Environments

1

1.1.3 Latitude Within the Levels of the PowerPC Architecture
The PowerPC architecture defines those parameters necessary to ensure compatibility
among PowerPC processors, but also allows a wide range of options for individual
implementations. These are as follows:

• The PowerPC architecture defines some facilities (such as registers, bits within
registers, instructions, and exceptions) as optional.

• The PowerPC architecture allows implementations to define additional privileged
special-purpose registers (SPRs), exceptions, and instructions for special system
requirements (such as power management in processors designed for very low-
power operation).

• There are many other parameters that the PowerPC architecture allows
implementations to define. For example, the PowerPC architecture may define
conditions for which an exception may be taken, such as alignment conditions. A
particular implementation may choose to solve the alignment problem without
taking the exception.

• Processors may implement any architectural facility or instruction with assistance
from software (that is, they may trap and emulate) as long as the results (aside from
performance) are identical to that specified by the architecture.

• Some parameters are defined at one level of the architecture and defined more
specifically at another. For example, the UISA defines conditions that may cause an
alignment exception, and the OEA specifies the exception itself.

Because of updates to the PowerPC architecture specification, which are described in this
document, variances may result between existing devices and the revised architecture
specification. Those variances are included inImplementation Variances Relative to Rev. 1
of The Programming Environments Manual.

1.1.4 Features Not Defined by the PowerPC Architecture
Because flexibility is an important design goal of the PowerPC architecture, there are many
aspects of the processor design, typically relating to the hardware implementation, that the
PowerPC architecture does not define, such as the following:

• System bus interface signals—Although numerous implementations may have
similar interfaces, the PowerPC architecture does not define individual signals or the
bus protocol. For example, the OEA allows each implementation to determine the
signal or signals that trigger the machine check exception.

• Cache design—The PowerPC architecture does not define the size, structure, the
replacement algorithm, or the mechanism used for maintaining cache coherency.
The PowerPC architecture supports, but does not require, the use of separate
instruction and data caches. Likewise, the PowerPC architecture does not specify the
method by which cache coherency is ensured.

Chapter 1. Overview 1-7

1

• The number and the nature of execution units—The PowerPC architecture is a RISC
architecture, and as such has been designed to facilitate the design of processors that
use pipelining and parallel execution units to maximize instruction throughput.
However, the PowerPC architecture does not define the internal hardware details of
implementations. For example, one processor may execute load and store operations
in the integer unit, while another may execute these instructions in a dedicated
load/store unit.

• Other internal microarchitecture issues—The PowerPC architecture does not
prescribe which execution unit is responsible for executing a particular instruction;
it also does not define details regarding the instruction fetching mechanism, how
instructions are decoded and dispatched, and how results are written back. Dispatch
and write-back may occur in order or out of order. Also while the architecture
specifies certain registers, such as the GPRs and FPRs, implementations can
implement register renaming or other schemes to reduce the impact of data
dependencies and register contention.

1.2 The PowerPC Architectural Models
This section provides overviews of aspects defined by the PowerPC architecture, following
the same order as the rest of this book. The topics include the following:

• PowerPC registers and programming model
• PowerPC operand conventions
• PowerPC instruction set and addressing modes
• PowerPC cache model
• PowerPC exception model
• PowerPC memory management model

1.2.1 PowerPC Registers and Programming Model
The PowerPC architecture defines register-to-register operations for computational
instructions. Source operands for these instructions are accessed from the architected
registers or are provided as immediate values embedded in the instruction. The three-
register instruction format allows specification of a target register distinct from two source
operand registers. This scheme allows efficient code scheduling in a highly parallel
processor. Load and store instructions are the only instructions that transfer data between
registers and memory. The PowerPC registers are shown in Figure 1-1.

U

O

V

1-8 PowerPC Microprocessor 32-bit Family: The Programming Environments

1

Figure 1-1. Programming Model—PowerPC Registers

The programming model incorporates 32 GPRs, 32 FPRs, special-purpose registers
(SPRs), and several miscellaneous registers. Each implementation may have its own unique
set of hardware implementation dependent (HID) registers that are not defined by the
architecture.

PowerPC processors have two levels of privilege:

• Supervisor mode—used exclusively by the operating system. Resources defined by
the OEA can be accessed only supervisor-level software.

• User mode—used by the application software and operating system software (Only
resources defined by the UISA and VEA can be accessed by user-level software)

These two levels govern the access to registers, as shown in Figure 1-1. The division of
privilege allows the operating system to control the application environment (providing
virtual memory and protecting operating system and critical machine resources).

USER MODEL—UISA
32 General-Purpose Registers (GPRs)

32 Floating-Point Registers (FPRs)
Condition Register (CR)

Floating-Point Status and Control Register (FPSCR)
XER

Link Register (LR)
Count Register (CTR)

SUPERVISOR MODEL—OEA

Configuration Registers
Machine State Register (MSR)

Processor Version Register (PVR)

Memory Management Registers
8 Instruction BAT Registers (IBATs)

8 Data BAT Registers (DBATs)
SDR1

16 Segment Registers (SRs)

Exception Handling Registers
Data Address Register (DAR)

DSISR
Save and Restore Registers (SRR0/SRR1)

SPRG0–SPRG3
Floating-Point Exception Cause Register (FPECR) 1

Miscellaneous Registers
Time Base Facility (TBU and TBL) (For writing)

Decrementer Register (DEC)
Data Address Breakpoint Register (DABR) 1

Processor Identification Register (PIR) 1

External Access Register (EAR) 1

USER MODEL—VEA
Time Base Facility (TBU and TBL)

(For reading)

1 Optional

Chapter 1. Overview 1-9

1

Instructions that control the state of the processor, the address translation mechanism, and
supervisor registers can be executed only when the processor is operating in supervisor
mode.

• User Instruction Set Architecture Registers—All UISA registers can be accessed
by all software with either user or supervisor privileges. These registers include the
32 general-purpose registers (GPRs) and the 32 floating-point registers (FPRs), and
other registers used for integer, floating-point, and branch instructions.

• Virtual Environment Architecture Registers—The VEA defines the user-level
portion of the time base facility, which consists of the two 32-bit time base registers.
These registers can be read by user-level software, but can be written to only by
supervisor-level software.

• Operating Environment Architecture Registers—SPRs defined by the OEA are
used for system-level operations such as memory management, exception handling,
and time-keeping.

The PowerPC architecture also provides room in the SPR space for implementation-
specific registers, typically referred to as HID registers. Individual HIDs are not discussed
in this manual.

1.2.2 Operand Conventions
Operand conventions are defined in two levels of the PowerPC architecture—user
instruction set architecture (UISA) and virtual environment architecture (VEA). These
conventions define how data is stored in registers and memory.

1.2.2.1 Byte Ordering
The default mapping for PowerPC processors is big-endian, but the UISA provides the
option of operating in either big- or little-endian mode. Big-endian byte ordering is shown
in Figure 1-2.

Figure 1-2. Big-Endian Byte and Bit Ordering

The OEA defines two bits in the MSR for specifying byte ordering—LE (little-endian
mode) and ILE (exception little-endian mode). The LE bit specifies whether the processor
is configured for big-endian or little-endian mode; the ILE bit specifies the mode when an
exception is taken by being copied into the LE bit of the MSR. A value of 0 specifies big-
endian mode and a value of 1 specifies little-endian mode.

Byte 0 Byte 1 Byte N (max)

Big-Endian Byte Ordering

MSB

U

U

O

O

V

V

U

1-10 PowerPC Microprocessor 32-bit Family: The Programming Environments

1

1.2.2.2 Data Organization in Memory and Data Transfers
Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
string/multiple instructions, a sequence of bytes or words. The address of a multiple-byte
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the natural address of an operand is
an integral multiple of the operand length. A memory operand is said to be aligned if it is
aligned at its natural boundary; otherwise it is misaligned.

1.2.2.3 Floating-Point Conventions
The PowerPC architecture adheres to the IEEE-754 standard for 64- and 32-bit floating-
point arithmetic:

• Double-precision arithmetic instructions may have single- or double-precision
operands but always produce double-precision results.

• Single-precision arithmetic instructions require all operands to be single-precision
values and always produce single-precision results. Single-precision values are
stored in double-precision format in the FPRs—these values are rounded such that
they can be represented in 32-bit, single-precision format (as they are in memory).

1.2.3 PowerPC Instruction Set and Addressing Modes
All PowerPC instructions are encoded as single-word (32-bit) instructions. Instruction
formats are consistent among all instruction types, permitting decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly
simplifies instruction pipelining.

1.2.3.1 PowerPC Instruction Set
Although these categories are not defined by the PowerPC architecture, the PowerPC
instructions can be grouped as follows:

• Integer instructions—These instructions are defined by the UISA. They include
computational and logical instructions.

— Integer arithmetic instructions
— Integer compare instructions
— Logical instructions
— Integer rotate and shift instructions

• Floating-point instructions—These instructions, defined by the UISA, include
floating-point computational instructions, as well as instructions that manipulate the
floating-point status and control register (FPSCR).

U

U

Chapter 1. Overview 1-11

1

— Floating-point arithmetic instructions
— Floating-point multiply/add instructions
— Floating-point compare instructions
— Floating-point status and control instructions
— Floating-point move instructions
— Optional floating-point instructions

• Load/store instructions—These instructions, defined by the UISA, include integer
and floating-point load and store instructions.

— Integer load and store instructions
— Integer load and store with byte reverse instructions
— Integer load and store multiple instructions
— Integer load and store string instructions
— Floating-point load and store instructions

• The UISA also provides a set of load/store with reservation instructions (lwarx and
stwcx.) that can be used as primitives for constructing atomic memory operations.
These are grouped under synchronization instructions.

• Synchronization instructions—The UISA and VEA define instructions for memory
synchronizing, especially useful for multiprocessing:

— Load and store with reservation instructions—These UISA-defined instructions
provide primitives for synchronization operations such as test and set, compare
and swap, and compare memory.

— The Synchronize instruction (sync)—This UISA-defined instruction is useful for
synchronizing load and store operations on a memory bus that is shared by
multiple devices.

— Enforce In-Order Execution of I/O (eieio)— Theeieio instruction provides an
ordering function for the effects of load and store operations executed by a
processor.

• Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— The UISA defines numerous instructions that control the program flow,
including branch, trap, and system call instructions as well as instructions that
read, write, or manipulate bits in the condition register.

— The OEA defines two flow control instructions that provide system linkage.
These instructions are used for entering and returning from supervisor level.

• Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches and translation lookaside buffers (TLBs)
(and segment registers). These instructions include move to/from special-purpose
register instructions (mtspr andmfspr).

U

V

O

1-12 PowerPC Microprocessor 32-bit Family: The Programming Environments

1

• Memory/cache control instructions—These instructions provide control of caches,
TLBs, and segment registers.

— The VEA defines several cache control instructions.

— The OEA defines one cache control instruction and several memory control
instructions.

• External control instructions—The VEA defines two optional instructions for use
with special input/output devices.

NOTE: This grouping of the instructions does not indicate which execution unit executes
a particular instruction or group of instructions. This is not defined by the
PowerPC architecture.

1.2.3.2 Calculating Effective Addresses
The effective address (EA), also called the logical address, is the address computed by the
processor when executing a memory access or branch instruction or when fetching the next
sequential instruction. Unless address translation is disabled, this address is converted by
the MMU to the appropriate physical address.

NOTE: The architecture specification uses only the term effective address and not logical
address.

The PowerPC architecture supports the following simple addressing modes for memory
access instructions:

• EA = (rA|0) (register indirect)
• EA = (rA|0) + offset (including offset = 0) (register indirect with immediate index)
• EA = (rA|0) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.

1.2.4 PowerPC Cache Model
The VEA and OEA portions of the architecture define aspects of cache implementations for
PowerPC processors. The PowerPC architecture does not define hardware aspects of cache
implementations. For example, some PowerPC processors may have separate instruction
and data caches (Harvard architecture), while others have a unified cache.

The PowerPC architecture allows implementations to control the following memory access
modes on a page or block basis:

• Write-back/write-through mode
• Caching-inhibited mode
• Memory coherency
• Guarded/not guarded against speculative accesses

Coherency is maintained on a cache block basis, and cache control instructions perform
operations on a cache block basis. The size of the cache block is implementation-

U

V

O

V

O

Chapter 1. Overview 1-13

1

dependent. The term cache block should not be confused with the notion of a block in
memory, which is described in Section 1.2.6, “PowerPC Memory Management Model.”

The VEA portion of the PowerPC architecture defines several instructions for cache
management. These can be used by user-level software to perform such operations as touch
operations (which cause the cache block to be speculatively loaded), and operations to
store, flush, or clear the contents of a cache block. The OEA portion of the architecture
defines one cache management instruction—the Data Cache Block Invalidate (dcbi)
instruction.

1.2.5 PowerPC Exception Model
The PowerPC exception mechanism, defined by the OEA, allows the processor to change
to supervisor state as a result of external signals, errors, or unusual conditions arising in the
execution of instructions. When exceptions occur, information about the state of the
processor is saved to various registers and the processor begins execution at an address
(exception vector) predetermined for each type of exception.

Exception handler routines begin execution in supervisor mode. The PowerPC exception
model is described in detail in Chapter 6, “Exceptions.”

NOTE: Some aspects of exception conditions are defined at other levels of the
architecture. For example, floating-point exception conditions are defined by the
UISA, whereas the exception mechanism is defined by the OEA.

PowerPC architecture requires that exceptions be handled in program order (excluding the
optional floating-point imprecise modes and the reset and machine check exception);
therefore, although a particular implementation may recognize exception conditions out of
order, they are handled strictly in order. When an instruction-caused exception is
recognized, any unexecuted instructions that appear earlier in the instruction stream,
including any that have not yet begun to execute, are required to complete before the
exception is taken. Any exceptions caused by those instructions must be handled first.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until all instructions currently executing successfully complete
processing and report their results.

The OEA supports four types of exceptions:

• Synchronous, precise
• Synchronous, imprecise
• Asynchronous, maskable
• Asynchronous, nonmaskable

O

V

1-14 PowerPC Microprocessor 32-bit Family: The Programming Environments

1

1.2.6 PowerPC Memory Management Model
The PowerPC memory management unit (MMU) specifications are provided by the
PowerPC OEA. The primary functions of the MMU in a PowerPC processor are to translate
logical (effective) addresses to physical addresses for memory accesses and I/O accesses
(most I/O accesses are assumed to be memory-mapped), and to provide access protection
on a block or page basis.

NOTE: Many aspects of memory management are implementation-dependent. The
description in Chapter 7, “Memory Management,” describes the conceptual
model of a PowerPC MMU; however, PowerPC processors may differ in the
specific hardware used to implement the MMU model of the OEA.

PowerPC processors require address translation for two types of transactions—instruction
accesses and data accesses to memory (typically generated by load and store instructions).

The entire 4-virtual Gbyte memory space is defined by sixteen 256-Mbyte segments.
Segments are configured through the 16 segment registers. In addition, the MMU of
PowerPC processors uses an interim virtual address (52 bits) and hashed page tables in the
generation of 32-bit physical addresses.

PowerPC processors also have a block address translation (BAT) mechanism for mapping
large blocks of memory. Block sizes range from 128 Kbyte to 256 Mbyte and are software-
selectable.

Two types of accesses generated by PowerPC processors require address translation:
instruction accesses, and data accesses to memory generated by load and store instructions.
The address translation mechanism is defined in terms of segment registers and page tables
used by PowerPC processors to locate the logical-to-physical address mapping for
instruction and data accesses. The segment information translates the logical (effective)
address to an interim virtual address, and the page table information translates the virtual
address to a physical (real) address.

Translation lookaside buffers (TLBs) are commonly implemented in PowerPC processors
to keep recently-used page table entries on-chip. Although their exact characteristics are
not specified by the architecture, the general concepts that are pertinent to the system
software are described.

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as pairs
of BAT registers that are accessible as supervisor special-purpose registers (SPRs); refer to
Chapter 7, “Memory Management,” for more information.

O

Chapter 1. Overview 1-15

1

1.3 Changes to this Document
The document from which this book was developed reflects changes made to the PowerPC
architecture after the publication of Rev. 0 of “PowerPC Microprocessor Family: The
Programming Environments Manual”and before Dec. 13, 1994 (Rev. 0.1). In addition, it
reflects changes made to the architecture after the publication of Rev. 0.1 ofThe
Programming Environments Manualand before Aug. 6, 1996 (Rev. 1). Although there are
many changes in this revision ofThe Programming Environments Manual,the following
sections summarize only the most significant changes and clarifications to the architecture
specification.

1.3.1 The Phasing Out of the Direct-store Function
This function defined segments that were used to generate direct-store interface accesses
on the external bus to communicate with specialized I/O devices; it was not optimized for
performance in the PowerPC architecture and was present for compatibility with older
devices only. As of this revision of the architecture (Rev. 1), direct-store segments are an
optional processor feature. However, they are not likely to be supported in future
implementations and new software should not use them.

1.3.2 General Additions to and Refinements of the Architecture
General additions to and refinements of the architecture specification are summarized in
Table 1-1 and Table 1-2. These tables list changes made to the UISA that are reflected in
this book and identify the chapters affected by those changes.

NOTE: Many of the changes made in the UISA are reflected in both the VEA and OEA
portions of the architecture as well.

Table 1-1. UISA Changes—Rev. 0 to Rev. 0.1

Change Chapter(s) Affected

The rules for handling of reserved bits in registers are clarified. 2

Clarified that isync does not wait for memory accesses to be performed. 4, 8

CR0[0–2] are undefined for some instructions in 64-bit mode. 4, 8

Clarified intermediate result with respect to floating-point operations (the intermediate
result has infinite precision and unbounded exponent range).

3

Clarified the definition of rounding such that rounding always occurs (specifically, FR and
FI flags are always affected) for arithmetic, rounding, and conversion instructions.

3

 Clarified the definition of the term ‘tiny’ (detected before rounding). 3

In D.3.2, “Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Word,”
changed value in FPR 3 from 232 to 232 – 1..

D

Noted additional POWER incompatibility for Store Floating-Point Single (stfs) instruction. B

1-16 PowerPC Microprocessor 32-bit Family: The Programming Environments

1

Table 1-3 and Table 1-4 list changes made to the VEA that are reflected in this book and the
chapters that are affected by those changes.

NOTE: Some changes to the UISA are reflected in the VEA and in turn, some changes
to the VEA affect the OEA as well.

Table 1-5 and Table 1-6 list changes made to the OEA that are reflected in this book and the
chapters that are affected by those changes.

NOTE: Some changes to the UISA and VEA are reflected in the OEA as well.

Table 1-2. UISA Changes—Rev. 0.1 to Rev. 1.0

Change Chapter(s) Affected

Although the stfiwx instruction is an optional instruction, it will likely be required for future
processors.

4, 8, A

Added the new Data Cache Block Allocate (dcba) instruction. 4, 5, 8, A

Deleted some warnings about generating misaligned little-endian access. 3

Table 1-3. VEA Changes—Rev. 0 to Rev. 0.1

Change Chapter(s) Affected

Clarified conditions under which a cache block is considered modified. 5

 WIMG bits have meaning only when the effective address is translated. 2, 5, 7

Clarified that isync does not wait for memory accesses to be performed. 4, 5, 7, 8

Clarified paging implications of eciwx and ecowx . 4, 5, 7, 8

Table 1-4. VEA Changes—Rev. 0.1 to Rev. 1.0

Change Chapter(s) Affected

Added the requirement that caching-inhibited guarded store operations are ordered. 5

Clarified use of the dcbf instruction in keeping instruction cache coherency in the case of a
combined instruction/data cache in a multiprocessor system.

5

Table 1-5. OEA Changes—Rev. 0 to Rev. 0.1

Change Chapter(s) Affected

Restricted several aspects of out-of-order operations. 2, 4, 5, 6, 7

Clarified instruction fetching and instruction cache paradoxes. 4, 5

Specified that IBATs contain W and G bits and that software must not write 1s to them. 2, 7

Corrected the description of coherence when the W bit differs among processors. 5

Clarified that referenced and changed bits are set for virtual pages. 7

Chapter 1. Overview 1-17

1
Revised the description of changed bit setting to avoid depending on the TLB. 7

Tightened the rules for setting the changed bit out of order. 5, 7

Specified which multiple DSISR bits may be set due to simultaneous DSI exceptions. 6

Removed software synchronization requirements for reading the TB and DEC. 2

More flexible DAR setting for a DABR exception. 6

Table 1-6. OEA Changes—Rev. 0.1 to Rev. 1.0

Change Chapter(s) Affected

Changed definition of direct-store segments to an optional processor feature that is not
likely to be supported in future implementations and new software should not use it.

2, 6, 7

Changed the ranges of bits saved from MSR to SRR1 (and restored from SRR1 to MSR on
rfi) on an exception.

2, 6

Clarified the definition of execution synchronization. Also clarified that the mtmsr
instructions are not execution synchronizing.

2, 4, 8

Clarified the use of memory allocated for predefined uses (including the exception
vectors).

6, 7

Revised the page table update synchronization requirements and recommended code
sequences.

7

Table 1-5. OEA Changes—Rev. 0 to Rev. 0.1 (Continued)

Change Chapter(s) Affected

1-18 PowerPC Microprocessor 32-bit Family: The Programming Environments

1

This page deliberately left blank.

Chapter 2. PowerPC Register Set 2-1

2

Chapter 2. PowerPC Register Set
20
20

This chapter describes the register organization defined by the three levels of the PowerPC
architecture:

• User instruction set architecture (UISA)

• Virtual environment architecture (VEA), and

• Operating environment architecture (OEA).

The PowerPC architecture defines register-to-register operations for all computational
instructions. Source data for these instructions are accessed from the on-chip registers or
are provided as immediate values embedded in the opcode. The three-register instruction
format allows specification of a target register distinct from the two source registers, thus
preserving the original data for use by other instructions and reducing the number of
instructions required for certain operations. Data is transferred between memory and
registers withexplicit load and store instructions only.

NOTE: The handling of reserved bits in any register is implementation-dependent.
Software is permitted to write any value to a reserved bit in a register. However,
a subsequent reading of the reserved bit returns 0 if the value last written to the
bit was 0 and returns an undefined value (may be 0 or 1) otherwise. This means
that even if the last value written to a reserved bit was 1, reading that bit may
return 0.

2.1 PowerPC UISA Register Set
The PowerPC UISA registers, shown in Figure 2-1, can be accessed by either user- or
supervisor-level instructions (the architecture specification refers to user-level and
supervisor-level as problem state and privileged state respectively). The general-purpose
registers (GPRs) and floating-point registers (FPRs) are accessed as instruction operands.
Access to registers can be explicit (that is, through the use of specific instructions for that
purpose such as Move to Special-Purpose Register (mtspr) and Move from Special-
Purpose Register (mfspr) instructions) or implicit as part of the execution of an instruction.
Some registers are accessed both explicitly and implicitly.

The number to the right of the register names indicates the number that is used in the syntax
of the instruction operands to access the register (for example, the number used to access
the XER is SPR 1).

NOTE: All registers are 32 bits wide except the Floating-Point Registers.

U
V
O

U

2

2-2 PowerPC Microprocessor 32-bit Family: The Programming Environments

Figure 2-1. UISA Programming Model—User-Level Registers

TBR 268

Time Base Facility
(For Reading)

TBL (32)

TBR 269TBU (32)

SUPERVISOR MODEL
OEA

Machine State Register

MSR (32)

Processor Version Register

SPR 287PVR (32)

Segment Registers

SR0 (32)

SR1 (32)

SR15 (32)

DSISR

SPR 18DSISR (32)

Data Address Register

SPR 19DAR (32)

Save and Restore Registers

SPR 26SRR0 (32)

SPR 27SRR1 (32)

SPRGs
SPR 272SPRG0 (32)

SPR 273SPRG1 (32)

SPR 274SPRG2 (32)

SPR 275SPRG3 (32)

SPR 22

Decrementer

DEC (32)

Time Base Facility
(For Writing)

SPR 284TBL (32)

SPR 285TBU (32)

SPR 282

External Access Register
(Optional)

EAR (32)

SDR1

SPR 25SDR1 (32)

Instruction BAT Registers

SPR 528IBAT0U (32)

SPR 529IBAT0L (32)

SPR 530IBAT1U (32)

SPR 531IBAT1L (32)

SPR 532IBAT2U /32)

SPR 533IBAT2L (32)

SPR 534IBAT3U (32)

SPR 535IBAT3L (32)

Data BAT Registers

SPR 536DBAT0U (32)

SPR 537DBAT0L (32)

SPR 538DBAT1U (32)

SPR 539DBAT1L (32)

SPR 540DBAT2U (32)

SPR 541DBAT2L (32)

SPR 542DBAT3U (32)

SPR 543DBAT3L (32)

Configuration Registers

Memory Management Registers

Exception Handling Registers

Miscellaneous Registers

USER MODEL
VEA SPR 1013DABR (32)

Data Address
Breakpoint Register
(Optional)

SPR 1

USER MODEL
UISA

Floating-Point Status
and Control Register

CR (32)

FPSCR (32)

Condition Register

GPR0 (32)

GPR1 (32)

GPR31 (32)

FPR0 (64)

FPR1 (64)

FPR31 (64)

General-Purpose Registers

Floating-Point Registers

XER (32)

SPR 8

Link Register

LR (32)

SPR 9

Count Register

CTR (32)

XER Register

Floating-Point Exception
Cause Register (Optional)

SPR 1022FPECR

SPR 1023

Processor Identification
Register (Optional)

PIR

2

Chapter 2. PowerPC Register Set 2-3

The user-level registers can be accessed by all software with either user or supervisor
privileges. The user-level registers are:

• General-purpose registers (GPRs). The general-purpose register file consists of 32
GPRs designated as GPR0–GPR31. The GPRs serve as data source or destination
registers for all integer instructions and provide data for generating addresses. See
Section 2.1.1, “General-Purpose Registers (GPRs),” for more information.

• Floating-point registers (FPRs). The floating-point register file consists of 32 FPRs
designated as FPR0–FPR31; these registers serve as either the source or the
destination for all floating-point instructions. While the floating-point model
includes data objects of either single- or double-precision floating-point format, the
FPRs only contain data in double-precision format. For more information, see
Section 2.1.2, “Floating-Point Registers (FPRs).”

• A condition register (CR) is a 32-bit register that is divided into eight 4-bit fields,
CR0–CR7. This register stores the results of certain arithmetic operations and
provides a mechanism for testing and branching. For more information, see Section
2.1.3, “Condition Register (CR).”

• A floating-point status and control register (FPSCR) which contains all floating-
point exception signal bits, exception summary bits, exception enable bits, and
rounding control bits needed for compliance with the IEEE 754 standard. For more
information, see Section 2.1.4, “Floating-Point Status and Control Register
(FPSCR).”

NOTE: The architecture specification refers to exceptions as interrupts.

• An XER register (XER) which indicates overflows and carry conditions for integer
operations and the number of bytes to be transferred by the load/store string indexed
instructions. For more information, see Section 2.1.5, “XER Register (XER).”

• A link register (LR) which provides the branch target address for the Branch
Conditional to Link Register (bclrx) instructions, and can optionally be used to hold
the effective address of the instruction that follows a branch with link update
instruction in the instruction stream, typically used for loading the return pointer for
a subroutine. For more information, see Section 2.1.6, “Link Register (LR).”

• A count register (CTR) which holds a loop count that can be decremented during
execution of appropriately coded branch instructions. The CTR can also provide the
branch target address for the Branch Conditional to Count Register (bcctrx)
instructions. For more information, see Section 2.1.7, “Count Register (CTR).”

2.1.1 General-Purpose Registers (GPRs)
Integer data is manipulated in the processor’s 32 GPRs shown in Figure 2-1. These registers
are 32-bit registers. The GPRs are accessed as either source or destination registers in the
instruction syntax.

2

2-4 PowerPC Microprocessor 32-bit Family: The Programming Environments

2.1.2 Floating-Point Registers (FPRs)
The PowerPC architecture provides thirty-two 64-bit FPRs as shown in Figure 2-2. These
registers are accessed as either source or destination registers for floating-point instructions.
Each FPR supports the double-precision floating-point format. Every instruction that
interprets the contents of an FPR as a floating-point value uses the double-precision
floating-point format for this interpretation.

Instructions for all floating-point arithmetic operations use the data located in the FPRs and,
with the exception of compare instructions, place the result into a FPR. Information about
the status of floating-point operations is placed into the FPSCR and in some cases, into the
CR after the completion of instruction execution. For information on how the CR is affected
for floating-point operations, see Section 2.1.3, “Condition Register (CR).”

Instructions to load and to store floating-point double precision values transfer 64 bits of
data between memory and the FPRs with no conversion.

Instructions to load floating-point single precision values are provided to read single-
precision floating-point values from memory, convert them to double-precision floating-
point format, and place them in the target floating-point register.

Instructions to store single-precision values are provided to read double-precision floating-
point values from a floating-point register, convert them to single-precision floating-point
format, and place them in the target memory location.

Instructions for single- and double-precision arithmetic operations accept values from the
FPRs in double-precision format. For instructions of single-precision arithmetic and store
operations, all input values must be representable in single-precision format; otherwise, the
results placed into the target FPR (or the memory location) and the setting of status bits in
the FPSCR and in the condition register (if the instruction’s record bit, Rc, is set) are
undefined.

The floating-point arithmetic instructions produce intermediate results that may be
regarded as infinitely precise and with unbounded exponent range. This intermediate result
is normalized or denormalized if required, and then rounded to the destination format. The
final result is then placed into the target FPR in the double-precision format or in fixed-point
format, depending on the instruction. Refer to Section 3.3, “Floating-Point Execution
Models—UISA,” for more information.

Figure 2-2. Floating-Point Registers (FPRs)

FPR0

FPR1

FPR31

0 63

2

Chapter 2. PowerPC Register Set 2-5

2.1.3 Condition Register (CR)
The condition register (CR) is a 32-bit register that reflects the result of certain operations
and provides a mechanism for testing and branching. The bits in the CR are grouped into
eight 4-bit fields, CR0–CR7, as shown below.

Figure 2-3. Condition Register (CR)

The CR fields can be set in one of the following ways:

• Specified fields of the CR can be set from a GPR by using themtcrf instruction.

• The contents of the XER[0–3] can be moved to another CR field by using themcrf
instruction.

• A specified field of the XER can be copied to a specified field of the CR by using the
mcrxr instruction.

• A specified field of the FPSCR can be copied to a specified field of the CR by using
themcrfs instruction.

• Logical instructions of the condition register can be used to perform logical
operations on specified bits in the condition register.

• CR0 can be the implicit result of an integer instruction.

• CR1 can be the implicit result of a floating-point instruction.

• A specified CR field can indicate the result of either an integer or floating-point
compare instruction.

NOTE: Branch instructions are provided to test individual CR bits.

CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31

2

2-6 PowerPC Microprocessor 32-bit Family: The Programming Environments

2.1.3.1 Condition Register CR0 Field Definition
For all integer instructions, when the CR is set to reflect the result of the operation (that is,
when Rc = 1), and foraddic., andi., andandis., the first three bits of CR0 are set by an
algebraic comparison of the result to zero; the fourth bit of CR0 is copied from XER[SO].
For integer instructions, CR bits 0–3 are set to reflect the result as a signed quantity.

The CR bits are interpreted as shown in Table 2-1. If any portion of the result is undefined,
the value placed into the first three bits of CR0 is undefined.

NOTE: If overflow occurs, CR0 may not reflect the true (that is, infinitely precise)
results.

2.1.3.2 Condition Register CR1 Field Definition
In all floating-point instructions when the CR is set to reflect the result of the operation (that
is, when the instruction’s record bit, Rc, is set), CR1 (bits 4–7 of the CR) is copied from
bits 0–3 of the FPSCR and indicates the floating-point exception status. For more
information about the FPSCR, see Section 2.1.4, “Floating-Point Status and Control
Register (FPSCR).” The bit settings for the CR1 field are shown in Table 2-2.

Table 2-1. Bit Settings for CR0 Field of CR

CR0
Bit

Description

0 Negative (LT)—This bit is set when the result is negative.

1 Positive (GT)—This bit is set when the result is positive (and not
zero).

2 Zero (EQ)—This bit is set when the result is zero.

3 Summary overflow (SO)—This is a copy of the final state of XER[SO]
at the completion of the instruction.

Table 2-2. Bit Settings for CR1 Field of CR

CR1
Bit

Description

4 Floating-point exception (FX)—This is a copy of the final state of
FPSCR[FX] at the completion of the instruction.

5 Floating-point enabled exception (FEX)—This is a copy of the final
state of FPSCR[FEX] at the completion of the instruction.

6 Floating-point invalid exception (VX)—This is a copy of the final state
of FPSCR[VX] at the completion of the instruction.

7 Floating-point overflow exception (OX)—This is a copy of the final
state of FPSCR[OX] at the completion of the instruction.

2

Chapter 2. PowerPC Register Set 2-7

2.1.3.3 Condition Register CR n Field—Compare Instruction
For a compare instruction, when a specified CR field is set to reflect the result of the
comparison, the bits of the specified field are interpreted as shown in Table 2-3.

2.1.4 Floating-Point Status and Control Register (FPSCR)
The Floating-Point Status and Control Register (FPSCR), shown inFigure 2-4, is used for:

• Recording exceptions generated by floating-point operations
• Recording the type of the result produced by a floating-point operation
• Controlling the rounding mode used by floating-point operations
• Enabling or disabling the reporting of exceptions (that is, invoking the exception

handler)

Bits 0–23 are status bits. Bits 24–31 are control bits. Status bits in the FPSCR are updated
at the completion of the instruction execution.

Except for the floating-point enabled exception summary (FEX) and floating-point invalid
operation exception summary (VX), the exception condition bits in the FPSCR (bits 0–12
and 21–23) are sticky. Once set, sticky bits remain set until they are cleared by the relevant
mcrfs, mtfsfi, mtfsf, ormtfsb0 instruction.

FEX and VX are the logical ORs of other FPSCR bits. Therefore, these two bits are not
listed among the FPSCR bits directly affected by the various instructions.

Table 2-3. CRn Field Bit Settings for Compare Instructions

CRn
Bit 1 Description 2

0 Less than or floating-point less than (LT, FL).
For integer compare instructions: rA < SIMM or rB (signed comparison) or

rA < UIMM or rB (unsigned comparison).
For floating-point compare instructions: frA < frB.

1 Greater than or floating-point greater than (GT, FG).
For integer compare instructions: rA > SIMM or rB (signed comparison) or

rA > UIMM or rB (unsigned comparison).
For floating-point compare instructions: frA > frB.

2 Equal or floating-point equal (EQ, FE).
For integer compare instructions: rA = SIMM, UIMM, or rB.
For floating-point compare instructions: frA = frB.

3 Summary overflow or floating-point unordered (SO, FU).
For integer compare instructions: This is a copy of the final state of XER[SO]

at the completion of the instruction.
For floating-point compare instructions: One or both of frA and frB is a Not a

Number (NaN).

Notes :1Here, the bit indicates the bit number in any one of the 4-bit subfields, CR0–CR7.
2For a complete description of instruction syntax conventions, refer to Table 8-2 on
page 8-2.

2

2-8 PowerPC Microprocessor 32-bit Family: The Programming Environments

Figure 2-4. Floating-Point Status and Control Register (FPSCR)

A listing of FPSCR bit settings is shown in Table 2-4.

Table 2-4. FPSCR Bit Settings

Bit(s) Name Description

0 FX Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf ,
implicitly sets FPSCR[FX] if that instruction causes any of the floating-point exception bits in
the FPSCR to transition from 0 to 1. The mcrfs , mtfsfi , mtfsf , mtfsb0 , and mtfsb1
instructions can alter FPSCR[FX] explicitly. This is a sticky bit.

1 FEX Floating-point enabled exception summary. This bit signals the occurrence of any of the
enabled exception conditions. It is the logical OR of all the floating-point exception bits masked
by their respective enable bits (FEX = (VX & VE) ^ (OX & OE) ^ (UX & UE) ^ (ZX & ZE) ^ (XX
& XE)). The mcrfs , mtfsf , mtfsfi , mtfsb0 , and mtfsb1 instructions cannot alter FPSCR[FEX]
explicitly. This is not a sticky bit.

2 VX Floating-point invalid operation exception summary. This bit signals the occurrence of any
invalid operation exception. It is the logical OR of all of the invalid operation exceptions. The
mcrfs , mtfsf , mtfsfi , mtfsb0 , and mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This
is not a sticky bit.

3 OX Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2, “Overflow,
Underflow, and Inexact Exception Conditions.”

4 UX Floating-point underflow exception. This is a sticky bit. See Section 3.3.6.2.2, “Underflow
Exception Condition.”

5 ZX Floating-point zero divide exception. This is a sticky bit. See Section 3.3.6.1.2, “Zero Divide
Exception Condition.”

6 XX Floating-point inexact exception. This is a sticky bit. See Section 3.3.6.2.3, “Inexact Exception
Condition.”
FPSCR[XX] is the sticky version of FPSCR[FI]. The following rules describe how FPSCR[XX]
is set by a given instruction:
• If the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically

ORing the old value of FPSCR[XX] with the new value of FPSCR[FI].
• If the instruction does not affect FPSCR[FI], the value of FPSCR[XX] is unchanged.

7 VXSNAN Floating-point invalid operation exception for SNaN. This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

8 VXISI Floating-point invalid operation exception for ∞–∞ . This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

9 VXIDI Floating-point invalid operation exception for ∞ ÷ ∞. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

10 VXZDZ Floating-point invalid operation exception for 0÷ 0. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31

VXIDI

VXISI

VXSNAN

VXZDZ

VXIMZ

VXVC

VXSOFT

VXSQRT

VXCVI

Reserved

FX FEX VX OX UX ZX XX FR FI FPRF 0 VE OE UE ZE XE NI RN

2

Chapter 2. PowerPC Register Set 2-9

11 VXIMZ Floating-point invalid operation exception for ∞ * 0. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

12 VXVC Floating-point invalid operation exception for invalid compare. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

13 FR Floating-point fraction rounded. The last arithmetic or rounding and conversion instruction that
rounded the intermediate result incremented the fraction. This bit is NOT sticky.
See Section 3.3.5, “Rounding.”

14 FI Floating-point fraction inexact. The last arithmetic or rounding and conversion instruction
either rounded the intermediate result (producing an inexact fraction) or caused a disabled
overflow exception. This bit is NOT sticky.
See Section 3.3.5, “Rounding.” For more information regarding the relationship between
FPSCR[FI] and FPSCR[XX], see the description of the FPSCR[XX] bit.

15–19 FPRF Floating-point result flags. For arithmetic, rounding, and conversion instructions, the field is
based on the result placed into the target register, except that if any portion of the result is
undefined, the value placed here is undefined.
15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion

instructions may set this bit with the FPCC bits to indicate the class of the result as
shown in Table 2-5.

16–19 Floating-point condition code (FPCC). Floating-point compare instructions always
set one of the FPCC bits to one and the other three FPCC bits to zero. Arithmetic,
rounding, and conversion instructions may set the FPCC bits with the C bit to
indicate the class of the result. Note: In this case the high-order three bits of the
FPCC retain their relational significance indicating that the value is less than,
greater than, or equal to zero.
16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)
19 Floating-point unordered or NaN (FU or ?)

Note: These are NOT sticky bits.

20 — Reserved

21 VXSOFT Floating-point invalid operation exception for software request. This is a sticky bit. This bit can
be altered only by one of the following instructions: mcrfs , mtfsfi , mtfsf , mtfsb0 , or mtfsb1 .
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

22 VXSQRT Floating-point invalid operation exception for invalid square root. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

23 VXCVI Floating-point invalid operation exception for invalid integer convert. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

24 VE Floating-point invalid operation exception enable.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

25 OE IEEE floating-point overflow exception enable.
See Section 3.3.6.2, “Overflow, Underflow, and Inexact Exception Conditions.”

26 UE IEEE floating-point underflow exception enable.
See Section 3.3.6.2.2, “Underflow Exception Condition.”

27 ZE IEEE floating-point zero divide exception enable.
See Section 3.3.6.1.2, “Zero Divide Exception Condition.”

28 XE Floating-point inexact exception enable. See Section 3.3.6.2.3, “Inexact Exception Condition.”

Table 2-4. FPSCR Bit Settings (Continued)

Bit(s) Name Description

2

2-10 PowerPC Microprocessor 32-bit Family: The Programming Environments

Table 2-5 illustrates the floating-point result flags used by PowerPC processors. The result
flags correspond to FPSCR bits 15–19.

29 NI Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards
and the other FPSCR bits may have meanings other than those described here. If the bit is set
and if all implementation-specific requirements are met and if an IEEE-conforming result of a
floating-point operation would be a denormalized number, the result produced is zero
(retaining the sign of the denormalized number). Any other effects associated with setting this
bit are described in the user’s manual for the implementation (the effects are implementation-
dependent).

30–31 RN Floating-point rounding control. See Section 3.3.5, “Rounding.”
00 Round to nearest
01 Round toward zero
10 Round toward +infinity
11 Round toward –infinity

Table 2-5. Floating-Point Result Flags in FPSCR

Result Flags (Bits 15–19)
Result Value Class

C < > = ?

1 0 0 0 1 Quiet NaN

0 1 0 0 1 –Infinity

0 1 0 0 0 –Normalized number

1 1 0 0 0 –Denormalized number

1 0 0 1 0 –Zero

0 0 0 1 0 +Zero

1 0 1 0 0 +Denormalized number

0 0 1 0 0 +Normalized number

0 0 1 0 1 +Infinity

Table 2-4. FPSCR Bit Settings (Continued)

Bit(s) Name Description

2

Chapter 2. PowerPC Register Set 2-11

2.1.5 XER Register (XER)
The XER register (XER) is a 32-bit, user-level register shown in Figure 2-5.

.

Figure 2-5. XER Register

The bit definitions for XER, shown in Table 2-6, are based on the operation of an
instruction considered as a whole, not on intermediate results. For example, the result of the
Subtract from Carrying (subfcx) instruction is specified as the sum of three values. This
instruction sets bits in the XER based on the entire operation, not on an intermediate sum.

Table 2-6. XER Bit Definitions

Bit(s) Name Description

0 SO Summary overflow. The summary overflow bit (SO) is set whenever an instruction (except mtspr)
sets the overflow bit (OV). Once set, the SO bit remains set until it is cleared by an mtspr
instruction (specifying the XER) or an mcrxr instruction. It is not altered by compare instructions,
nor by other instructions (except mtspr to the XER, and mcrxr) that cannot overflow. Executing
an mtspr instruction to the XER, supplying the values zero for SO and one for OV, causes SO to
be cleared and OV to be set.

1 OV Overflow. The overflow bit (OV) is set to indicate that an overflow has occurred during execution of
an instruction. Add, subtract from, and negate instructions having OE = 1 set the OV bit if the
carry out of the msb is not equal to the carry into the msb, and clear it otherwise. Multiply low and
divide instructions having OE = 1 set the OV bit if the result cannot be represented in 32 bits
(mullw , divw , divwu), and clear it otherwise. The OV bit is not altered by compare instructions
that cannot overflow (except mtspr to the XER, and mcrxr).

2 CA Carry. The carry bit (CA) is set during execution of the following instructions:
• Add carrying, subtract from carrying, add extended, and subtract from extended instructions

set CA if there is a carry out of the msb, and clear it otherwise.
• Shift right algebraic instructions set CA if any 1 bits have been shifted out of a negative

operand, and clear it otherwise.
The CA bit is not altered by compare instructions, nor by other instructions that do not set carry
(except shift right algebraic, mtspr to the XER, and mcrxr).

3–24 — Reserved

25–31 This field specifies the number of bytes to be transferred by a Load String Word Indexed (lswx) or
Store String Word Indexed (stswx) instruction.

Reserved

SO OV CA 0 0000 0000 0000 0000 0000 0 Byte count

0 1 2 3 24 25 31

2

2-12 PowerPC Microprocessor 32-bit Family: The Programming Environments

2.1.6 Link Register (LR)
The link register (LR) is a 32-bit register which supplies the branch target address for the
Branch Conditional to Link Register (bclrx) instructions, and in the case of a branch with
link update instruction, can be used to hold the logical address of the instruction that
follows the branch with link update instruction (for returning from a subroutine). The
format of LR is shown in Figure 2-6.

Figure 2-6. Link Register (LR)

NOTE: Although the two least-significant bits can accept any values written to them,
they are ignored when the LR is used as an address. Both conditional and
unconditional branch instructions include the option of placing the logical
address of the instruction following the branch instruction in the LR.

The link register can be also accessed by themtspr andmfspr instructions using SPR 8.
Prefetching instructions along the target path (loaded by anmtspr instruction) is possible
provided the link register is loaded sufficiently ahead of the branch instruction so that any
branch prediction hardware can calculate the branch address. Additionally, PowerPC
processors can prefetch along a target path loaded by a branch and link instruction.

NOTE: Some PowerPC processors may keep a stack of the LR values most recently set
by branch with link update instructions. To benefit from these enhancements, use
of the link register should be restricted to the manner described in
Section 4.2.4.2, “Conditional Branch Control.”

2.1.7 Count Register (CTR)
The count register (CTR) is a 32-bit register. The CTR can hold a loop count that can be
decremented during execution of branch instructions that contain an appropriately coded
BO field. If the value in CTR is 0 before being decremented, it is 0xFFFF_FFFF (232– 1)
afterwards. The CTR can also provide the branch target address for the Branch Conditional
to Count Register (bcctrx) instruction. The CTR is shown in Figure 2-7.

Figure 2-7. Count Register (CTR)

Prefetching instructions along the target path is also possible provided the count register is
loaded sufficiently ahead of the branch instruction so that any branch prediction hardware
can calculate the correct value of the loop count.

Branch Address

0 31

CTR

0 31

2

Chapter 2. PowerPC Register Set 2-13

The count register can also be accessed by themtspr andmfspr instructions by specifying
SPR 9. In branch conditional instructions, the BO field specifies the conditions under which
the branch is taken. The first four bits of the BO field specify how the branch is affected by
or affects the CR and the CTR. The encoding for the BO field is shown in Table 2-7.

2.2 PowerPC VEA Register Set—Time Base
The PowerPC virtual environment architecture (VEA) defines registers in addition to those
defined by the UISA. The PowerPC VEA register set can be accessed by all software with
either user- or supervisor-level privileges. Figure 2-8 provides a graphic illustration of the
PowerPC VEA register set. (Figure 2-8 is similar to that found in Figure 2-1 with the
additonal PowerPC VEA registers.)

The PowerPC VEA introduces the time base facility (TB), a 64-bit structure that consists
of two 32-bit registers—time base upper (TBU) and time base lower (TBL).

NOTE: The time base registers can be accessed by both user- and supervisor-level
instructions. In the context of the VEA, user-level applications are permitted
read-only access to the TB. The OEA defines supervisor-level access to the TB
for writing values to the TB. See Section 2.3.12, “Time Base Facility The
general-purpose registers (GPRs), link register (LR), and count register (CTR)
are 32 bits. These registers are described fully in Section 2.1, “PowerPC UISA
Register Set.” (TB)—OEA,” for more information.

In Figure 2-8, the numbers to the right of the register name indicates the number that is used
in the syntax of the instruction operands to access the register (for example, the number
used to access the XER is SPR 1).

Table 2-7. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

Notes : The y bit provides a hint about whether a conditional branch is likely to be taken and is used by
some PowerPC implementations to improve performance. Other implementations may ignore the
y bit.

The z indicates a bit that is ignored. The z bits should be cleared (zero), as they may be assigned
a meaning in a future version of the PowerPC UISA.

V

2

2-14 PowerPC Microprocessor 32-bit Family: The Programming Environments

Figure 2-8. VEA Programming Model—User-Level Registers Plus Time Base

TBR 268

Time Base Facility
(For Reading)

TBL (32)

TBR 269TBU (32)

USER MODEL
VEA

SPR 1

USER MODEL
UISA

Floating-Point Status
and Control Register

CR (32)

FPSCR (32)

Condition Register

GPR0 (32)

GPR1 (32)

GPR31 (32)

FPR0 (64)

FPR1 (64)

FPR31 (64)

General-Purpose Registers

Floating-Point Registers

XER (32)

SPR 8

Link Register

LR (32)

SPR 9

Count Register

CTR (32)

XER Register

SUPERVISOR MODEL
OEA

Machine State Register

MSR (32)

Processor Version Register

SPR 287PVR (32)

Segment Registers

SR0 (32)

SR1 (32)

SR15 (32)

DSISR

SPR 18DSISR (32)

Data Address Register

SPR 19DAR (32)

Save and Restore Registers

SPR 26SRR0 (32)

SPR 27SRR1 (32)

SPRGs
SPR 272SPRG0 (32)

SPR 273SPRG1 (32)

SPR 274SPRG2 (32)

SPR 275SPRG3 (32)

SPR 22

Decrementer

DEC (32)

Time Base Facility
(For Writing)

SPR 284TBL (32)

SPR 285TBU (32)

SPR 282

External Access Register
(Optional)

EAR (32)

SDR1

SPR 25SDR1 (32)

Instruction BAT Registers

SPR 528IBAT0U (32)

SPR 529IBAT0L (32)

SPR 530IBAT1U (32)

SPR 531IBAT1L (32)

SPR 532IBAT2U (32)

SPR 533IBAT2L (32)

SPR 534IBAT3U (32)

SPR 535IBAT3L (32)

Data BAT Registers

SPR 536DBAT0U (32)

SPR 537DBAT0L (32)

SPR 538DBAT1U (32)

SPR 539DBAT1L (32)

SPR 540DBAT2U (32)

SPR 541DBAT2L (32)

SPR 542DBAT3U (32)

SPR 543DBAT3L (32)

Configuration Registers

Memory Management Registers

Exception Handling Registers

Miscellaneous Registers

SPR 1013DABR (32)

Data Address
Breakpoint Register
(Optional)

Floating-Point Exception
Cause Register (Optional)

SPR 1022FPECR

SPR 1023

Processor Identification
Register (Optional)

PIR

2

Chapter 2. PowerPC Register Set 2-15

The time base (TB), shown in Figure 2-9, is a 64-bit structure that contains a 64-bit
unsigned integer that is incremented periodically. Each increment adds 1 to the low-order
bit (bit 31 of TBL). The frequency at which the counter is incremented is implementation-
dependent.

Figure 2-9. Time Base (TB)

The TB increments until its value becomes 0xFFFF_FFFF_FFFF_FFFF (264 – 1). At the
next increment its value becomes 0x0000_0000_0000_0000.

NOTE: There is no explicit indication that this has occurred (that is, no exception is
generated).

The period of the time base depends on the driving frequency. The TB is implemented such
that the following requirements are satisfied:

1. Loading a GPR from the time base has no effect on the accuracy of the time base.

2. Storing a GPR to the time base replaces the value in the time base with the value in
the GPR.

The PowerPC VEA does not specify a relationship between the frequency at which the time
base is updated and other frequencies, such as the processor clock. The TB update
frequency is not required to be constant; however, for the system software to maintain time
of day and operate interval timers, one of two things is required:

• The system provides an implementation-dependent exception to software whenever
the update frequency of the time base changes and a means to determine the current
update frequency; or

• The system software controls the update frequency of the time base.

NOTE: If the operating system initializes the TB to some reasonable value and the
update frequency of the TB is constant, the TB can be used as a source of values
that increase at a constant rate, such as for time stamps in trace entries.

Even if the update frequency is not constant, values read from the TB are monotonically
increasing (except when the TB wraps from 264 – 1 to 0). If a trace entry is recorded each
time the update frequency changes, the sequence of TB values can be postprocessed to
become actual time values.

However, successive readings of the time base may return identical values due to
implementation-dependent factors such as a low update frequency or initialization.

0 31 0 31

TBU—Upper 32 bits of time base TBL—Lower 32 bits of time base

2

2-16 PowerPC Microprocessor 32-bit Family: The Programming Environments

2.2.1 Reading the Time Base
Themftb instruction is used to read the time base. The following sections discuss reading
the time base. For specific details on using themftb instruction, see Chapter 8, “Instruction
Set.” For information on writing the time base, see Section 2.3.12.1, “Writing to the Time
Base.”

Tt is not possible to read the entire 64-bit time base in a single instruction. Themftb
simplified mnemonic moves from the lower half of the time base register (TBL) to a GPR,
and themftbu simplified mnemonic moves from the upper half of the time base (TBU) to
a GPR.

Because of the possibility of a carry from TBL to TBU occurring between reads of the TBL
and TBU, a sequence such as the following example is necessary to read the time base:

loop:
mftbu r x #load from TBU
mftb r y #load from TBL
mftbu r z #load from TBU
cmpw rz, r x #see if ‘old’ = ‘new’
bne loop #loop if carry occurred

The comparison and loop are necessary to ensure that a consistent pair of values has been
obtained.

2.2.2 Computing Time of Day from the Time Base
Since the update frequency of the time base is system-dependent, the algorithm for
converting the current value in the time base to time-of-day is also system-dependent.

In a system in which the update frequency of the time base may change over time, it is not
possible to convert an isolated time base value into time of day. Instead, a time base value
has meaning only with respect to the current update frequency and the time of day that the
update frequency was last changed. Each time the update frequency changes, either the
system software is notified of the change via an exception, or else the change was instigated
by the system software itself. At each such change, the system software must compute the
current time of day using the old update frequency, compute a new value of ticks-per-
second for the new frequency, and save the time of day, time base value, and tick rate.
Subsequent calls to compute time of day use the current time base value and the saved data.

A generalized service to compute time of day could take the following as input:

• Time of day at beginning of current epoch
• Time base value at beginning of current epoch
• Time base update frequency
• Time base value for which time of day is desired

For a PowerPC system in which the time base update frequency does not vary, the first three
inputs would be constant.

2

Chapter 2. PowerPC Register Set 2-17

2.3 PowerPC OEA Register Set
The PowerPC operating environment architecture (OEA) completes the discussion of
PowerPC registers. Figure 2-10 shows a graphic representation of the entire PowerPC
register set—UISA, VEA, and OEA. In Figure 2-10 the numbers to the right of the register
name indicates the number that is used in the syntax of the instruction operands to access
the register (for example, the number used to access the XER is SPR 1).

All of the SPRs in the OEA can be accessed only by supervisor-level instructions; any
attempt to access these SPRs with user-level instructions results in a supervisor-level
exception. Some SPRs are implementation-specific. In some cases, not all of a register’s
bits are implemented in hardware.

If a PowerPC processor executes anmtspr/mfspr instruction with an undefined SPR
encoding, it takes (depending on the implementation) an illegal instruction program
exception, a privileged instruction program exception, or the results are boundedly
undefined. See Section 6.4.7, “Program Exception (0x00700),” for more information.

NOTE: The GPRs, LR, CTR, TBL, MSR, DAR, SDR1, SRR0, SRR1, and
SPRG0–SPRG3 are 32 bits wide.

O

2

2-18 PowerPC Microprocessor 32-bit Family: The Programming Environments

Figure 2-10. OEA Programming Model—All Registers

TBR 268

Time Base Facility 1

(For Reading)

TBL (32)

TBR 269TBU (32)

SUPERVISOR MODEL
OEA

Machine State Register

MSR (32)

Processor Version Register

SPR 287PVR (32)

Segment Registers

SR0 (32)

SR1 (32)

SR15 (32)

DSISR 1

SPR 18DSISR (32)

Data Address Register

SPR 19DAR (32)

Save and Restore Registers

SPR 26SRR0 (32)

SPR 27SRR1 (32)

SPRGs
SPR 272SPRG0 (32)

SPR 273SPRG1 (32)

SPR 274SPRG2 (32)

SPR 275SPRG3 (32)

SPR 22

Decrementer

DEC (32)

Time Base Facility
(For Writing)

SPR 284TBL (32)

SPR 285TBU (32)

SPR 282

External Access Register
(Optional)

EAR (32)

SDR1

SPR 25SDR1 (32)

Instruction BAT Registers

SPR 528IBAT0U (32)

SPR 529IBAT0L (32)

SPR 530IBAT1U (32)

SPR 531IBAT1L (32)

SPR 532IBAT2U (32)

SPR 533IBAT2L (32)

SPR 534IBAT3U /32)

SPR 535IBAT3L (32)

Data BAT Registers

SPR 536DBAT0U (32)

SPR 537DBAT0L (32)

SPR 538DBAT1U (32)

SPR 539DBAT1L (32)

SPR 540DBAT2U (32)

SPR 541DBAT2L (32)

SPR 542DBAT3U (32)

SPR 543DBAT3L (32)

Configuration Registers

Memory Management Registers

Exception Handling Registers

Miscellaneous Registers

USER MODEL
VEA SPR 1013DABR (32)

Data Address
Breakpoint Register
(Optional)

SPR 1

USER MODEL
UISA

Floating-Point Status
and Control Register

CR (32)

FPSCR (32)

Condition Register

GPR0 (32)

GPR1 (32)

GPR31 (32)

FPR0 (64)

FPR1 (64)

FPR31 (64)

General-Purpose Registers

Floating-Point Registers

XER (32)

SPR 8

Link Register

LR (32)

SPR 9

Count Register

CTR (32)

XER Register

Floating-Point Exception
Cause Register (Optional)

SPR 1022FPECR

SPR 1023

Processor Identification
Register (Optional)

PIR

2

Chapter 2. PowerPC Register Set 2-19

The PowerPC OEA supervisor-level registers are:

• Configuration registers include:

— A machine state register (MSR) which defines the state of the processor. The
MSR can be modified by the Move to Machine State Register (mtmsr), System
Call (sc), and Return from Interrupt (rfi) instructions. It can be read by the Move
from Machine State Register (mfmsr) instruction. For more information, see
Section 2.3.1, “Machine State Register (MSR).”

— A processor version register (PVR) which is a read-only register that identifies
the version (model) and revision level of the PowerPC processor. For more
information, see Section 2.3.2, “Processor Version Register (PVR).”

• Memory management registers include:
— Block-address translation (BAT) registers. The PowerPC OEA includes eight

block-address translation registers (BATs), consisting of four pairs of instruction
BATs (IBAT0U–IBAT3U and IBAT0L–IBAT3L) and four pairs of data BATs
(DBAT0U–DBAT3U and DBAT0L–DBAT3L). See Figure 2-10 for a list of the
SPR numbers for the BAT registers. Refer to Section 2.3.3, “BAT Registers,” for
more information.

— An SDR1 register which specifies the page table base address used in virtual-to-
physical address translation. For more information, see Section 2.3.4, “SDR1.”

NOTE: The physical address is referred to as the real address in the architecture
specification.

— Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SR0–SR15). The fields in the segment register are interpreted
differently depending on the value of bit 0. For more information, see
Section 2.3.5, “Segment Registers.”

• Exception handling registers include:
— A data address register (DAR) which is set to the effective address generated by

the a DSI or an alignment exception. For more information, see Section 2.3.6,
“Data Address Register (DAR).”

— The SPRG0–SPRG3 registers which are provided for operating system use. For
more information, see Section 2.3.7, “SPRG0–SPRG3.”

— A DSISR which defines the cause of DSI and alignment exceptions. For more
information, refer to Section 2.3.8, “DSISR.”

— A machine status save/restore register 0 (SRR0). The SRR0 register is used to
save the program effective address on exceptions and return to interrupted
program when anrfi instruction is executed. For more information, see Section
2.3.9, “Machine Status Save/Restore Register 0 (SRR0).

— A machine status save/restore register 1 (SRR1). The SRR1 register is used to
save MSR register and machine exception status bits and to restore MSR register
when anrfi instruction is executed. For more information, see Section 2.3.10,
“Machine Status Save/Restore Register 1 (SRR1).”

2

2-20 PowerPC Microprocessor 32-bit Family: The Programming Environments

— A floating-point exception cause register (FPECR) to identify the cause of a
floating-point exception. (This is an optional register.)

• Miscellaneous registers include:

— Time base (TB). The TB is a 64-bit structure that maintains the time of day and
operates interval timers. The TB consists of two 32-bit registers—time base
upper (TBU) and time base lower (TBL).

NOTE: The time base registers can be accessed by both user- and supervisor-level
instructions. For more information, see Section 2.3.12, “Time Base Facility
(TB)—OEA” and Section 2.2, “PowerPC VEA Register Set—Time Base.”

— Decrementer register (DEC). This register is a 32-bit decrementing counter that
provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock. For
more information, see Section 2.3.13, “Decrementer Register (DEC).”

— External access register (EAR). This optional register is used in conjunction with
theeciwx andecowx instructions.

NOTE: The EAR register and theeciwx andecowx instructions are optional in the
PowerPC architecture and may not be supported in all PowerPC processors that
implement the OEA. For more information about the external control facility, see
Section 4.3.4, “External Control Instructions.”

— Data address breakpoint register (DABR). This optional register is used to
control the data address breakpoint facility.

NOTE: The DABR is optional in the PowerPC architecture and may not be supported in
all PowerPC processors that implement the OEA. For more information about
the data address breakpoint facility, see Section 6.4.3, “DSI Exception
(0x00300).”

— Processor identification register (PIR). This optional register is used to hold a
value that distinguishes an individual processor in a multiprocessor environment.

2.3.1 Machine State Register (MSR)
The machine state register (MSR) is a 32-bit register (see Figure 2-11). The MSR defines
the state of the processor. When an exception occurs, the contents of the MSR register are
saved in SRR1. A new set of bits are loaded into the MSR as determined by the exception.
See Table 2-8 for a description for MSR bits. The MSR can also be modified by themtmsr,
sc, andrfi instructions. It can be read by themfmsr instruction.

Figure 2-11. Machine State Register (MSR)

0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

0000 0000 0000 0 POW 0 ILE EE PR FP ME FE0 SE BE FE1 0 IP IR DR 00 RI LE

2

Chapter 2. PowerPC Register Set 2-21

Table 2-8 shows the bit definitions for the MSR.

Table 2-8. MSR Bit Settings

bit(s) Name Description

0–12 — Reserved

13 POW Power management enable
0 Power management disabled (normal operation mode)
1 Power management enabled (reduced power mode)
Note : Power management functions are implementation-dependent. If the
function is not implemented, this bit is treated as reserved.

14 — Reserved

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into
MSR[LE] to select the endian mode for the context established by the
exception.

16 EE External interrupt enable
0 While the bit is cleared, the processor delays recognition of external

interrupts and decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer

exception.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18 FP Floating-point available
0 The processor prevents dispatch of floating-point instructions, including

floating-point loads, stores, and moves.
1 The processor can execute floating-point instructions.

19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 FE0 Floating-point exception mode 0 (see Table 2-9).

21 SE Single-step trace enable (Optional)
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the

successful execution of the next instruction.
Note: If the function is not implemented, this bit is treated as reserved.

22 BE Branch trace enable (Optional)
0 The processor executes branch instructions normally.
1 The processor generates a branch trace exception after completing the

execution of a branch instruction, regardless of whether the branch was
taken.

Note : If the function is not implemented, this bit is treated as reserved.

23 FE1 Floating-point exception mode 1 (See Table 2-9).

24 — Reserved

2

2-22 PowerPC Microprocessor 32-bit Family: The Programming Environments

The floating-point exception mode bits (FE0–FE1) are interpreted as shown in
Table 2-9

.

25 IP Exception prefix. The setting of this bit specifies whether an exception vector
offset is prepended with Fs or 0s. In the following description, nnnnn is the
offset of the exception vector. See Table 6-2.
0 Exceptions are vectored to the physical address 0x000n_nnnn.
1 Exceptions are vectored to the physical address 0xFFFn_nnnn.
In most systems, IP is set to 1 during system initialization, and then cleared to
0 when initialization is complete.

26 IR Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information, see Chapter 7, “Memory Management.”

27 DR Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information, see Chapter 7, “Memory Management.”

28–29 — Reserved

30 RI Recoverable exception (for system reset and machine check exceptions).
0 Exception is not recoverable.
1 Exception is recoverable.
For more information, see Chapter 6, “Exceptions.”

31 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

Table 2-9. Floating-Point Exception Mode Bits

FE0 FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Floating-point imprecise nonrecoverable

1 0 Floating-point imprecise recoverable

1 1 Floating-point precise mode

Table 2-8. MSR Bit Settings (Continued)

bit(s) Name Description

2

Chapter 2. PowerPC Register Set 2-23

Table 2-10 indicates the initial state of the MSR at power up.

2.3.2 Processor Version Register (PVR)
The processor version register (PVR) is a 32-bit, read-only register which contains a value
identifying the specific version (model) and revision level of the PowerPC processor (see
Figure 2-12). The contents of the PVR can be copied to a GPR by themfspr instruction.
Read access to the PVR is supervisor-level only; write access is not provided.

Figure 2-12. Processor Version Register (PVR)

Table 2-10. State of MSR at Power Up

Bit(s) Name
32-Bit

Default Value

0–12 — Unspecified1

13 POW 0

14 — Unspecified1

15 ILE 0

16 EE 0

17 PR 0

18 FP 0

19 ME 0

20 FE0 0

21 SE 0

22 BE 0

23 FE1 0

24 — Unspecified1

25 IP 12

26 IR 0

27 DR 0

28–29 — Unspecified1

30 RI 0

31 LE 0

1 Unspecified can be either 0 or 1
2 1 is typical, but might be 0

0 15 16 31

Version Revision

2

2-24 PowerPC Microprocessor 32-bit Family: The Programming Environments

The PVR consists of two 16-bit fields:

• Version (bits 0–15)—A 16-bit number that uniquely identifies a particular processor
version. This number can be used to determine the version of a processor; it may not
distinguish between different end product models if more than one model uses the
same processor.

• Revision (bits 16–31)—A 16-bit number that distinguishes between various releases
of a particular version (that is, an engineering change level). The value of the
revision portion of the PVR is implementation-specific. The processor revision level
is changed for each revision of the device.

2.3.3 BAT Registers
The BAT registers (BATs) maintain the address translation information for eight blocks of
memory. The BATs are maintained by the system software and are implemented as eight
pairs of special-purpose registers (SPRs). Each block is defined by a pair of SPRs called
upper and lower BAT registers. These BAT registers define the starting addresses and sizes
of BAT areas.

The PowerPC OEA defines the BAT registers as eight instruction block-address translation
(IBAT) registers, consisting of four pairs of instruction BATs, or IBATs (IBAT0U–IBAT3U
and IBAT0L–IBAT3L) and eight data BATs, or DBATs, (DBAT0U–DBAT3U and
DBAT0L–DBAT3L). See Figure 2-10 for a list of the SPR numbers for the BAT registers.

Figure 2-13 and Figure 2-14 show the format of the upper and lower BAT registers for
32-bit PowerPC processors.

Figure 2-13. Upper BAT Register

Figure 2-14. Lower BAT Register

BEPI 0 000 BL Vs Vp

0 14 15 18 19 29 30 31

Reserved

Reserved

*W and G bits are not defined for IBAT registers. Attempting to write to these bits causes boundedly-undefined results.

0 14 15 24 25 28 29 30 31

BRPN 0 0000 0000 0 WIMG* 0 PP

2

Chapter 2. PowerPC Register Set 2-25

Table 2-11 describes the bits in the BAT registers.

Table 2-12 lists the BAT area lengths encoded in BAT[BL].

Table 2-11. BAT Registers—Field and Bit Descriptions

Upper/
Lower
BAT

 Bit(s) Name Description

Upper
BAT
Register

0–14 BEPI Block effective page index. This field is compared with high-order bits
of the logical address to determine if there is a hit in that BAT array
entry.
Note: The architecture specification refers to logical address as
effective address.

15–18 — Reserved

19–29 BL Block length. BL is a mask that encodes the size of the block. Values
for this field are listed in Table 2-12.

30 Vs Supervisor mode valid bit. This bit interacts with MSR[PR] to
determine if there is a match with the logical address. For more
information, see Section 7.4.2, “Recognition of Addresses in BAT
Arrays."

31 Vp User mode valid bit. This bit also interacts with MSR[PR] to
determine if there is a match with the logical address. For more
information, see Section 7.4.2, “Recognition of Addresses in BAT
Arrays.”

Lower
BAT
Register

0–14 BRPN This field is used in conjunction with the BL field to generate high-
order bits of the physical address of the block.

15–24 — Reserved

25–28 WIMG Memory/cache access mode bits
W Write-through
I Caching-inhibited
M Memory coherence
G Guarded
Attempting to write to the W and G bits in IBAT registers causes
boundedly-undefined results. For detailed information about the
WIMG bits, see Section 5.2.1, “Memory/Cache Access Attributes."

29 — Reserved

30–31 PP Protection bits for block. This field determines the protection for the
block as described in Section 7.4.4, “Block Memory Protection."

Table 2-12. BAT Area Lengths

BAT Area
Length

BL Encoding

128 Kbytes 000 0000 0000

256 Kbytes 000 0000 0001

512 Kbytes 000 0000 0011

1 Mbyte 000 0000 0111

2

2-26 PowerPC Microprocessor 32-bit Family: The Programming Environments

Only the values shown in Table 2-12 are valid for the BL field. The rightmost bit of BL is
aligned with bit 14 of the logical address. A logical address is determined to be within a
BAT area if the logical address matches the value in the BEPI field.

The boundary between the cleared bits and set bits (0s and 1s) in BL determines the bits of
logical address that participate in the comparison with BEPI. Bits in the logical address
corresponding to set bits in BL are cleared for this comparison. Bits in the logical address
corresponding to set bits in the BL field, concatenated with the 17 bits of the logical address
to the right (less significant bits) of BL, form the offset within the BAT area. This is
described in detail in Chapter 7, “Memory Management.”

The value loaded into BL determines both the length of the BAT area and the alignment of
the area in both logical and physical address space. The values loaded into BEPI and BRPN
must have at least as many low-order zeros as there are ones in BL.

Use of BAT registers is described in Chapter 7, “Memory Management.”

2 Mbytes 000 0000 1111

4 Mbytes 000 0001 1111

8 Mbytes 000 0011 1111

16 Mbytes 000 0111 1111

32 Mbytes 000 1111 1111

64 Mbytes 001 1111 1111

128 Mbytes 011 1111 1111

256 Mbytes 111 1111 1111

Table 2-12. BAT Area Lengths (Continued)

BAT Area
Length

BL Encoding

2

Chapter 2. PowerPC Register Set 2-27

2.3.4 SDR1
The SDR1 is a 32-bit register and is shown in Figure 2-15.

Figure 2-15. SDR1

The bits of SDR1 are described in Table 2-13.

The HTABORG field in SDR1 contains the high-order 16 bits of the 32-bit physical address
of the page table. Therefore, the page table is constrained to lie on a 216-byte (64 Kbytes)
boundary at a minimum. At least 10 bits from the hash function are used to index into the
page table. The page table must consist of at least 64 Kbytes (210 PTEGs of 64 bytes each).

The page table can be any size 2n where 16≤ n ≤ 25. As the table size is increased, more
bits are used from the hash to index into the table and the value in HTABORG must have
more of its low-order bits equal to 0. The HTABMASK field in SDR1 contains a mask value
that determines how many bits from the hash are used in the page table index. This mask
must be of the form 0b00...011...1; that is, a string of 0 bits followed by a string of 1bits.
The 1 bits determine how many additional bits (at least 10) from the hash are used in the
index; HTABORG must have this same number of low-order bits equal to 0.

See Figure 7-23 for an example of the primary PTEG address generation.

For example, suppose that the page table is 8,192 (213), 64-byte PTEGs, for a total size of
219bytes (512 Kbytes).

NOTE: A 13-bit index is required. Ten bits are provided from the hash initially, so 3
additional bits form the hash must be selected.
The value in HTABMASK must be 0x007 and the value in HTABORG must
have its low-order 3 bits (bits 13–15 of SDR1) equal to 0.
This means that the page table must begin on a

23 + 10 + 6 = 219 = 512 Kbytes boundary.

For more information, refer to Chapter 7, “Memory Management.”

Table 2-13. SDR1 Bit Settings

Bits Name Description

0–15 HTABORG The high-order 16 bits of the 32-bit physical address of the page table

16–22 — Reserved

23–31 HTABMASK Mask for page table address

0000 000 HTABMASK

Reserved

0 15 16 22 23 31

HTABORG

2

2-28 PowerPC Microprocessor 32-bit Family: The Programming Environments

2.3.5 Segment Registers
The segment registers contain the segment descriptors. The OEA defines a segment register
file of sixteen 32-bit registers. Segment registers can be accessed by using themtsr/mfsr
andmtsrin/mfsrin instructions. The value of bit 0, the T bit, determines how the remaining
register bits are interpreted.

Figure 2-16 shows the format of a segment register when T = 0.

Figure 2-16. Segment Register Format (T = 0)

Segment register bit settings when T = 0 are described in Table 2-14.

Figure 2-17 shows the bit definition when T = 1.

Figure 2-17. Segment Register Format (T = 1)

Table 2-14. Segment Register Bit Settings (T = 0)

Bits Name Description

0 T T = 0 selects this format

1 Ks Supervisor-state protection key

2 Kp User-state protection key

3 N No-execute protection

4–7 — Reserved

8–31 VSID Virtual segment ID

0 1 2 3 4 7 8 31

T Ks Kp N 0000 VSID

Reserved

T Ks Kp BUID Controller-Specific Information

0 1 2 3 11 12 31

2

Chapter 2. PowerPC Register Set 2-29

The bits in the segment register when T = 1 are described in Table 2-15.

If an access is translated by the block address translation (BAT) mechanism, the BAT
translation takes precedence and the results of translation using segment registers are not
used. However, if an access is not translated by a BAT, and T = 0 in the selected segment
register, the effective address is a reference to a memory-mapped segment. In this case, the
52-bit virtual address (VA) is formed by concatenating the following:

• The 24-bit VSID field from the segment register
• The 16-bit page index, EA[4–19]
• The 12-bit byte offset, EA[20–31]

The VA is then translated to a physical (real) address as described in Section 7.5, “Memory
Segment Model.”

If T = 1 in the selected segment register (and the access is not translated by a BAT), the
effective address is a reference to a direct-store segment. No reference is made to the page
tables.

NOTE: However, the direct-store facility is being phased out of the architecture and will
not likely be supported in future devices. Therefore, all new programs should
write a value of zero to the T bit.
For further discussion of address translation when T = 1, see Section 7.8,
“Direct-Store Segment Address Translation.”

2.3.6 Data Address Register (DAR)
The DAR is a 32-bit register. The DAR is shown in Figure 2-18.

Figure 2-18. Data Address Register (DAR)

Table 2-15. Segment Register Bit Settings (T = 1)

Bits Name Description

0 T T = 1 selects this format.

1 Ks Supervisor-state protection key

2 Kp User-state protection key

3–11 BUID Bus unit ID

12–31 CNTLR_SPEC Device-specific data for I/O controller

DAR

0 3131

2

2-30 PowerPC Microprocessor 32-bit Family: The Programming Environments

The effective address (EA) generated by a memory access instruction is placed in the DAR
if the access causes an exception (for example, an alignment exception). For information,
see Chapter 6, “Exceptions.”

2.3.7 SPRG0–SPRG3
SPRG0–SPRG3 are 32-bit registers. They are provided for general operating system use,
such as performing a fast state save or for supporting multiprocessor implementations.

The formats of SPRG0–SPRG3 are shown in Figure 2-19.

Figure 2-19. SPRG0–SPRG3

Table 2-16 provides a description of conventional uses of SPRG0 through SPRG3.

2.3.8 DSISR
The 32-bit DSISR, shown in Figure 2-20, identifies the cause of DSI and alignment
exceptions.

Figure 2-20. DSISR

For information about bit settings, see Section 6.4.3, “DSI Exception (0x00300),” and
Section 6.4.6, “Alignment Exception (0x00600).”

Table 2-16. Conventional Uses of SPRG0–SPRG3

Register Description

SPRG0 Software may load a unique physical address in this register to identify an area of memory
reserved for use by the first-level exception handler. This area must be unique for each processor
in the system.

SPRG1 This register may be used as a scratch register by the first-level exception handler to save the
content of a GPR. That GPR then can be loaded from SPRG0 and used as a base register to
save other GPRs to memory.

SPRG2 This register may be used by the operating system as needed.

SPRG3 This register may be used by the operating system as needed.

SPRG0

SPRG1

SPRG2

SPRG3

0 3131

DSISR

0 31

2

Chapter 2. PowerPC Register Set 2-31

2.3.9 Machine Status Save/Restore Register 0 (SRR0)
The SRR0 is a 32-bit register. SRR0 is used to save the effective address on exceptions
(interrupts) and return to the interrupted program when anrfi instruction is executed. SRR0
holds the address of the first instruction that has not been executed in the program where
the exception occurs. It also holds the EA for the instruction that follows the System Call
(sc) instruction. The format of SRR0 is shown in Figure 2-21.

Figure 2-21. Machine Status Save/Restore Register 0 (SRR0)

When an exception occurs, SRR0 is set to point to an instruction such that all prior
instructions have completed execution and no subsequent instruction has completed
execution. In the case of an error exception the SRR0 register is pointing at the instruction
that caused the error. When anrfi instruction is executed, the contents of SRR0 contains the
address from which to fetch the next instruction to continue program executed. In the case
of an exception where the offending instruction is to be emulated the contents of SRR0
must be incremented by 4 to skip over that instruction. The exception type and status bits
are used to determine the action to be taken. In all cases the instruction pointed to by SRR0
has not completed execution.

NOTE: In some implementations, every instruction fetch performed while MSR[IR] = 1,
and every instruction execution requiring address translation when MSR[DR] =
1, may modify SRR0.

For information on how specific exceptions affect SRR0, refer to the descriptions of
individual exceptions in Chapter 6, “Exceptions.”

2.3.10 Machine Status Save/Restore Register 1 (SRR1)
The SRR1 is a 32-bit register and is used to save exception status and the machine status
register (MSR) on exceptions and to restore machine status register (MSR) when anrfi
instruction is executed. The format of SRR1 is shown in Figure 2-22.

Figure 2-22. Machine Status Save/Restore Register 1 (SRR1)

SRR0

0 29 30 31

00

Reserved

SRR0

0 29 30 31

00

Reserved

SRR1

0 3131

2

2-32 PowerPC Microprocessor 32-bit Family: The Programming Environments

When an exception occurs, bits 1–4 and 10–15 of SRR1 are loaded with exception-specific
information and bits 16–23, 25–27, and 30–31 of the MSR are placed into the
corresponding bit positions of SRR1. When therfi is executed, MSR[16–23, 25–27, 30–31]
are loaded from SRR1[16–23, 25–27, 30–31].

The remaining bits of SRR1 are defined as reserved. An implementation may define one or
more of these bits, and in this case, may also cause them to be saved from MSR on an
exception and restored to MSR from SRR1 on anrfi .

NOTE: In some implementations, every instruction fetch when MSR[IR] = 1, and every
instruction execution requiring address translation when MSR[DR] = 1, may
modify SRR1.

For information on how specific exceptions affect SRR1, refer to the individual exceptions
in Chapter 6, “Exceptions.”

2.3.11 Floating-Point Exception Cause Register (FPECR)
The FPECR register may be used to identify the cause of a floating-point exception.

NOTE: The FPECR is an optional register in the PowerPC architecture and may be
implemented differently (or not at all) in the design of each processor. The user’s
manual of a specific processor will describe the functionality of the FPECR, if it
is implemented in that processor.

2.3.12 Time Base Facility (TB)—OEA
As described in Section 2.2, “PowerPC VEA Register Set—Time Base,” the time base (TB)
provides a long-period counter driven by an implementation-dependent frequency. The
VEA defines user-level read-only access to the TB. Writing to the TB is reserved for
supervisor-level applications such as operating systems and boot-strap routines. The OEA
defines supervisor-level, write access to the TB.

The TB is a volatile resource and must be initialized during reset. Some implementations
may initialize the TB with a known value; however, there is no guarantee of automatic
initialization of the TB when the processor is reset. The TB runs continuously after start-up.

For more information on the user-level aspects of the time base, refer to Section 2.2,
“PowerPC VEA Register Set—Time Base.”

2.3.12.1 Writing to the Time Base
NOTE: Writing to the TB is reserved for supervisor-level software.

The simplified mnemonics,mttbl andmttbu , write the lower and upper halves of the TB,
respectively. The simplified mnemonics listed above are for themtspr instruction; see
Appendix F, “Simplified Mnemonics,” for more information. Themtspr, mttbl , andmttbu
instructions treat TBL and TBU as separate 32-bit registers; setting one leaves the other
unchanged. It is not possible to write the entire 64-bit time base in a single instruction.

2

Chapter 2. PowerPC Register Set 2-33

The TB can be written by a sequence such as:

lwz r x,upper #load 64-bit value for
lwz r y,lower # TB into rx and ry
li r z,0
mttbl r z #force TBL to 0
mttbu r x #set TBU
mttbl r y #set TBL

Provided that no exceptions occur while the last three instructions are being executed,
loading 0 into TBL prevents the possibility of a carry from TBL to TBU while the time base
is being initialized.

For information on reading the time base, refer to Section 2.2.1, “Reading the Time Base.”

2.3.13 Decrementer Register (DEC)
The decrementer register (DEC), shown in Figure 2-23, is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a programmable
delay. The DEC frequency is based on the same implementation-dependent frequency that
drives the time base.

Figure 2-23. Decrementer Register (DEC)

2.3.13.1 Decrementer Operation
The DEC counts down, causing an exception (unless masked by MSR[EE]) when it passes
through zero. The DEC satisfies the following requirements:

• The operation of the time base and the DEC are coherent (that is, the counters are
driven by the same fundamental time base).

• Loading a GPR from the DEC has no effect on the DEC.

• Storing the contents of a GPR to the DEC replaces the value in the DEC with the
value in the GPR.

• Whenever bit 0 of the DEC changes from 0 to 1, a decrementer exception request is
signaled. Multiple DEC exception requests may be received before the first
exception occurs; however, any additional requests are canceled when the exception
occurs for the first request.

• If the DEC is altered by software and the content of bit 0 is changed from 0 to 1, an
exception request is signaled.

DEC

0 31

2

2-34 PowerPC Microprocessor 32-bit Family: The Programming Environments

2.3.13.2 Writing and Reading the DEC
The content of the DEC can be read or written using themfspr andmtspr instructions, both
of which are supervisor-level when they refer to the DEC. Using a simplified mnemonic for
themtspr instruction, the DEC may be written from GPRrA with the following:

mtdec r A

Using a simplified mnemonic for themfspr instruction, the DEC may be read into GPRrA
with the following:

mfdec r A

2.3.14 Data Address Breakpoint Register (DABR)
The optional data address breakpoint facility is controlled by an optional SPR, the DABR.
The DABR is a 32-bit register. The data address breakpoint facility is optional to the
PowerPC architecture. However, if the data address breakpoint facility is implemented, it
is recommended, but not required, that it be implemented as described in this section.

The data address breakpoint facility provides a means to detect accesses to a designated
double word. The address comparison is done on an effective address, and it applies to data
accesses only. It does not apply to instruction fetches.

The DABR is shown in Figure 2-24.

Figure 2-24. Data Address Breakpoint Register (DABR)

Table 2-17 describes the fields in the DABR.

Table 2-17. DABR—Bit Settings

Bit(s) Name Description

0–28 DAB Data address breakpoint

29 BT Breakpoint translation enable

30 DW Data write enable

31 DR Data read enable

0 28 29 30 31

DAB BT DW DR

0 28 29 30 31

DAB BT DW DR

2

Chapter 2. PowerPC Register Set 2-35

A data address breakpoint match is detected for a load or store instruction if the three
following conditions are met for any byte accessed:

• EA[0–28] = DABR[DAB]

• MSR[DR] = DABR[BT]

• The instruction is a store and DABR[DW] = 1, or the instruction is a load and
DABR[DR] = 1.

Even if the above conditions are satisfied, it is undefined whether a match occurs in the
following cases:

• A store string instruction (stwcx.) in which the store is not performed

• A load or store string instruction (lswx or stswx) with a zero length

• A dcbz, dcbz, eciwx, orecowxinstruction. For the purpose of determining whether
a match occurs,eciwx is treated as a load, anddcbz, dcba, andecowxare treated as
stores.

The cache management instructions other thandcbzanddcbanever cause a match. Ifdcbz
or dcbacauses a match, some or all of the target memory locations may have been updated.

A match generates a DSI exception. Refer to Section 6.4.3, “DSI Exception (0x00300),” for
more information on the data address breakpoint facility.

2.3.15 External Access Register (EAR)
The EAR is an optional 32-bit SPR that controls access to the external control facility and
identifies the target device for external control operations. The external control facility
provides a means for user-level instructions to communicate with special external devices.
The EAR is shown in Figure 2-25.

Figure 2-25. External Access Register (EAR)

The high-order bits of the resource ID (RID) field beyond the width of the RID supported
by a particular implementation are treated as reserved bits.

The EAR register is provided to support the External Control In Word Indexed (eciwx) and
External Control Out Word Indexed (ecowx) instructions, which are described in
Chapter 8, “Instruction Set.” Although access to the EAR is supervisor-level, the operating
system can determine which tasks are allowed to issue external access instructions and
when they are allowed to do so. The bit settings for the EAR are described in Table 2-18.
Interpretation of the physical address transmitted by theeciwxandecowxinstructions and
the 32-bit value transmitted by theecowx instruction is not prescribed by the PowerPC

0 1 25 26 31

E 000 0000 0000 0000 0000 0000 00 RID

Reserved

2

2-36 PowerPC Microprocessor 32-bit Family: The Programming Environments

OEA but is determined by the target device. The data access ofeciwx and ecowx is
performed as though the memory access mode bits (WIMG) were 0101.

For example, if the external control facility is used to support a graphics adapter, theecowx
instruction could be used to send the translated physical address of a buffer containing
graphics data to the graphics device. Theeciwx instruction could be used to load status
information from the graphics adapter.

This register can also be accessed by using themtspr and mfspr instructions.
Synchronization requirements for the EAR are shown in Table 2-19 and Table 2-20.

2.3.16 Processor Identification Register (PIR)
The PIR register is used to differentiate between individual processors in a multiprocessor
environment.

NOTE: The PIR is an optional register in the PowerPC architecture and may be
implemented differently (or not at all) in the design of each processor. The user’s
manual of a specific processor will describe the functionality of the PIR, if it is
implemented for that processor.

2.3.17 Synchronization Requirements for Special Registers and for
Lookaside Buffers

Changing the value in certain system registers, and invalidating TLB entries, can cause
alteration of the context in which data addresses and instruction addresses are interpreted,
and in which instructions are executed. An instruction that alters the context in which data
addresses or instruction addresses are interpreted, or in which instructions are executed, is
called a context-altering instruction. The context synchronization required for context-
altering instructions is shown in Table 2-19 for data access and Table 2-20 for instruction
fetch and execution.

A context-synchronizing exception (that is, any exception except nonrecoverable system
reset or nonrecoverable machine check) can be used instead of a context-synchronizing
instruction. In the tables, if no software synchronization is required before (after) a context-

Table 2-18. External Access Register (EAR) Bit Settings

Bit Name Description

0 E Enable bit
1 Enabled
0 Disabled
If this bit is set, the eciwx and ecowx instructions can perform the
specified external operation. If the bit is cleared, an eciwx or ecowx
instruction causes a DSI exception.

1–25 — Reserved

26–31 RID Resource ID

2

Chapter 2. PowerPC Register Set 2-37

altering instruction, the synchronizing instruction before (after) the context-altering
instruction should be interpreted as meaning the context-altering instruction itself.

A synchronizing instruction before the context-altering instruction ensures that all
instructions up to and including that synchronizing instruction are fetched and executed in
the context that existed before the alteration. A synchronizing instruction after the context-
altering instruction ensures that all instructions after that synchronizing instruction are
fetched and executed in the context established by the alteration. Instructions after the first
synchronizing instruction, up to and including the second synchronizing instruction, may
be fetched or executed in either context.

If a sequence of instructions contains context-altering instructions and contains no
instructions that are affected by any of the context alterations, no software synchronization
is required within the sequence.

NOTE: Some instructions that occur naturally in the program, such as therfi at the end
of an exception handler, provide the required synchronization.

No software synchronization is required before altering the MSR (except when altering the
MSR[POW] or MSR[LE] bits; see Table 2-19 and Table 2-20), becausemtmsr is execution
synchronizing. No software synchronization is required before most of the other alterations
shown in Table 2-20, because all instructions before the context-altering instruction are
fetched and decoded before the context-altering instruction is executed (the processor must
determine whether any of the preceding instructions are context synchronizing).

Table 2-19 provides information on data access synchronization requirements.

Table 2-19. Data Access Synchronization

 Instruction/Event Required Prior Required After

Exception 1 None None

rfi 1 None None

sc 1 None None

Trap 1 None None

mtmsr (ILE) None None

mtmsr (PR) None Context-synchronizing instruction

mtmsr (ME) 2 None Context-synchronizing instruction

mtmsr (DR) None Context-synchronizing instruction

mtmsr (LE) 3 — —

mtsr [or mtsrin] Context-synchronizing instruction Context-synchronizing instruction

mtspr (SDR1) 4, 5 sync Context-synchronizing instruction

mtspr (DBAT) Context-synchronizing instruction Context-synchronizing instruction

mtspr (DABR) 6 — —

2

2-38 PowerPC Microprocessor 32-bit Family: The Programming Environments

Table 2-20 provides information on instruction access synchronization requirements.

mtspr (EAR) Context-synchronizing instruction Context-synchronizing instruction

tlbie 7 Context-synchronizing instruction Context-synchronizing instruction or
sync

tlbia 7 Context-synchronizing instruction Context-synchronizing instruction or
sync

Notes :
1 Synchronization requirements for changing the power conserving mode are implementation-dependent.
2 A context synchronizing instruction is required after modification of the MSR[ME] bit to ensure that the

modification takes effect for subsequent machine check exceptions, which may not be recoverable and
therefore may not be context synchronizing.

3 Synchronization requirements for changing from one endian mode to the other are implementation-dependent.
4 SDR1 must not be altered when MSR[DR] = 1 or MSR[IR] = 1; if it is, the results are undefined.
5 A sync instruction is required before the mtspr instruction because SDR1 identifies the page table and thereby

the location of the referenced and changed (R and C) bits. To ensure that R and C bits are updated in the
correct page table, SDR1 must not be altered until all R and C bit updates due to instructions before the mtspr
have completed. A sync instruction guarantees this synchronization of R and C bit updates, while neither a
context synchronizing operation nor the instruction fetching mechanism does so.

6 Synchronization requirements for changing the DABR are implementation-dependent.

7 Multiprocessor systems have other requirements to synchronize TLB invalidate.

Table 2-20. Instruction Access Synchronization

Instruction/Event Required Prior Required After

 Exception 1 None None

rfi 1 None None

sc 1 None None

Trap 1 None None

mtmsr (POW) 1 — —

mtmsr (ILE) None None

mtmsr (EE) 2 None None

mtmsr (PR) None Context-synchronizing instruction

mtmsr (FP) None Context-synchronizing instruction

mtmsr (ME) 3 None Context-synchronizing instruction

mtmsr (FE0, FE1) None Context-synchronizing instruction

mtmsr (SE, BE) None Context-synchronizing instruction

mtmsr (IP) None None

mtmsr (IR) 4 None Context-synchronizing instruction

Table 2-19. Data Access Synchronization (Continued)

 Instruction/Event Required Prior Required After

2

Chapter 2. PowerPC Register Set 2-39

mtmsr (RI) None None

mtmsr (LE) 5 — —

mtsr [or mtsrin] 4 None Context-synchronizing instruction

mtspr (SDR1) 6, 7 sync Context-synchronizing instruction

mtspr (IBAT) 4 None Context-synchronizing instruction

mtspr (DEC) 8 None None

tlbie 9 None Context-synchronizing instruction or sync

tlbia 9 None Context-synchronizing instruction or sync

Notes :
1 Synchronization requirements for changing the power conserving mode are implementation-dependent.
2 The effect of altering the EE bit is immediate as follows:

• If an mtmsr sets the EE bit to 0, neither an external interrupt nor a decrementer exception can occur after
the instruction is executed.

• If an mtmsr sets the EE bit to 1 when an external interrupt, decrementer exception, or higher priority
exception exists, the corresponding exception occurs immediately after the mtmsr is executed, and
before the next instruction is executed in the program that set MSR[EE].

3 A context synchronizing instruction is required after modification of the MSR[ME] bit to ensure that the
modification takes effect for subsequent machine check exceptions, which may not be recoverable and therefore
may not be context synchronizing.

4 The alteration must not cause an implicit branch in physical address space. The physical address of the context-
altering instruction and of each subsequent instruction, up to and including the next context synchronizing
instruction, must be independent of whether the alteration has taken effect.

5 Synchronization requirements for changing from one endian mode to the other are implementation-dependent.
6 SDR1 must not be altered when MSR[DR] = 1 or MSR[IR] = 1; if it is, the results are undefined.
7 A sync instruction is required before the mtspr instruction because SDR1 identifies the page table and thereby

the location of the referenced and changed (R and C) bits. To ensure that R and C bits are updated in the correct
page table, SDR1 must not be altered until all R and C bit updates due to instructions before the mtspr have
completed. A sync instruction guarantees this synchronization of R and C bit updates, while neither a context
synchronizing operation nor the instruction fetching mechanism does so.

8 The elapsed time between the content of the decrementer becoming negative and the signaling of the
decrementer exception is not defined.

9 Multiprocessor systems have other requirements to synchronize TLB invalidate.

Table 2-20. Instruction Access Synchronization (Continued)

Instruction/Event Required Prior Required After

2

2-40 PowerPC Microprocessor 32-bit Family: The Programming Environments

Chapter 3. Operand Conventions 3-1

3Chapter 3. Operand Conventions
30
30

This chapter describes the operand conventions as they are represented in two levels of the
PowerPC architecture—user instruction set architecture (UISA) and virtual environment
architecture (VEA). Detailed descriptions are provided of conventions used for storing
values in registers and memory, accessing PowerPC registers, and representing data in these
registers in both big- and little-endian modes. Additionally, the floating-point data formats
and exception conditions are described. Refer to Appendix D, “Floating-Point Models,” for
more information on the implementation of the IEEE floating-point execution models.

3.1 Data Organization in Memory and Data Transfers
In a PowerPC microprocessor-based system, bytes in memory are numbered consecutively
starting with 0. Each number is the address of the corresponding byte. Memory operands
may be bytes, half-words, words, or double words, or, for the load and store multiple and
the load and store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

The following sections describe the concepts of alignment and byte ordering of data, and
their significance to the PowerPC architecture.

3.1.1 Aligned and Misaligned Accesses
The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the natural address of an operand is
an integral multiple of the operand length. A memory operand is said to be aligned if it is
aligned at its natural boundary; otherwise it is misaligned. Instructions are always four
bytes long and word-aligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 3-1. (Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands.)

Table 3-1. Memory Operand Alignment

Operand Length Aligned Addr(28–31) 1

Byte 8 bits xxxx

Half word 2 bytes xxx0

U

U

V

3-2 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned.

3.1.2 Byte Ordering
If individual data items were indivisible, the concept of byte ordering would be
unnecessary. The order of bits or groups of bits within the smallest addressable unit of
memory is irrelevant, because nothing can be observed about such order. Order matters
only when scalars, which the processor and programmer regard as indivisible quantities,
can be made up of more than one addressable unit of memory.

For PowerPC processors, the smallest addressable memory unit is the byte (8 bits), and
scalars are composed of one or more sequential bytes. When a 32-bit scalar is moved from
a register to memory, it occupies four consecutive bytes in memory, and a decision must be
made regarding the order of these bytes in these four addresses.

Although the choice of byte ordering is arbitrary, only two orderings are practical—big-
endian and little-endian. The PowerPC architecture supports both big- and little-endian
byte ordering. The default byte ordering is big-endian.

3.1.2.1 Big-Endian Byte Ordering
For big-endian scalars, the most-significant byte (MSB) is stored at the lowest (or starting)
address while the least-significant byte (LSB) is stored at the highest (or ending) address.
This is called big-endian because the big end of the scalar comes first in memory.

3.1.2.2 Little-Endian Byte Ordering
For little-endian scalars, the least-significant byte is stored at the lowest (or starting)
address while the most-significant byte is stored at the highest (or ending) address. This is
called little-endian because the little end of the scalar comes first in memory.

Word 4 bytes xx00

Double word 8 bytes x000

Quad word 16 bytes 0000

Note : 1An x in an address bit position indicates that the bit can be 0 or 1
independent of the state of other bits in the address.

Table 3-1. Memory Operand Alignment (Continued)

Operand Length Aligned Addr(28–31) 1

1

1

Chapter 3. Operand Conventions 3-3

3

3.1.3 Structure Mapping Examples
Figure 3-1 shows a C programming example that contains an assortment of scalars and one
array of characters (a string). The value presumed to be in each structure element is shown
in hexadecimal in the comments (except for the character array, which is represented by a
sequence of characters, each enclosed in single quote marks).

Figure 3-1. C Program Example—Data Structure S

The data structureS is used throughout this section to demonstrate how the bytes that
comprise each element (a, b, c, d, e, andf) are mapped into memory.

struct {
int a; /* 0x1112_1314 word */
double b; /* 0x2122_2324_2526_2728 double word */
char * c; /* 0x3132_3334 word */
char d[7]; /* 'L','M','N','O','P','Q','R' array of bytes */
short e; /* 0x5152 half word */
int f; /* 0x6162_6364 word */

} S;

3-4 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

3.1.3.1 Big-Endian Mapping
The big-endian mapping of the structure,S, is shown in Figure 3-2. Addresses are shown
in hexadecimal below each byte. The content of each byte, as shown in the preceding C
programming example, is shown in hexadecimal and, for the character array, as characters
enclosed in single quote marks.

NOTE: The most-significant byte of each scalar is at the lowest address.

Figure 3-2. Big-Endian Mapping of Structure S

The structure mapping introduces padding (skipped bytes indicated by (x) in Figure 3-2) in
the map in order to align the scalars on their proper boundaries—four bytes between
elementsa andb, one byte between elementsd ande, and two bytes between elementse
andf.

NOTE: The padding is dependent on the compiler; it is not a function of the architecture.

Contents 11 12 13 14 (x) (x) (x) (x)

Address 00 01 02 03 04 05 06 07

Contents 21 22 23 24 25 26 27 28

Address 08 09 0A 0B 0C 0D 0E 0F

Contents 31 32 33 34 ‘L’ ‘M’ ‘N’ ‘O’

Address 10 11 12 13 14 15 16 17

Contents ‘P’ ‘Q’ ‘R’ (x) 51 52 (x) (x)

Address 18 19 1A 1B 1C 1D 1E 1F

Contents 61 62 63 64 (x) (x) (x) (x)

Address 20 21 22 23 24 25 26 27

Chapter 3. Operand Conventions 3-5

3

3.1.3.2 Little-Endian Mapping
Figure 3-3 shows the structure,S, using little-endian mapping.

NOTE: The least-significant byte of each scalar is at the lowest address.

Figure 3-3. Little-Endian Mapping of Structure S

Figure 3-3 shows the sequence of double words laid out with addresses increasing from left
to right. Programmers familiar with little-endian byte ordering may be more accustomed to
viewing double words laid out with addresses increasing from right to left, as shown in
Figure 3-4. This allows the little-endian programmer to view each scalar in its natural byte
order of MSB to LSB. However, to demonstrate how the PowerPC architecture provides
both big- and little-endian support, this section uses the convention of showing addresses
increasing from left to right, as in Figure 3-3.

Contents 14 13 12 11 (x) (x) (x) (x)

Address 00 01 02 03 04 05 06 07

Contents 28 27 26 25 24 23 22 21

Address 08 09 0A 0B 0C 0D 0E 0F

Contents 34 33 32 31 ‘L’ ‘M’ ‘N’ ‘O’

Address 10 11 12 13 14 15 16 17

Contents ‘P’ ‘Q’ ‘R’ (x) 52 51 (x) (x)

Address 18 19 1A 1B 1C 1D 1E 1F

Contents 64 63 62 61 (x) (x) (x) (x)

Address 20 21 22 23 24 25 26 27

3-6 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

Figure 3-4. Little-Endian Mapping of Structure S —Alternate View

3.1.4 PowerPC Byte Ordering
The PowerPC architecture supports both big- and little-endian byte ordering. The default
byte ordering is big-endian. However, the code sequence used to switch from big- to little-
endian mode may differ among processors.

The PowerPC architecture defines two bits in the MSR for specifying byte ordering—LE
(little-endian mode) and ILE (exception little-endian mode). The LE bit specifies the endian
mode in which the processor is currently operating and ILE specifies the mode to be used
when an exception handler is invoked. That is, when an exception occurs, the ILE bit (as
set for the interrupted process) is copied into MSR[LE] to select the endian mode for the
context established by the exception. For both bits, a value of 0 specifies big-endian mode
and a value of 1 specifies little-endian mode.

The PowerPC architecture also provides load and store instructions that reverse byte
ordering. These instructions have the effect of loading and storing data in the endian mode
opposite from that which the processor is operating. See Section 4.2.3.4, “Integer Load and
Store with Byte-Reverse Instructions,” for more information on these instructions.

3.1.4.1 Aligned Scalars in Little-Endian Mode
Chapter 4, “Addressing Modes and Instruction Set Summary,” describes the effective
address calculation for the load and store instructions. For processors in little-endian mode,
the effective address is modified before being used to access memory. The three low-order
address bits of the effective address are exclusive-ORed (XOR) with a three-bit value that
depends on the length of the operand (1, 2, 4, or 8 bytes), as shown in Table 3-2. This
address modification is called ‘munging’.

Contents (x) (x) (x) (x) 11 12 13 14

Address 07 06 05 04 03 02 01 00

Contents 21 22 23 24 25 26 27 28

Address 0F 0E 0D 0C 0B 0A 09 08

Contents ‘O’ ‘N’ ‘M’ ‘L’ 31 32 33 34

Address 17 16 15 14 13 12 11 10

Contents (x) (x) 51 52 (x) ‘R’ ‘Q’ ‘P’

Address 1F 1E 1D 1C 1B 1A 19 18

Contents (x) (x) (x) (x) 61 62 63 64

Address 27 26 25 24 23 22 21 20

Chapter 3. Operand Conventions 3-7

3

NOTE: Although the process (munging) is described in the architecture, the actual term
‘munging’ is not defined or used in the specification. However, the term is
commonly used to describe the effective address modifications necessary for
converting big-endian addressed data to little-endian addressed data.

The munged physical address is passed to the cache or to main memory, and the specified
width of the data is transferred (in big-endian order—that is, MSB at the lowest address,
LSB at the highest address) between a GPR or FPR and the addressed memory locations
(as modified).

Munging makes it appear to the processor that individual aligned scalars are stored as little-
endian, when in fact they are stored in big-endian order, but at different byte addresses
within double words. Only the address is modified, not the byte order.

Taking into account the preceding description of munging, in little-endian mode, structure
S is placed in memory as shown in Figure 3-5.

Figure 3-5. Munged Little-Endian Structure S as Seen by the Memory Subsystem

Table 3-2. EA Modifications

Data Width (Bytes) EA Modification

8 No change

4 XOR with 0b100

2 XOR with 0b110

1 XOR with 0b111

Contents (x) (x) (x) (x) 11 12 13 14

Address 00 01 02 03 04 05 06 07

Contents 21 22 23 24 25 26 27 28

Address 08 09 0A 0B 0C 0D 0E 0F

Contents ‘O’ ‘N’ ‘M’ ‘L’ 31 32 33 34

Address 10 11 12 13 14 15 16 17

Contents (x) (x) 51 52 (x) ‘R’ ‘Q’ ‘P’

Address 18 19 1A 1B 1C 1D 1E 1F

Contents (x) (x) (x) (x) 61 62 63 64

Address 20 21 22 23 24 25 26 27

3-8 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

NOTE: The mapping shown in Figure 3-5 is not a true little-endian mapping of the
structureS. However, because the processor munges the address when accessing
memory, the physical structureSshown in Figure 3-5 appears to the processor as
the structureS shown in Figure 3-6.

Figure 3-6. Munged Little-Endian Structure S as Seen by Processor

As seen by the program executing in the processor, the mapping for the structureS
(Figure 3-6) is identical to the little-endian mapping shown in Figure 3-3. However, from
outside of the processor, the addresses of the bytes making up the structureSare as shown
in Figure 3-5.

These addresses match neither the big-endian mapping of Figure 3-2 nor the true little-
endian mapping of Figure 3-3. This must be taken into account when performing I/O
operations in little-endian mode; this is discussed in Section 3.1.4.5, “PowerPC
Input/Output Data Transfer Addressing in Little-Endian Mode.”

Contents 14 13 12 11

Address 00 01 02 03 04 05 06 07

Contents 28 27 26 25 24 23 22 21

Address 08 09 0A 0B 0C 0D 0E 0F

Contents 34 33 32 31 ‘L’ ‘M’ ‘N’ ‘O’

Address 10 11 12 13 14 15 16 17

Contents ‘P’ ‘Q’ ‘R’ 52 51

Address 18 19 1A 1B 1C 1D 1E 1F

Contents 64 63 62 61

Address 20 21 22 23 24 25 26 27

Chapter 3. Operand Conventions 3-9

3

3.1.4.2 Misaligned Scalars in Little-Endian Mode
Performing an XOR operation on the low-order bits of the address works only if the scalar
is aligned on a boundary equal to a multiple of its length. Figure 3-7 shows a true little-
endian mapping of the four-byte word 0x1112_1314, stored at address 05.

Figure 3-7. True Little-Endian Mapping, Word Stored at Address 05

For the true little-endian example in Figure 3-7, the least-significant byte (0x14) is stored
at address 0x05, the next byte (0x13) is stored at address 0x06, the third byte (0x12) is
stored at address 0x07, and the most-significant byte (0x11) is stored at address 0x08.

When a PowerPC processor, in little-endian mode, issues a single-register load or store
instruction with a misaligned effective address, it may take an alignment exception. In this
case, a single-register load or store instruction means any of the integer load/store,
load/store with byte-reverse, memory synchronization (excludingsync), or floating-point
load/store (includingstfiwx) instructions. PowerPC processors in little-endian mode are not
required to invoke an alignment exception when such a misaligned access is attempted. The
processor may handle some or all such accesses without taking an alignment exception.

The PowerPC architecture requires that half-words, words, and double words be placed in
memory such that the little-endian address of the lowest-order byte is the effective address
computed by the load or store instruction; the little-endian address of the next-lowest-order
byte is one greater, and so on. However, because PowerPC processors in little-endian mode
munge the effective address, the order of the bytes of a misaligned scalar must be as if they
were accessed one at a time.

Using the same example as shown in Figure 3-7, when the least-significant byte (0x14) is
stored to address 0x05, the address is XORed with 0b111 to become 0x02. When the next
byte (0x13) is stored to address 0x06, the address is XORed with 0b111 to become 0x01.
When the third byte (0x12) is stored to address 0x07, the address is XORed with 0b111 to
become 0x00. Finally, when the most-significant byte (0x11) is stored to address 0x08, the
address is XORed with 0b111 to become 0x0F. Figure 3-8 shows the misaligned word,
stored by a little-endian program, as seen by the memory subsystem.

Contents 14 13 12

Address 00 01 02 03 04 05 06 07

Contents 11

Address 08 09 0A 0B 0C 0D 0E 0F

3-10 PowerPC Microprocessor 32-bit Family: The Programming Environments

3
Figure 3-8. Word Stored at Little-Endian Address 05 as Seen by the Memory

Subsystem

NOTE: The misaligned word in this example spans two double words. The two parts of
the misaligned word are not contiguous as seen by the memory system. An
implementation may support some but not all misaligned little-endian accesses.
For example, a misaligned little-endian access that is contained within a double
word may be supported, while one that spans double words may cause an
alignment exception.

3.1.4.3 Nonscalars
The PowerPC architecture has two types of instructions that handle nonscalars (multiple
instances of scalars):

• Load and store multiple instructions
• Load and store string instructions

Because these instructions typically operate on more than one word-length scalar, munging
cannot be used. These types of instructions cause alignment exception conditions when the
processor is executing in little-endian mode. Although string accesses are not supported,
they are inherently byte-based operations, and can be broken into a series of word-aligned
accesses.

3.1.4.4 PowerPC Instruction Addressing in Little-Endian Mode
Each PowerPC instruction occupies an aligned word of memory. PowerPC processors fetch
and execute instructions as if the current instruction address is incremented by four for each
sequential instruction. When operating in little-endian mode, the instruction address is
munged as described in Section 3.1.4.1, “Aligned Scalars in Little-Endian Mode,” for
fetching word-length scalars; that is, the instruction address is XORed with 0b100. A
program is thus an array of little-endian words with each word fetched and executed in
order (not including branches).

Contents 12 13 14

Address 00 01 02 03 04 05 06 07

Contents 11

Address 08 09 0A 0B 0C 0D 0E 0F

Chapter 3. Operand Conventions 3-11

3

All instruction addresses visible to an executing program are the effective addresses that are
computed by that program, or, in the case of the exception handlers, effective addresses that
were or could have been computed by the interrupted program. These effective addresses
are independent of the endian mode. Examples for little-endian mode include the
following:

• An instruction address placed in the link register by branch and link operation, or an
instruction address saved in an SPR when an exception is taken, is the address that
a program executing in little-endian mode would use to access the instruction as a
word of data using a load instruction.

• An offset in a relative branch instruction reflects the difference between the
addresses of the branch and target instructions, where the addresses used are those
that a program executing in little-endian mode would use to access the instructions
as data words using a load instruction.

• A target address in an absolute branch instruction is the address that a program
executing in little-endian mode would use to access the target instruction as a word
of data using a load instruction.

• The memory locations that contain the first set of instructions executed by each kind
of exception handler must be set in a manner consistent with the endian mode in
which the exception handler is invoked. Thus, if the exception handler is to be
invoked in little-endian mode, the first set of instructions comprising each kind of
exception handler must appear in memory with the instructions within each double
word reversed from the order in which they are to be executed.

3.1.4.5 PowerPC Input/Output Data Transfer Addressing in Little-
Endian Mode

For a PowerPC system running in big-endian mode, both the processor and the memory
subsystem recognize the same byte as byte 0. However, this is not true for a PowerPC
system running in little-endian mode because of the munged address bits when the
processor accesses memory.

For I/O transfers in little-endian mode to transfer bytes properly, they must be performed
as if the bytes transferred were accessed one at a time, using the little-endian address
modification appropriate for the single-byte transfers (that is, the lowest order address bits
must be XORed with 0b111). This does not mean that I/O operations in little-endian
PowerPC systems must be performed using only one-byte-wide transfers. Data transfers
can be as wide as desired, but the order of the bytes within double words must be as if they
were fetched or stored one at a time. That is, for a true little-endian I/O device, the system
must provide a mechanism to munge and unmunge the addresses and reverse the bytes
within a double word (MSB to LSB).

3-12 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

In earlier processors, I/O operations can also be performed with certain devices by storing
to or loading from addresses that are associated with the devices (this is referred to as
direct-store interface operations). However, the direct-store facility is being phased out of
the architecture and will not likely be supported in future devices. Care must be taken with
such operations when defining the addresses to be used because these addresses are
subjected to munging as described in Section 3.1.4.1, “Aligned Scalars in Little-Endian
Mode.” A load or store that maps to a control register on an external device may require the
bytes of the value transferred to be reversed. If this reversal is required, the load and store
with byte-reverse instructions may be used. See Section 4.2.3.4, “Integer Load and Store
with Byte-Reverse Instructions,” for more information on these instructions.

3.2 Effect of Operand Placement on
Performance—VEA

The PowerPC VEA states that the placement (location and alignment) of operands in
memory affects the relative performance of memory accesses. The best performance is
guaranteed if memory operands are aligned on natural boundaries. For more information
on memory access ordering and atomicity, refer to Section 5.1, “The Virtual Environment.”

3.2.1 Summary of Performance Effects
To obtain the best performance across the widest range of PowerPC processor
implementations, the programmer should assume the performance model described in
Table 3-3 and Table 3-4. with respect to the placement of memory operands.

The performance of accesses varies depending on:

• Operand size
• Operand alignment
• Endian mode (big-endian or little-endian)
• Crossing no boundary
• Crossing a cache block boundary
• Crossing a page boundary
• Crossing a BAT boundary
• Crossing a segment boundary

V

Chapter 3. Operand Conventions 3-13

3

Table 3-3 applies when the processor is in big-endian mode.

Table 3-3. Performance Effects of Memory Operand Placement, Big-Endian Mode

Operand Boundary Crossing

Size
Byte

Alignment
None Cache Block Page BAT/Segment

Integer

8 byte 8
4
<4

Optimal
Good
Poor

—
Good
Poor

—
Poor
Poor

—
Poor
Poor

4 byte 4
<4

Optimal
Good

—
Good

—
Poor

—
Poor

2 byte 2
<2

Optimal
Good

—
Good

—
Poor

—
Poor

1 byte 1 Optimal — — —

Imw, stmw 4 Good Good Good1 Poor

String — Good Good Poor Poor

Floating Point None Cache Block Page BAT/Segment

8 byte 8
4
<4

Optimal
Good
Poor

—
Good
Poor

—
Poor
Poor

—
Poor
Poor

4 byte 4
<4

Optimal
Poor

—
Poor

—
Poor

—
Poor

Note : 1 Crossing a page boundary where the memory/cache access attributes of the two pages
differ is equivalent to crossing a segment boundary, and thus has poor performance.

3-14 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

Table 3-4. applies when the processor is in little-endian mode.

Table 3-4. Performance Effects of Memory Operand Placement, Little-Endian Mode

The load/store multiple and the load/store string instructions are supported only in big-
endian mode. The load/store multiple instructions are defined by the PowerPC architecture
to operate only on aligned operands. The load/store string instructions have no alignment
requirements.

3.2.2 Instruction Restart
If a memory access crosses a page, BAT, or segment boundary, a number of conditions
could abort the execution of the instruction after part of the access has been performed. For
example, this may occur when a program attempts to access a page it has not previously
accessed or when the processor must check for a possible change in the memory/cache
access attributes when an access crosses a page boundary. When this occurs, the processor
or the operating system may restart the instruction. If the instruction is restarted, some bytes
at that location may be loaded from or stored to the target location a second time.

The following rules apply to memory accesses with regard to restarting the instruction:

• Aligned accesses—A single-register instruction that accesses an aligned operand is
never restarted (that is, it is not partially executed).

• Misaligned accesses—A single-register instruction that accesses a misaligned
operand may be restarted if the access crosses a page, BAT, or segment boundary, or
if the processor is in little-endian mode.

Operand Boundary Crossing

Size
Byte

Alignment
None Cache Block Page BAT/Segment

Integer

8 byte 8
<8

Optimal
Poor

—
Poor

—
Poor

—
Poor

4 byte 4
<4

Optimal
Poor

—
Poor

—
Poor

—
Poor

2 byte 2
<2

Optimal
Poor

—
Poor

—
Poor

—
Poor

1 byte 1 Optimal — — —

Floating Point None Cache Block Page BAT/Segment

8 byte 8
<8

Optimal
Poor

—
Poor

—
Poor

—
Poor

4 byte 4
<4

Optimal
Poor

—
Poor

—
Poor

—
Poor

Chapter 3. Operand Conventions 3-15

3

• Load/store multiple, load/store string instructions—These instructions may be
restarted if, in accessing the locations specified by the instruction, a page, BAT, or
segment boundary is crossed.

The programmer should assume that any misaligned access in a segment might be restarted.
When the processor is in big-endian mode, software can ensure that misaligned accesses
are not restarted by placing the misaligned data in BAT areas, as BAT areas have no internal
protection boundaries. Refer to Section 7.4, “Block Address Translation,” for more
information on BAT areas.

3.3 Floating-Point Execution Models—UISA
There are two kinds of floating-point instructions defined for the PowerPC architecture:
computational and noncomputational. The computational instructions consist of those
operations defined by the IEEE-754 standard for 64- and 32-bit arithmetic (those that
perform addition, subtraction, multiplication, division, extracting the square root, rounding
conversion, comparison, and combinations of these) and the multiply-add and reciprocal
estimate instructions defined by the architecture. The noncomputational floating-point
instructions consist of the floating-point load, store, and move instructions. While both the
computational and noncomputational instructions are considered to be floating-point
instructions governed by the MSR[FP] bit (that allows floating-point instructions to be
executed), only the computational instructions are considered floating-point operations
throughout this chapter.

The IEEE standard requires that single-precision arithmetic be provided for single-
precision operands. The standard permits double-precision arithmetic instructions to have
either (or both) single-precision or double-precision operands, but states that single-
precision arithmetic instructions should not accept double-precision operands. The
guidelines are as follows:

• Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

• Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision is done implicitly
by the processor.

All PowerPC implementations provide the equivalent of the following execution models to
ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following
sections.

Appendix D. Floating-Point Modelshas additional detailed information on the execution
models for IEEE operations as well as the other floating-point instructions.

U

3-16 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is 1 (exceptions are referred to as
interrupts in the architecture specification):

• Underflow during multiplication using a denormalized operand
• Overflow during division using a denormalized divisor

3.3.1 Floating-Point Data Format
The PowerPC UISA defines the representation of a floating-point value in two different
binary, fixed-length formats. The format is a 32-bit format for a single-precision floating-
point value or a 64-bit format for a double-precision floating-point value. The single-
precision format may be used for data in memory. The double-precision format can be used
for data in memory or in floating-point registers (FPRs).

The lengths of the exponent and the fraction fields differ between these two formats. The
layout of the single-precision format is shown in Figure 3-9; the layout of the double-
precision format is shown in Figure 3-10.

Figure 3-9. Floating-Point Single-Precision Format

Figure 3-10. Floating-Point Double-Precision Format

Values in floating-point format consist of three fields:

• S (sign bit)
• EXP (exponent + bias)
• FRACTION (fraction)

If only a portion of a floating-point data item in memory is accessed, as with a load or store
instruction for a byte or half word (or word in the case of floating-point double-precision
format), the value affected depends on whether the PowerPC system is using big- or little-
endian byte ordering, which is described in Section 3.1.2, “Byte Ordering.”

Big-endian mode is the default.

S EXP FRACTION

0 1 8 9 31

S EXP FRACTION

0 1 11 12 63

Chapter 3. Operand Conventions 3-17

3

For numeric values, the significand consists of a leading implied bit concatenated on the
right with the FRACTION. This leading implied bit is a 1 for normalized numbers and a 0
for denormalized numbers and is the first bit to the left of the binary point. Values
representable within the two floating-point formats can be specified by the parameters
listed in Table 3-5.

The true value of the exponent can be determined by subtracting 127 for single-precision
numbers and 1023 for double-precision numbers. This is shown in Table 3-6.

NOTE: Two exponent values are reserved to represent special-case values:

— Setting all bits indicates that the value is infinity, or NaN.

— Clearing all bits indicates that the number is either zero, or denormalized.

Table 3-5. IEEE Floating-Point Fields

Parameter Single-Precision Double-Precision

Exponent bias +127 +1023

Maximum exponent
(unbiased)

+127 +1023

Minimum exponent
(unbiased)

–126 –1022

Format width 32 bits 64 bits

Sign width 1 bit 1 bit

Exponent width 8 bits 11 bits

Fraction width 23 bits 52 bits

Significand width 24 bits 53 bits

Table 3-6. Biased Exponent Format

Biased Exponent
(Binary)

Single-Precision
(Unbiased)

Double-Precision
(Unbiased)

11.11 Reserved for infinities and NaNs

11.10 +127 +1023

11.01 +126 +1022

. . .

. . .

. . .

10.00 1 1

01.11 0 0

01.10 –1 –1

. . .

3-18 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

3.3.1.1 Value Representation
The PowerPC UISA defines numerical and nonnumerical values representable within
single- and double-precision formats. The numerical values are approximations to the real
numbers and include the normalized numbers, denormalized numbers, and zero values. The
nonnumerical values representable are the positive and negative infinities and the NaNs.
The positive and negative infinities are adjoined to the real numbers but are not numbers
themselves, and the standard rules of arithmetic do not hold when they appear in an
operation. They are related to the real numbers by order alone. It is possible, however, to
define restricted operations among numbers and infinities as defined below. The relative
location on the real number line for each of the defined numerical entities is shown in
Figure 3-11. Tiny values include denormalized numbers and all numbers that are too small
to be represented for a particular precision format; they do not include zero values.

Figure 3-11. Approximation to Real Numbers

The positive and negative NaNs are encodings that convey diagnostic information such as
the representation of uninitialized variables and are not related to the numbers, or each
other by order or value.

 Table 3-7 describes each of the floating-point formats.

. . .

. . .

00.01 –126 –1022

00.00 Reserved for zeros and denormalized numbers

Table 3-7. Recognized Floating-Point Numbers

Sign Bit Biased Exponent Implied Bit Fraction Value

0 Maximum x Nonzero NaN

0 Maximum x Zero +Infinity

0 0 < Exponent < Maximum 1 x +Normalized

0 0 0 Nonzero +Denormalized

Table 3-6. Biased Exponent Format (Continued)

Biased Exponent
(Binary)

Single-Precision
(Unbiased)

Double-Precision
(Unbiased)

Tiny Tiny

– –NORM –DENORM +DENORM +NORM +

Unrepresentable, small numbers

+0–0

Chapter 3. Operand Conventions 3-19

3

The following sections describe floating-point values defined in the architecture.

3.3.1.2 Binary Floating-Point Numbers
Binary floating-point numbers are machine-representable values used to approximate real
numbers. Three categories of numbers are supported—normalized numbers, denormalized
numbers, and zero values.

3.3.1.3 Normalized Numbers (NORM)
The values for normalized numbers have a biased exponent value in the range:

• 1–254 in single-precision format
• 1–2046 in double-precision format

The implied unit bit is one. Normalized numbers are interpreted as follows:

NORM = (–1) s x 2 E x (1.fraction)

The variable (s) is the sign, (E) is the unbiased exponent, and (1.fraction) is the significand
composed of a leading unit bit (implied bit) and a fractional part. The format for normalized
numbers is shown in Figure 3-12.

Figure 3-12. Format for Normalized Numbers

The ranges covered by the magnitude (M) of a normalized floating-point number are
approximated in the following decimal representation:

Single-precision format:

1.2x10 –38 ≤ M ≤ 3.4x10 38

Double-precision format:

2.2x10 –308 ≤ M ≤ 1.8x10 308

0 0 x Zero +0

1 0 x Zero –0

1 0 0 Nonzero –Denormalized

1 0 < Exponent < Maximum 1 x –Normalized

1 Maximum x Zero –Infinity

1 Maximum x Nonzero NaN

Table 3-7. Recognized Floating-Point Numbers (Continued)

Sign Bit Biased Exponent Implied Bit Fraction Value

MIN < EXPONENT < MAX
(BIASED) FRACTION = ANY BIT PATTERN

SIGN BIT, 0 OR 1

3-20 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

3.3.1.4 Zero Values (0)
Zero values have a biased exponent value of zero and fraction of zero. This is shown in
Figure 3-13. Zeros can have a positive or negative sign. The sign of zero is ignored by
comparison operations (that is, comparison regards +0 as equal to –0). Arithmetic with zero
results is always exact and does not signal any exception, except when an exception occurs
due to the invalid operations as described in Section 3.3.6.1.1, “Invalid Operation
Exception Condition.” Rounding a zero only affects the sign.

Figure 3-13. Format for Zero Numbers

3.3.1.5 Denormalized Numbers (DENORM)
Denormalized numbers have a biased exponent value of zero and a nonzero fraction. The
format for denormalized numbers is shown in Figure 3-14.

Figure 3-14. Format for Denormalized Numbers

Denormalized numbers are nonzero numbers smaller in magnitude than the normalized
numbers. They are values in which the implied unit bit is zero. Denormalized numbers are
interpreted as follows:

DENORM = (–1) s x 2 Emin x (0.fraction)

The value Emin is the minimum unbiased exponent value for a normalized number (–126
for single-precision, –1022 for double-precision).

FRACTION = 0

SIGN BIT, 0 OR 1

EXPONENT = 0
(BIASED)

SIGN BIT, 0 OR 1

EXPONENT = 0
(BIASED)

FRACTION = ANY NONZERO
BIT PATTERN

Chapter 3. Operand Conventions 3-21

3

3.3.1.6 Infinities (±∞)
These are values that have the maximum biased exponent value of 255 in the single-
precision format, 2047 in the double-precision format, and a zero fraction value. They are
used to approximate values greater in magnitude than the maximum normalized value.
Infinity arithmetic is defined as the limiting case of real arithmetic, with restricted
operations defined among numbers and infinities. Infinities and the real numbers can be
related by numeric ordering in the following sense:

–∞ < every finite number < +∞

The format for infinities is shown in Figure 3-15.

Figure 3-15. Format for Positive and Negative Infinities

Arithmetic using infinite numbers is always exact and does not signal any exception, except
when an exception occurs due to the invalid operations as described in Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

3.3.1.7 Not a Numbers (NaNs)
NaNs have the maximum biased exponent value and a nonzero fraction. The format for
NaNs is shown in Figure 3-16. The sign bit of NaN does not show an algebraic sign; rather,
it is simply another bit in the NaN. If the highest-order bit of the fraction field is a zero, the
NaN is a signaling NaN; otherwise it is a quiet NaN (QNaN).

Figure 3-16. Format for NaNs

Signaling NaNs signal exceptions when they are specified as arithmetic operands.

Quiet NaNs represent the results of certain invalid operations, such as attempts to perform
arithmetic operations on infinities or NaNs, when the invalid operation exception is
disabled (FPSCR[VE] = 0). Quiet NaNs propagate through all operations, except floating-
point round to single-precision, ordered comparison, and conversion to integer operations,
and signal exceptions only for ordered comparison and conversion to integer operations.
Specific encodings in QNaNs can thus be preserved through a sequence of operations and
used to convey diagnostic information to help identify results from invalid operations.

SIGN BIT, 0 OR 1

EXPONENT = MAXIMUM
(BIASED) FRACTION = 0

SIGN BIT (ignored)

EXPONENT = MAXIMUM
(BIASED)

FRACTION = ANY NONZERO
BIT PATTERN

3-22 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

When a QNaN results from an operation because an operand is a NaN or because a QNaN
is generated due to a disabled invalid operation exception, the following rule is applied to
determine the QNaN to be stored as the result:

If (fr A) is a NaN
Then fr D ← (fr A)
Else if (fr B) is a NaN

Then if instruction is frsp
Then fr D ← (fr B)[0–34]||(29)0
Else fr D ← (fr B)

Else if (fr C) is a NaN
Then fr D ← (fr C)
Else if generated QNaN

Then fr D ← generated QNaN

If the operand specified byfr A is a NaN, that NaN is stored as the result. Otherwise, if the
operand specified byfr B is a NaN (if the instruction specifies anfr B operand), that NaN is
stored as the result, with the low-order 29 bits cleared. Otherwise, if the operand specified
by fr C is a NaN (if the instruction specifies anfr C operand), that NaN is stored as the result.
Otherwise, if a QNaN is generated by a disabled invalid operation exception, that QNaN is
stored as the result. If a QNaN is to be generated as a result, the QNaN generated has a sign
bit of zero, an exponent field of all ones, and a highest-order fraction bit of one with all
other fraction bits zero. An instruction that generates a QNaN as the result of a disabled
invalid operation generates this QNaN. This is shown in Figure 3-17.

Figure 3-17. Representation of Generated QNaN

3.3.2 Sign of Result
The following rules govern the sign of the result of an arithmetic operation, when the
operation does not yield an exception. These rules apply even when the operands or results
are zero (0), or :

• The sign of the result of an addition operation is the sign of the source operand
having the larger absolute value. If both operands have the same sign, the sign of the
result of an addition operation is the same as the sign of the operands. The sign of
the result of the subtraction operation, x – y, is the same as the sign of the result of
the addition operation, x + (–y).

• When the sum of two operands with opposite sign, or the difference of two operands
with the same sign, is exactly zero, the sign of the result is positive in all rounding
modes except round toward negative infinity (–),in which case the sign is negative.

• The sign of the result of a multiplication or division operation is the XOR of the
signs of the source operands.

SIGN BIT (ignored)

111...1 1000....00

Chapter 3. Operand Conventions 3-23

3

• The sign of the result of a round to single-precision or convert to/from integer
operation is the sign of the source operand.

• The sign of the result of a square root or reciprocal square root estimate operation is
always positive, except that the square root of –0 is –0 and the reciprocal square root
of –0 is –infinity.

For multiply-add/subtract instructions, these rules are applied first to the multiplication
operation and then to the addition/subtraction operation (one of the source operands to the
addition/subtraction operation is the result of the multiplication operation).

3.3.3 Normalization and Denormalization
The intermediate result of an arithmetic or Floating Round to Single-Precision (frspx)
instruction may require normalization and/or denormalization. When an intermediate result
consists of a sign bit, an exponent, and a nonzero significand with a zero leading bit, the
result must be normalized (and rounded) before being stored to the target.

A number is normalized by shifting its significand left and decrementing its exponent by
one for each bit shifted until the leading significand bit becomes one. The guard and round
bits are also shifted, with zeros shifted into the round bit; see SectionD.1—Execution Model
for IEEE Operations—for information about the guard and round bits. During
normalization, the exponent is regarded as if its range were unlimited.

If an intermediate result has a nonzero significand and an exponent that is smaller than the
minimum value that can be represented in the format specified for the result, this value is
referred to as ‘tiny’ and the stored result is determined by the rules described in Section
3.3.6.2.2, “Underflow Exception Condition.” These rules may involve denormalization.
The sign of the number does not change.

An exponent can become tiny in either of the following circumstances:

• As the result of an arithmetic or Floating Round to Single-Precision (frspx)
instruction, or

• As the result of decrementing the exponent in the process of normalization.

Normalization is the process of coercing the leading significand bit to be a 1 while
denormalization is the process of coercing the exponent into the target format's range.

In denormalization, the significand is shifted to the right while the exponent is incremented
for each bit shifted until the exponent equals the format’s minimum value. The result is then
rounded. If any significand bits are lost due to the rounding of the shifted value, the result
is considered inexact.

The sign of the number does not change.

3-24 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

3.3.4 Data Handling and Precision
There are specific instructions for moving floating-point data between the FPRs and
memory. For double-precision format data, the data is not altered during the move. For
single-precision data, the format is converted to double-precision format when data is
loaded from memory into an FPR. A format conversion from double- to single-precision is
performed when data from an FPR is stored as single-precision. These operations do not
cause floating-point exceptions.

All floating-point arithmetic, move, and select instructions use floating-point double-
precision format.

Floating-point single-precision formats are obtained by using the following four types of
instructions:

• Load floating-point single-precision instructions—These instructions access a
single-precision operand in single-precision format in memory, convert it to double-
precision, and load it into an FPR. Floating-point exceptions do not occur during the
load operation.

• The floating round to single-precision (frspx) instruction—Thefrspx instruction
rounds a double-precision operand to single-precision, checking the exponent for
single-precision range and handling any exceptions according to respective enable
bits in the FPSCR. The instruction places that operand into an FPR as a double-
precision operand. For results produced by single-precision arithmetic instructions
and by single-precision loads, this operation does not alter the value.

• Single-precision arithmetic instructions—These instructions take operands from
the FPRs in double-precision format, perform the operation as if it produced an
intermediate result correct to infinite precision and with unbounded range, and then
force this intermediate result to fit in single-precision format. Status bits in the
FPSCR and in the condition register are set to reflect the single-precision result. The
result is then converted to double-precision format and placed into an FPR. The
result falls within the range supported by the single-precision format.

Source operands for these instructions must be representable in single-precision
format. Otherwise, the result placed into the target FPR and the setting of status bits
in the FPSCR, and in the condition register if update mode is selected, are undefined.

• Store floating-point single-precision instructions—These instructions convert a
double-precision operand to single-precision format and store that operand into
memory. If the operand requires denormalization in order to fit in single-precision
format, it is automatically denormalized prior to being stored. No exceptions are
detected on the store operation (the value being stored is effectively assumed to be
the result of an instruction of one of the preceding three types).

When the result of a Load Floating-Point Single (lfs), Floating Round to Single-Precision
(frspx), or single-precision arithmetic instruction is stored in an FPR, the low-order 29
fraction bits are zero. This is shown in Figure 3-18.

Chapter 3. Operand Conventions 3-25

3

Figure 3-18. Single-Precision Representation in an FPR

The frspx instruction allows conversion from double- to single-precision with appropriate
exception checking and rounding. This instruction should be used to convert double-
precision floating-point values (produced by double-precision load and arithmetic
instructions) to single-precision values before storing them into single-format memory
elements or using them as operands for single-precision arithmetic instructions. Values
produced by single-precision load and arithmetic instructions can be stored directly, or used
directly as operands for single-precision arithmetic instructions, without being preceded by
anfrspx instruction.

A single-precision value can be used in double-precision arithmetic operations. The reverse
is true only if the double-precision value can be represented in single-precision format.
Some implementations may execute single-precision arithmetic instructions faster than
double-precision arithmetic instructions. Therefore, if double-precision accuracy is not
required, using single-precision data and instructions may speed operations in some
implementations.

3.3.5 Rounding
All arithmetic, rounding, and conversion instructions defined by the PowerPC architecture
(except the optional Floating Reciprocal Estimate Single (fresx) and Floating Reciprocal
Square Root Estimate (frsqrtex) instructions) produce an intermediate result considered to
be infinitely precise and with unbounded exponent range. This intermediate result is
normalized or denormalized if required, and then rounded to the destination format. The
final result is then placed into the target FPR in the double-precision format or in fixed-point
format, depending on the instruction.

The IEEE-754 specification allows loss of accuracy to be defined as when the rounded
result differs from the infinitely precise value with unbounded range (same as the definition
of ‘inexact’). In the PowerPC architecture, this is the way loss of accuracy is detected.

Let Z be the intermediate arithmetic result (with infinite precision and unbounded range) or
the operand of a conversion operation. If Z can be represented exactly in the target format,
then the result in all rounding modes is exactly Z. If Z cannot be represented exactly in the
target format, let Z1 and Z2 be the next larger and next smaller numbers representable in
the target format that bound Z; then Z1 or Z2 can be used to approximate the result in the
target format.

S EXP x x x x . x x x 0 0 0 0 0 . 0 0 0 0

0 1 11 12 63

Bit 35

3-26 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

Figure 3-19 shows a graphical representation of Z, Z1, and Z2 in this case.

Figure 3-19. Relation of Z1 and Z2

Four rounding modes are available through the floating-point rounding control field (RN)
in the FPSCR. See Section 2.1.4, “Floating-Point Status and Control Register (FPSCR).”
These are encoded as follows in Table 3-8.

Rounding occurs before an overflow condition is detected. This means that while an
infinitely precise value with unbounded exponent range may be greater than the greatest
representable value, the rounding mode may allow that value to be rounded to a
representable value. In this case, no overflow condition occurs.

Table 3-8. FPSCR Bit Settings—RN Field

RN Rounding Mode Rules

00 Round to nearest Choose the best approximation (Z1 or Z2). In case of a tie,
choose the one that is even (least-significant bit 0).

01 Round toward zero Choose the smaller in magnitude (Z1 or Z2).

10 Round toward +infinity Choose Z1.

11 Round toward –infinity Choose Z2.

Negative values

By incrementing lsb of Z

Infinitely precise value

By truncating after lsb

Z2 Z1 0 Z2 Z1

Z Z
Positive values

Chapter 3. Operand Conventions 3-27

3

However, the underflow condition is tested before rounding. Therefore, if the value that is
infinitely precise and with unbounded exponent range falls within the range of
unrepresentable values, the underflow condition occurs. The results in these cases are
defined in Section 3.3.6.2.2, “Underflow Exception Condition.” Figure 3-20 shows the
selection of Z1 and Z2 for the four possible rounding modes that are provided by
FPSCR[RN].

Figure 3-20. Selection of Z1 and Z2 for the Four Rounding Modes

All arithmetic, rounding, and conversion instructions affect FPSCR bits FR and FI,
according to whether the rounded result is inexact (FI) and whether the fraction was
incremented (FR) as shown in Figure 3-21. If the rounded result is inexact, FI is set and FR
may be either set or cleared. If rounding does not change the result, both FR and FI are
cleared. The optionalfresx and frsqrtex instructions set FI and FR to undefined values;
other floating-point instructions do not alter FR and FI.

Z is infinitely precise
result or operand

frD ← Z
Z2 < Z < Z1 per Figure 3-19

frD ← Z2frD ← Z1frD ← Z2

frD ← Z1frD ← Best approx (Z1 or Z2)
If tie, choose even (Z1 or Z2 w/ lsb 0)

Z fits
target format

FPSCR[RN] = 01
(round toward 0)

Z > 0Z < 0FPSCR[RN] = 11
(round toward –)

FPSCR[RN] = 00
(round to nearest)

FPSCR[RN] = 10
(round toward +)

otherwise

otherwise

otherwise

3-28 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

Figure 3-21. Rounding Flags in FPSCR

3.3.6 Floating-Point Program Exceptions
The computational instructions of the PowerPC architecture are the only instructions that
can cause floating-point enabled exceptions (subsets of the program exception). In the
processor, floating-point program exceptions are signaled by condition bits set in the
floating-point status and control register (FPSCR) as described in this section and in
Chapter 2, “PowerPC Register Set.” These bits correspond to those conditions identified as
IEEE floating-point exceptions and can cause the system floating-point enabled exception
error handler to be invoked. Handling for floating-point exceptions is described in
Section 6.4.7, “Program Exception (0x00700).”

The FPSCR is shown in Figure 3-22.

Figure 3-22. Floating-Point Status and Control Register (FPSCR)

Zround is rounded result

FI ← 0
FR ← 0

FI ← 1

FR ← 1 FR ← 0

otherwisefraction
incremented

Z round Zotherwise

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31

VXIDI

VXISI

VXSNAN

VXZDZ

VXIMZ

VXVC

VXSOFT

VXSQRT

VXCVI

Reserved

FX FEX VX OX UX ZX XX FR FI FPRF 0 VE OE UE ZE XE NI RN

Chapter 3. Operand Conventions 3-29

3

A listing of FPSCR bit settings is shown in Table 3-9.

Table 3-9. FPSCR Bit Settings

Bit(s) Name Description

0 FX Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf ,
implicitly sets FPSCR[FX] if that instruction causes any of the floating-point exception bits in
the FPSCR to transition from 0 to 1. The mcrfs , mtfsfi , mtfsf , mtfsb0 , and mtfsb1
instructions can alter FPSCR[FX] explicitly. This is a sticky bit.

1 FEX Floating-point enabled exception summary. This bit signals the occurrence of any of the
enabled exception conditions. It is the logical OR of all the floating-point exception bits masked
by their respective enable bits (FEX = (VX & VE) ^ (OX & OE) ^ (UX & UE) ^ (ZX & ZE) ^ (XX
& XE)). The mcrfs , mtfsf , mtfsfi , mtfsb0 , and mtfsb1 instructions cannot alter FPSCR[FEX]
explicitly. This is not a sticky bit.

2 VX Floating-point invalid operation exception summary. This bit signals the occurrence of any
invalid operation exception. It is the logical OR of all of the invalid operation exception bits as
described in Section 3.3.6.1.1, “Invalid Operation Exception Condition.” The mcrfs , mtfsf ,
mtfsfi , mtfsb0 , and mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This is not a sticky
bit.

3 OX Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2, “Overflow,
Underflow, and Inexact Exception Conditions.”

4 UX Floating-point underflow exception. This is a sticky bit. See Section 3.3.6.2.2, “Underflow
Exception Condition.”

5 ZX Floating-point zero divide exception. This is a sticky bit. See Section 3.3.6.1.2, “Zero Divide
Exception Condition.”

6 XX Floating-point inexact exception. This is a sticky bit. See Section 3.3.6.2.3, “Inexact Exception
Condition.”
FPSCR[XX] is the sticky version of FPSCR[FI]. The following rules describe how FPSCR[XX]
is set by a given instruction:
• If the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically

ORing the old value of FPSCR[XX] with the new value of FPSCR[FI].
• If the instruction does not affect FPSCR[FI], the value of FPSCR[XX] is unchanged.

7 VXSNAN Floating-point invalid operation exception for SNaN. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

8 VXISI Floating-point invalid operation exception for ∞ – ∞. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

9 VXIDI Floating-point invalid operation exception for ∞ ÷ ∞. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

10 VXZDZ Floating-point invalid operation exception for 0 ÷ 0. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

11 VXIMZ Floating-point invalid operation exception for ∞ * 0. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

12 VXVC Floating-point invalid operation exception for invalid compare. This is a sticky bit.
See Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

13 FR Floating-point fraction rounded. The last arithmetic, rounding, or conversion instruction
incremented the fraction. See Section 3.3.5, “Rounding.” This bit is not sticky.

3-30 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

14 FI Floating-point fraction inexact. The last arithmetic, rounding, or conversion instruction either
produced an inexact result during rounding or caused a disabled overflow exception. See
Section 3.3.5, “Rounding.” This is not a sticky bit. For more information regarding the
relationship between FPSCR[FI] and FPSCR[XX], see the description of the FPSCR[XX] bit.

15–19 FPRF Floating-point result flags. For arithmetic, rounding, and conversion instructions the field is
based on the result placed into the target register, except that if any portion of the result is
undefined, the value placed here is undefined.
15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion

instructions may set this bit with the FPCC bits to indicate the class of the result as
shown in Table 3-10.

16–19 Floating-point condition code (FPCC). Floating-point compare instructions always
set one of the FPCC bits to one and the other three FPCC bits to zero. Arithmetic,
rounding, and conversion instructions may set the FPCC bits with the C bit to
indicate the class of the result. Note: In this case the high-order three bits of the
FPCC retain their relational significance indicating that the value is less than,
greater than, or equal to zero.

16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)
19 Floating-point unordered or NaN (FU or ?)
Note: These are not sticky bits.

20 — Reserved

21 VXSOFT Floating-point invalid operation exception for software request. This is a sticky bit. This bit can
be altered only by the mcrfs , mtfsfi , mtfsf , mtfsb0 , or mtfsb1 instructions. For more detailed
information, refer to Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

22 VXSQRT Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more
detailed information, refer to Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

23 VXCVI Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See
Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

24 VE Floating-point invalid operation exception enable. See Section 3.3.6.1.1, “Invalid Operation
Exception Condition.”

25 OE IEEE floating-point overflow exception enable. See Section 3.3.6.2, “Overflow, Underflow, and
Inexact Exception Conditions.”

26 UE IEEE floating-point underflow exception enable. See Section 3.3.6.2.2, “Underflow Exception
Condition.”

27 ZE IEEE floating-point zero divide exception enable. See Section 3.3.6.1.2, “Zero Divide
Exception Condition.”

28 XE Floating-point inexact exception enable. See Section 3.3.6.2.3, “Inexact Exception Condition.”

Table 3-9. FPSCR Bit Settings (Continued)

Bit(s) Name Description

Chapter 3. Operand Conventions 3-31

3

Table 3-10 illustrates the floating-point result flags used by PowerPC processors. The result
flags correspond to FPSCR bits 15–19 (the FPRF field).

The following conditions that can cause program exceptions are detected by the processor.
These conditions may occur during execution of computational floating-point instructions.
The corresponding bits set in the FPSCR are indicated in parentheses:

• Invalid operation exception condition (VX)

— SNaN condition (VXSNAN)
— Infinity – infinity condition (VXISI)
— Infinity ÷infinity condition (VXIDI)
— Zero ÷zero condition (VXZDZ)
— Infinity * zero condition (VXIMZ)

29 NI Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards
and the other FPSCR bits may have meanings other than those described here. If the bit is set
and if all implementation-specific requirements are met and if an IEEE-conforming result of a
floating-point operation would be a denormalized number, the result produced is zero
(retaining the sign of the denormalized number). Any other effects associated with setting this
bit are described in the user’s manual for the implementation.
Effects of the setting of this bit are implementation-dependent.

30–31 RN Floating-point rounding control. See Section 3.3.5, “Rounding.”
00 Round to nearest
01 Round toward zero
10 Round toward +infinity
11 Round toward –infinity

Table 3-10. Floating-Point Result Flags — FPSCR[FPRF]

Result Flags (Bits 15–19)
Result Value Class

C < > = ?

1 0 0 0 1 Quiet NaN

0 1 0 0 1 –Infinity

0 1 0 0 0 –Normalized number

1 1 0 0 0 –Denormalized number

1 0 0 1 0 –Zero

0 0 0 1 0 +Zero

1 0 1 0 0 +Denormalized number

0 0 1 0 0 +Normalized number

0 0 1 0 1 +Infinity

Table 3-9. FPSCR Bit Settings (Continued)

Bit(s) Name Description

3-32 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

— Invalid compare condition (VXVC)

— Software request condition (VXSOFT)

— Invalid integer convert condition (VXCVI)

— Invalid square root condition (VXSQRT)

These exception conditions are described in Section 3.3.6.1.1, “Invalid Operation
Exception Condition.”

• Zero divide exception condition (ZX). These exception conditions are described in
Section 3.3.6.1.2, “Zero Divide Exception Condition.”

• Overflow Exception Condition (OX). These exception conditions are described in
Section 3.3.6.2.1, “Overflow Exception Condition.”

• Underflow Exception Condition (UX). These exception conditions are described in
Section 3.3.6.2.2, “Underflow Exception Condition.”

• Inexact Exception Condition (XX). These exception conditions are described in
Section 3.3.6.2.3, “Inexact Exception Condition.”

Each floating-point exception condition and each category of invalid IEEE floating-point
operation exception condition has a corresponding exception bit in the FPSCR which
indicates the occurrence of that condition. Generally, the occurrence of an exception
condition depends only on the instruction and its arguments (with one deviation, described
below). When one or more exception conditions arise during the execution of an
instruction, the way in which the instruction completes execution depends on the value of
the IEEE floating-point enable bits in the FPSCR which govern those exception conditions.
If no governing enable bit is set to 1, the instruction delivers a default result. Otherwise,
specific condition bits and the FX bit in the FPSCR are set and instruction execution is
completed by suppressing or delivering a result. Finally, after the instruction execution has
completed, a nonzero FX bit in the FPSCR causes a program exception if either FE0 or FE1
is set in the MSR (invoking the system error handler). The values in the FPRs immediately
after the occurrence of an enabled exception do not depend on the FE0 and FE1 bits.

The floating-point exception summary bit (FX) in the FPSCR is set by any floating-point
instruction (exceptmtfsfi andmtfsf) that causes any of the exception bits in the FPSCR to
change from 0 to 1, or bymtfsfi, mtfsf, andmtfsb1 instructions that explicitly set one of
these bits. FPSCR[FEX] is set when any of the exception condition bits is set and the
exception is enabled (enable bit is one).

A single instruction may set more than one exception condition bit only in the following
cases:

• The inexact exception condition bit (FPSCR[XX]) may be set with the overflow
exception condition bit (FPSCR[OX]).

• The inexact exception condition bit (FPSCR[XX]) may be set with the underflow
exception condition bit (FPSCR[UX]).

Chapter 3. Operand Conventions 3-33

3

• The invalid IEEE floating-point operation exception condition bit (SNaN) may be
set with invalid IEEE floating-point operation exception condition bit (∞ *0)
(FPSCR[VXIMZ]) for multiply-add instructions.

• The invalid operation exception condition bit (SNaN) may be set with the invalid
IEEE floating-point operation exception condition bit (invalid compare)
(FPRSC[VXVC]) for compare ordered instructions.

• The invalid IEEE floating-point operation exception condition bit (SNaN) may be
set with the invalid IEEE floating-point operation exception condition bit (invalid
integer convert) (FPSCR[VXCVI]) for convert-to-integer instructions.

Instruction execution is suppressed for the following kinds of exception conditions, so that
there is no possibility that one of the operands is lost:

• Enabled invalid IEEE floating-point operation
• Enabled zero divide

For the remaining kinds of exception conditions, a result is generated and written to the
destination specified by the instruction causing the exception condition. The result may
depend on whether the condition is enabled or disabled. The kinds of exception conditions
that deliver a result are the following:

• Disabled invalid IEEE floating-point operation
• Disabled zero divide
• Disabled overflow
• Disabled underflow
• Disabled inexact
• Enabled overflow
• Enabled underflow
• Enabled inexact

Subsequent sections define each of the floating-point exception conditions and specify the
action taken when they are detected.

The IEEE standard specifies the handling of exception conditions in terms of traps and trap
handlers. In the PowerPC architecture, an FPSCR exception enable bit being set causes
generation of the result value specified in the IEEE standard for the trap enabled case—the
expectation is that the exception is detected by hardware which will notify software by
taking an exception (trap). The software exception handler will revise the result. An FPSCR
exception enable bit of 0 causes generation of the default result value specified for the trap
disabled (or no trap occurs or trap is not implemented) case—the expectation is that the
exception will not be detected by software (because the hardware doesn’t trap or take the
exception), which will simply use the default result. The result to be delivered in each case
for each exception is described in the following sections.

3-34 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

The IEEE default behavior when an exception occurs, which is to generate a default value
and not to notify software, is obtained by clearing all FPSCR exception enable bits and
using ignore exceptions mode (see Table 3-11). In this case the system floating-point
enabled exception error handler is not invoked, even if floating-point exceptions occur. If
necessary, software can inspect the FPSCR exception bits to determine whether exceptions
have occurred.

If the system error handler is to be invoked, the corresponding FPSCR exception enable bit
must be set and a mode other than ignore exceptions mode must be used. In this case the
system floating-point enabled exception error handler is invoked if an enabled floating-
point exception condition occurs.

Whether and how the system floating-point enabled exception error handler is invoked if an
enabled floating-point exception occurs is controlled by MSR bits FE0 and FE1 as shown
in Table 3-11. (The system floating-point enabled exception error handler is never invoked
if the appropriate floating-point exception is disabled.)

In precise mode, whenever the system floating-point enabled exception error handler is
invoked, the architecture ensures that all instructions logically residing before the excepting
instruction have completed and no instruction after the excepting instruction has been
executed. In an imprecise mode, the instruction flow may not be interrupted at the point of
the instruction that caused the exception. The instruction at which the system floating-point
exception handler is invoked has not been executed unless it is the excepting instruction and
the exception is not suppressed.

In either of the imprecise modes, any FPSCR instruction can be used to force the
occurrence of any invocations of the floating-point enabled exception handler, due to

Table 3-11. MSR[FE0] and MSR[FE1] Bit Settings for FP Exceptions

FE0 FE1 Description

0 0 Ignore exceptions mode—Floating-point exceptions do not cause the program exception error
handler to be invoked.

0 1 Imprecise nonrecoverable mode—When an exception occurs, the exception handler is invoked at
some point at or beyond the instruction that caused the exception. It may not be possible to identify
the excepting (offending) instruction or the data that caused the exception. Results from the
excepting instruction may have been used by or affected subsequent instructions executed before the
exception handler was invoked.

1 0 Imprecise recoverable mode— When an enabled exception occurs, the floating-point enabled
exception handler is invoked at some point at or beyond the instruction that caused the exception.
Sufficient information is provided to the exception handler that it can identify the excepting (offending)
instruction and correct any faulty results. In this mode, no results caused by the excepting instruction
have been used by or affected subsequent instructions that are executed before the exception
handler is invoked. Running in this mode may cause degradation in performance

1 1 Precise mode—The system floating-point enabled exception error handler is invoked precisely at the
instruction that caused the enabled exception. Running in this mode may cause degradation in
performance.

Chapter 3. Operand Conventions 3-35

3

instructions initiated before the FPSCR instruction. This forcing has no effect in ignore
exceptions mode and is superfluous for precise mode.

Instead of using an FPSCR instruction, an execution synchronizing instruction or event can
be used to force exceptions and set bits in the FPSCR; however, for the best performance
across the widest range of implementations, an FPSCR instruction should be used to
achieve these effects.

For the best performance across the widest range of implementations, the following
guidelines should be considered:

• If IEEE default results are acceptable to the application, FE0 and FE1 should be
cleared (ignore exceptions mode). All FPSCR exception enable bits should be
cleared.

• If IEEE default results are unacceptable to the application, an imprecise mode
should be used with the FPSCR enable bits set as needed.

• Ignore exceptions mode should not, in general, be used when any FPSCR exception
enable bits are set.

• Precise mode may degrade performance in some implementations, perhaps
substantially, and therefore should be used only for debugging and other specialized
applications.

3.3.6.1 Invalid Operation and Zero Divide Exception Conditions
The flow diagram in Figure 3-23 shows the initial flow for checking floating-point
exception conditions (invalid operation and divide by zero conditions). In any of these cases
of floating-point exception conditions, if the FPSCR[FEX] bit is set (implicitly) and
MSR[FE0–FE1]≠00, the processor takes a program exception (floating-point enabled
exception type). Refer to Chapter 6, “Exceptions,” for more information on exception
processing. The actions performed for each floating-point exception condition are
described in greater detail in the following sections.

3-36 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

Figure 3-23. Initial Flow for Floating-Point Exception Conditions

Execute Instruction;
x ← Intermediate Result

(Infinitely Precise and with Unbounded Range)

Perform Actions per Section 3.3.6.1.1

Check for
FP Exception Conditions

FP Computational
Instructions

Invalid Operand
Exception Condition

Check for Overflow, Underflow,
& Inexact Exception Conditions (see Figure 3-24)

Perform Actions per Section 3.3.6.1.2

• xround ← Rounded x (per FPSCR[RN])
• frD ←xround
• Set FPSCR[FI, FR, FPRF] appropriately

Continue Instruction
Execution

Take FP Enabled
Program Exception

Take FP Enabled
Program Exception

(for Invalid Operation)

(for Zero Divide)

(FPSCR[FEX] = 1) &
(MSR[FE0–FE1] 00)

x = (0) or (±∞) otherwise

otherwise

otherwise
Zero Divide

Exception Condition

otherwise

otherwise

(FPSCR[FEX] = 1) &
(MSR[FE0–FE1] 00)

Chapter 3. Operand Conventions 3-37

3

3.3.6.1.1 Invalid Operation Exception Condition
An invalid operation exception occurs when an operand is invalid for the specified
operation. The invalid operations are as follows:

• Any operation except load, store, move, select, ormtfsf on a signaling NaN (SNaN)

• For add or subtract operations, magnitude subtraction of infinities (∞ – ∞)

• Division of infinity by infinity (∞ ÷ ∞)

• Division of zero by zero (0 ÷ 0)

• Multiplication of infinity by zero (∞ * 0)

• Ordered comparison involving a NaN (invalid compare)

• Square root or reciprocal square root of a negative, nonzero number (invalid square
root).

NOTE: If the implementation does not support the optional floating-point square
root or floating-point reciprocal square root estimate instructions, software
can simulate the instruction and set the FPSCR[VXSQRT] bit to reflect the
exception.

• Integer convert involving a number that is too large in magnitude to be represented
in the target format, or involving an infinity or a NaN (invalid integer convert)

FPSCR[VXSOFT] allows software to cause an invalid operation exception for a condition
that is not necessarily associated with the execution of a floating-point instruction. For
example, it might be set by a program that computes a square root if the source operand is
negative. This allows PowerPC instructions not implemented in hardware to be emulated.

Any time an invalid operation occurs or software explicitly requests the exception via
FPSCR[VXSOFT], (regardless of the value of FPSCR[VE]), the following actions are
taken:

• One or two invalid operation exception condition bits is set
FPSCR[VXSNAN] (if SNaN)
FPSCR[VXISI] (if ∞–∞)
FPSCR[VXIDI] (if ∞ ÷ ∞)
FPSCR[VXZDZ] (if 0 ÷ 0)
FPSCR[VXIMZ] (if ∞* 0)
FPSCR[VXVC] (if invalid comparison)
FPSCR[VXSOFT] (if software request)
FPSCR[VXSQRT] (if invalid square root)
FPSCR[VXCVI] (if invalid integer convert)

• If the operation is a compare,
FPSCR[FR, FI, C] are unchanged
FPSCR[FPCC] is set to reflect unordered

• If software explicitly requests the exception,
FPSCR[FR, FI, FPRF] are as set by themtfsfi, mtfsf, ormtfsb1 instruction.

3-38 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

There are additional actions performed that depend on the value of FPSCR[VE]. These are
described in Table 3-12.

3.3.6.1.2 Zero Divide Exception Condition
A zero divide exception condition occurs when a divide instruction is executed with a zero
divisor value and a finite, nonzero dividend value or when anfres or frsqrte instruction is
executed with a zero operand value. This exception condition indicates an exact infinite
result from finite operands exception condition corresponding to a mathematical pole
(divide orfres) or a branch point singularity (frsqrte).

Table 3-12. Additional Actions Performed for Invalid FP Operations

Invalid Operation Result Category
Action Performed

FPSCR[VE] = 1 FPSCR[VE] = 0

Arithmetic or floating-point round
to single

frD Unchanged QNaN

FPSCR[FR, FI] Cleared Cleared

FPSCR[FPRF] Unchanged Set for QNaN

Convert to 32-bit integer
(positive number or + ∞)

frD[0–31] Unchanged Undefined

frD[32–63] Unchanged Most positive 32-bit
integer value

FPSCR[FR, FI] Cleared Cleared

FPSCR[FPRF] Unchanged Undefined

Convert to 32-bit integer
(negative number, NaN, or – ∞)

frD[0–31] Unchanged Undefined

frD[32–63] Unchanged Most negative 32-bit
integer value

FPSCR[FR, FI] Cleared Cleared

FPSCR[FPRF] Unchanged Undefined

All cases FPSCR[FEX] Implicitly set
(causes exception)

Unchanged

Chapter 3. Operand Conventions 3-39

3

When a zero divide condition occurs, the following actions are taken:

• Zero divide exception condition bit is set FPSCR[ZX] = 1.
• FPSCR[FR, FI] are cleared.

Additional actions depend on the setting of the zero divide exception condition enable bit,
FPSCR[ZE], as described in Table 3-13.

3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions
As described earlier, the overflow, underflow, and inexact exception conditions are detected
after the floating-point instruction has executed and an infinitely precise result with
unbounded range has been computed. Figure 3-24 shows the flow for the detection of these
conditions and is a continuation of Figure 3-23. As in the cases of invalid operation, or zero
divide conditions, if the FPSCR[FEX] bit is implicitly set as described in Table 3-9 and
MSR[FE0–FE1]≠ 00, the processor takes a program exception (floating-point enabled
exception type). Refer to Chapter 6, “Exceptions,” for more information on exception
processing. The actions performed for each of these floating-point exception conditions
(including the generated result) are described in greater detail in the following sections.

Table 3-13. Additional Actions Performed for Zero Divide

Result Category
Action Performed

FPSCR[ZE] = 1 FPSCR[ZE] = 0

frD Unchanged (sign determined by XOR of the
signs of the operands)

FPSCR[FEX] Implicitly set (causes exception) Unchanged

FPSCR[FPRF] Unchanged Set to indicate

3-40 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

Figure 3-24. Checking of Remaining Floating-Point Exception Conditions

xnorm ← Normalized x
(xnorm Infinitely Precise and with Unbounded Range)

Check for Overflow,
Underflow, and Inexact

(from Figure 3-23)

Set FPSCR[FPRF] appropriately

FPSCR[FEX] = 1 (implicitly)

otherwise

If (FPSCR[FEX] = 1) & (MSR[FE0–FE1] 00),
then take FP Program Exception;

otherwise, continue

otherwiseFPSCR[UE] = 0
(underflow disabled)

otherwise magnitude of xround > magnitude of
largest finite number in result precision

(overflow)

FPSCR[OX] ← 1

otherwise FPSCR[OE] = 0
(overflow disabled)

• FPSCR[FEX] = 1 (implicitly)
• Adjust Exponent per Table 3-14
• frD ← xround (adjusted)
• inexact ← xround xnorm

FPSCR[XX] ← 1

• Get default fromTable 3-15
• frD ← default
• FPSCR[FI] ← 1
• FPSCR[FR] ← undefined

FPSCR[XX] ← 1

otherwise

FPSCR[XE] = 0
(inexact disabled)

xround ← Rounded xnorm (per FPSCR[RN])

xnorm is tiny

• xdenorm ← Denormalized xnorm
• Round xdenorm (per FPSCR[RN])
• frD ← xround ← Rounded xdenorm
• inexact ← xround xdenorm
• If ‘inexact’, FPSCR[UX] ← 1

• FPSCR[UX] ← 1
• FPSCR[FEX] = 1 (implicitly)
• xadjust ←Adj. Exp. of xnorm per Table 3-14
• Round xadjust (per FPSCR[RN])
• frD ← xround ← Rounded xadjust
• inexact ← xround xadjust

(inexact)

otherwise

• frD ← xround
• inexact ← xround xnorm

inexact = 1

Chapter 3. Operand Conventions 3-41

3

3.3.6.2.1 Overflow Exception Condition
Overflow occurs when the magnitude of what would have been the rounded result (had the
exponent range been unbounded) is greater than the magnitude of the largest finite number
of the specified result precision. Regardless of the setting of the overflow exception
condition enable bit of the FPSCR, the following action is taken:

• The overflow exception condition bit is set FPSCR[OX] = 1.

Additional actions are taken that depend on the setting of the overflow exception condition
enable bit of the FPSCR as described in Table 3-14.

Table 3-14. Additional Actions Performed for Overflow Exception Condition

When the overflow exception condition is disabled (FPSCR[OE] = 0) and an overflow
condition occurs, the default result is determined by the rounding mode bit (FPSCR[RN])
and the sign of the intermediate result as shown in Table 3-15.

Condition Result Category
Action Performed

FPSCR[OE] = 1 FPSCR[OE] = 0

Double-precision
arithmetic instructions

Exponent of normalized
intermediate result

Adjusted by subtracting 1536 —

Single-precision
arithmetic and frsp x
instruction

Exponent of normalized
intermediate result

Adjusted by subtracting 192 —

All cases frD Rounded result (with adjusted
exponent)

Default result per Table 3-15

FPSCR[XX] Set if rounded result differs
from intermediate result

Set

FPSCR[FEX] Implicitly set (causes
exception)

Unchanged

FPSCR[FPRF] Set to indicate±normal number Set to indicate ± or normal
±number

FPSCR[FI] Reflects rounding Set

FPSCR[FR] Reflects rounding Undefined

3-42 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

3.3.6.2.2 Underflow Exception Condition
The underflow exception condition is defined separately for the enabled and disabled states:

• Enabled—Underflow occurs when the intermediate result is tiny.

• Disabled—Underflow occurs when the intermediate result is tiny and the rounded
result is inexact.

In this context, the term ‘tiny’ refers to a floating-point value that is too small to be
represented for a particular precision format.

As shown in Figure 3-24, a tiny result is detected before rounding, when a nonzero
intermediate result value computed as though it had infinite precision and unbounded
exponent range is less in magnitude than the smallest normalized number.

If the intermediate result is tiny and the underflow exception condition enable bit is cleared
(FPSCR[UE] = 0), the intermediate result is denormalized (see Section 3.3.3,
“Normalization and Denormalization”) and rounded (see Section 3.3.5, “Rounding”)
before being stored in an FPR. In this case, if the rounding causes the delivered result value
to differ from what would have been computed were both the exponent range and precision
unbounded (the result is inexact), then underflow occurs and FPSCR[UX] is set.

Table 3-15. Target Result for Overflow Exception Disabled Case

FPSCR[RN]
Sign of Intermediate

Result
frD

Round to nearest Positive +Infinity

Negative –Infinity

Round toward zero Positive Format’s largest finite positive number

Negative Format’s most negative finite number

Round toward +infinity Positive +Infinity

Negative Format’s most negative finite number

Round toward –infinity Positive Format’s largest finite positive number

Negative –Infinity

Chapter 3. Operand Conventions 3-43

3

The actions performed for underflow exception conditions are described in Table 3-16.

NOTE: The FR and FI bits in the FPSCR allow the system floating-point enabled
exception error handler, when invoked because of an underflow exception
condition, to simulate a trap disabled environment.
That is, the FR and FI bits allow the system floating-point enabled exception
error handler to unround the result, thus allowing the result to be denormalized.

3.3.6.2.3 Inexact Exception Condition
The inexact exception condition occurs when one of two conditions occur during rounding:

• The rounded result differs from the intermediate result assuming the intermediate
result exponent range and precision to be unbounded. (In the case of an enabled
overflow or underflow condition, where the exponent of the rounded result is
adjusted for those conditions, an inexact condition occurs only if the significand of
the rounded result differs from that of the intermediate result.)

• The rounded result overflows and the overflow exception condition is disabled.

Table 3-16. Actions Performed for Underflow Conditions

Condition Result Category
Action Performed

FPSCR[UE] = 1 FPSCR[UE] = 0

Double-precision
arithmetic instructions

Exponent of normalized
intermediate result

Adjusted by adding 1536 —

Single-precision
arithmetic and frsp x
instructions

Exponent of normalized
intermediate result

Adjusted by adding192 —

All cases frD Rounded result (with
adjusted exponent)

Denormalized and
rounded result

FPSCR[XX] Set if rounded result
differs from intermediate
result

Set if rounded result
differs from intermediate
result

FPSCR[UX] Set Set only if tiny and inexact
after denormalization and
rounding

FPSCR[FPRF] Set to indicate normalized
number

Set to indicate
±denormalized number or
±zero

FPSCR[FEX] Implicitly set (causes
exception)

Unchanged

FPSCR[FI] Reflects rounding Reflects rounding

FPSCR[FR] Reflects rounding Reflects rounding

3-44 PowerPC Microprocessor 32-bit Family: The Programming Environments

3

When an inexact exception condition occurs, the following actions are taken independently
of the setting of the inexact exception condition enable bit of the FPSCR:

• Inexact exception condition bit in the FPSCR is set FPSCR[XX] = 1.
• The rounded or overflowed result is placed into the target FPR.
• FPSCR[FPRF] is set to indicate the class and sign of the result.

In addition, if the inexact exception condition enable bit in the FPSCR (FPSCR[XE]) is set,
and an inexact condition exists, then the FPSCR[FEX] bit is implicitly set, causing the
processor to take a floating-point enabled program exception.

In PowerPC implementations, running with inexact exception conditions enabled may have
greater latency than enabling other types of floating-point exception conditions.

Chapter 4. Addressing Modes and Instruction Set Summary 4-1

4

Chapter 4. Addressing Modes and
Instruction Set Summary
40
40

This chapter describes instructions and addressing modes defined by the three levels of the
PowerPC architecture—user instruction set architecture (UISA), virtual environment
architecture (VEA), and operating environment architecture (OEA). These instructions are
divided into the following functional categories:

• Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 4.2.1, “Integer Instructions.”

• Floating-point instructions—These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 4.2.2, “Floating-Point Instructions.”

• Load and store instructions—These include integer and floating-point load and store
instructions. For more information, see Section 4.2.3, “Load and Store Instructions.”

• Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 4.2.4, “Branch and Flow Control
Instructions.”

• Processor control instructions—These instructions are used for synchronizing
memory accesses and managing of caches, TLBs, and the segment registers. For
more information, see Section 4.2.5, “Processor Control Instructions—UISA,”
Section 4.3.1, “Processor Control Instructions—VEA,” and Section 4.4.2,
“Processor Control Instructions—OEA.”

• Memory synchronization instructions—These instructions control the order in
which memory operations are completed with respect to asynchronous events, and
the order in which memory operations are seen by other processors or memory
access mechanisms. For more information, see Section 4.2.6, “Memory
Synchronization Instructions—UISA,” and Section 4.3.2, “Memory
Synchronization Instructions—VEA.”

• Memory control instructions—These include cache management instructions (user-
level and supervisor-level), segment register manipulation instructions, and
translation lookaside buffer management instructions. For more information, see
Section 4.3.3, “Memory Control Instructions—VEA,” and Section 4.4.3, “Memory
Control Instructions—OEA.”

U
V
O

4-2 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

NOTE: User-level and supervisor-level are referred to as problem state and privileged
state, respectively, in the architecture specification.

• External control instructions—These instructions allow a user-level program to
communicate with a special-purpose device. For more information, see
Section 4.3.4, “External Control Instructions.”

This grouping of instructions does not necessarily indicate the execution unit that processes
a particular instruction or group of instructions within a processor implementation.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision and double-precision floating-point operands. The
PowerPC architecture uses instructions that are four bytes long and word-aligned. It
provides for byte, half-word, and word operand fetches and stores between memory and a
set of 32 general-purpose registers (GPRs). It also provides for word and double-word
operand fetches and stores between memory and a set of 32 floating-point registers (FPRs).
The FPRs are 64 bits wide in all PowerPC implementations. The GPRs are 32 bits wide.

Arithmetic and logical instructions do not read or modify memory. To use the contents of
a memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
PowerPC-compliant assemblers support the mnemonics and operand lists. To simplify
assembly language programming, a set of simplified mnemonics (referred to as extended
mnemonics in the architecture specification) and symbols is provided for some of the most
frequently-used instructions; see Appendix F, “Simplified Mnemonics,” for a complete list
of simplified mnemonics.

The instructions are organized by functional categories while maintaining the delineation
of the three levels of the PowerPC architecture—UISA, VEA, and OEA; Section 4.2
discusses the UISA instructions, followed by Section 4.3 that discusses the VEA
instructions and Section 4.4 that discusses the OEA instructions. See Section 1.1.2, “.The
Levels of the PowerPC Architecture,” for more information about the various levels defined
by the PowerPC architecture.

4.1 Conventions
This section describes conventions used for the PowerPC instruction set. Descriptions of
computation modes, memory addressing, synchronization, and the PowerPC exception
summary follow.

4.1.1 Sequential Execution Model
The PowerPC processors appear to execute instructions in program order, regardless of
asynchronous events or program exceptions. The execution of a sequence of instructions

U
V
O

U

U

Chapter 4. Addressing Modes and Instruction Set Summary 4-3

4

may be interrupted by an exception caused by one of the instructions in the sequence, or by
an asynchronous event.

NOTE: The architecture specification refers to exceptions as interrupts.

For exceptions to the sequential execution model, refer to Chapter 6, “Exceptions.” For
information about the synchronization required when using store instructions to access
instruction areas of memory, refer to Section 4.2.3.3, “Integer Store Instructions,” and
Section 5.1.5.2, “Instruction-Cache Instructions.” For information regarding instruction
fetching, and for information about guarded memory refer to Section 5.2.1.5, “The
Guarded Attribute (G).”

4.1.2 Computation Modes
The PowerPC architecture allows for both 32-bit and 64-bit modes, however, this manual
defines only the 32-bit implementation, in which all registers except the FPRs are 32 bits
long, and effective addresses are always 32 bits long.

4.1.3 Classes of Instructions
PowerPC instructions belong to one of the following three classes:

• Defined

• Illegal

• Reserved

The class is determined by examining the primary opcode, and the extended opcode if any.
If the opcode, or the combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

In future versions of the PowerPC architecture, instruction codings that are now illegal may
become defined (by being added to the architecture) or reserved (by being assigned to one
of the special purposes). Likewise, reserved instructions may become defined.

4.1.3.1 Definition of Boundedly Undefined
The results of executing a given instruction are said to be boundedly undefined if they could
have been achieved by execution an arbitrary sequence of instructions, stating in the state
the machine was in before execution the given instruction. Boundedly undefined results for
a given instruction may vary between implementations, and between different executions
on a the same implementations.

4.1.3.2 Defined Instruction Class
Defined instructions contain all the instructions defined in the PowerPC UISA, VEA, and
OEA. Defined instructions are guaranteed to be supported in all PowerPC implementations
as stated in the instruction descriptions in Chapter 8, “Instruction set.” A PowerPC
processor may invoke the illegal instruction error handler (part of the program exception
handler) when an unimplemented PowerPC instruction is encountered so that it may be
emulated in software, as required.

A defined instruction can have invalid forms, as described in Section 4.1.3.2.2, “Invalid
Instruction Forms.”

U

4-4 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

4.1.3.2.1 Preferred Instruction Forms
A defined instruction may have an instruction form that is preferred (that is, the instruction
will execute in an efficient manner). Any form other than the preferred form may take
significantly longer to execute. The following instructions have preferred forms:

• Load/store multiple instructions
• Load/store string instructions
• Or immediate instruction (preferred form of no-op)

4.1.3.2.2 Invalid Instruction Forms
A defined instruction may have an instruction form that is invalid if one or more operands,
excluding opcodes, are coded incorrectly in a manner that can be deduced by examining
only the instruction encoding (primary and extended opcodes). Attempting to execute an
invalid form of an instruction either invokes the illegal instruction error handler (a program
exception) or yields boundedly-undefined results. See Chapter 8, “Instruction set,” for
individual instruction descriptions.

Invalid forms result when a bit or operand is coded incorrectly, for example, or when a
reserved bit (shown as ‘0’) is coded as ‘1’.

The following instructions have invalid forms identified in their individual instruction
descriptions:

• Branch conditional instructions
• Load/store with update instructions
• Load multiple instructions
• Load string instructions
• Integer compare instructions
• Load/store floating-point with update instructions

4.1.3.2.3 Optional Instructions
A defined instruction may be optional. The optional instructions fall into the following
categories:

• General-purpose instructions—fsqrt andfsqrts
• Graphics instructions—fres, frsqrte , andfsel
• External control instructions—eciwx andecowx
• Lookaside buffer management instructions— tlbia, tlbie, andtlbsync (with

conditions, see Chapter 8, “Instruction set,” for more information)

NOTE: Thestfiwx instruction is defined as optional by the PowerPC architecture to
ensure backwards compatibility with earlier processors; however, it will likely be
required for subsequent PowerPC processors.
Additional categories may be defined in future implementations. If an
implementation claims to support a given category, it implements all the
instructions in that category.

V

Chapter 4. Addressing Modes and Instruction Set Summary 4-5

4

Any attempt to execute an optional instruction that is not provided by the implementation
will cause the illegal instruction error handler to be invoked. Exceptions to this rule are
stated in the instruction descriptions found in Chapter 8, “Instruction set.”

4.1.3.3 Illegal Instruction Class
Illegal instructions can be grouped into the following categories:

• Instructions that are not implemented in the PowerPC architecture. These opcodes
are available for future extensions of the PowerPC architecture; that is, future
versions of the PowerPC architecture may define any of these instructions to
perform new functions. The following primary opcodes are defined as illegal but
may be used in future extensions to the architecture:

1, 2, 4, 5, 6, 22, 30, 56, 57, 58, 60, 61, 62

• All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, “Instructions Sorted by Opcode,” and
Section 4.1.3.4, “Reserved Instructions.” The following primary opcodes have some
unused extended opcodes.

19, 31, 59, 63

• An instruction consisting entirely of zeros is guaranteed to be an illegal instruction.
This increases the probability that an attempt to execute data or uninitialized
memory invokes the illegal instruction error handler (a program exception).

NOTE: If only the primary opcode consists of all zeros, the instruction is considered a
reserved instruction, as described in Section 4.1.3.4, “Reserved Instructions.”

An attempt to execute an illegal instruction invokes the illegal instruction error handler (a
program exception) but has no other effect. See Section 6.4.7, “Program Exception
(0x00700),” for additional information about illegal instruction exception.

With the exception of the instruction consisting entirely of binary zeros, the illegal
instructions are available for further additions to the PowerPC architecture.

4.1.3.4 Reserved Instructions
Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
Section 6.4.7, “Program Exception (0x00700),” for additional information about illegal
instruction exception.

The following types of instructions are included in this class:

1. Instructions for the POWER architecture that have not been included in the
PowerPC architecture.

U

4-6 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

2. Implementation-specific instructions used to conform to the PowerPC
architecture specifications (for example, Load Data TLB Entry (tlbld) and
Load Instruction TLB Entry (tlbli) instructions for the PowerPC 603™
microprocessor).

3. The instruction with primary opcode 0, when the instruction does not consist
entirely of binary zeros

4. Any other implementation-specific instructions that are not defined in the UISA,
VEA, or OEA

4.1.4 Memory Addressing
A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches
the next sequential instruction.

4.1.4.1 Memory Operands
Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte. Within words bytes are number from left to right.

Memory operands may be bytes, half-words, words, or double words, for the load/store
multiple, and load/store string instructions a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian;
see Section 3.1.2, “Byte Ordering,” for more information.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Chapter 3, “Operand Conventions.”

4.1.4.2 Effective Address Calculation
An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored. The effective address arithmetic wraps
around from the maximum address, 232 – 1, to address 0.

In all implementations, the three low-order bits of the calculated effective address may be
modified by the processor before accessing memory if the PowerPC system is operating in
little-endian mode.
See Section 3.1.2, “Byte Ordering,” for more information about little-endian mode.

U

U
V
O

Chapter 4. Addressing Modes and Instruction Set Summary 4-7

4

Load and store operations have three categories of effective address generation that depend
on the operands specified:

• Register indirect with immediate index mode
• Register indirect with index mode (sum of two registers)
• Register indirect mode

See Section 4.2.3.1, “Integer Load and Store Address Generation,” for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

• Immediate addressing.
• Link register indirect
• Count register indirect

See Section 4.2.4.1, “Branch Instruction Address Calculation,” for a detailed
description of effective address generation for branch instructions.

Branch instructions can optionally load the LR with the next sequential instruction address
(current instruction address + 4). This is used for subroutine call and return.

4.1.5 Synchronizing Instructions
The synchronization described in this section refers to the state of activities within the
processor that is performing the synchronization. Refer to Section 6.1.2,
“Synchronization,” for more detailed information about other conditions that can cause
context and execution synchronization.

4.1.5.1 Context Synchronizing Instructions
The System Call (sc), Return from Interrupt (rfi), and Instruction Synchronize (isync)
instructions perform context synchronization by allowing previously issued instructions to
complete before continuing with program execution. All three instructions will flush the
instruction prefetch queue and start instruction fetching from memory in the context
established after all preceding instructions have completed execution.

1. No higher priority exception exists (sc) and instruction fetching and dispatching is
halted.

2. All previous instructions have completed to a point where they can no longer cause
an exception.

If a previous memory access instruction causes one or more direct-store interface
error exceptions, the results are guaranteed to be determined before this instruction
is executed.

3. Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

U

O

4-8 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

4. The instructions at the target of the branch ofscandrfi and those following theisync
instruction execute in the context established by these instructions. For theisync
instruction the instruction fetch queue must be flushed and instruction fetching
restarted at the next sequential instruction. Bothscandrfi execute like a branch and
the flushing and refetching is automatic.

4.1.5.2 Execution Synchronizing Instructions
An instruction is execution synchronizing if it satisfies the conditions of the first two items
described above for context synchronization. Thesyncinstruction is treated likeisyncwith
respect to the second item described above (that is, the conditions described in the second
item apply to the completion ofsync). Thesyncandmtmsr instructions are examples of
execution-synchronizing instructions.

The isync instruction is concerned mainly with the instruction stream in the processor on
which it is executed, whereas,syncis looking outward towards the caches and memory and
is concerned with data arriving at memory where it is visible to other processors in a
multiprocessor environment. (e.g. cache block store, cache block flush, etc.)

All context-synchronizing instructions are execution-synchronizing. Unlike a context
synchronizing operation, an execution synchronizing instruction need not ensure that the
instructions following it execute in the context established by that instruction. This new
context becomes effective sometime after the execution synchronizing instruction
completes and before or at a subsequent context synchronizing operation.

Chapter 4. Addressing Modes and Instruction Set Summary 4-9

4

4.1.6 Exception Summary
PowerPC processors have an exception mechanism for handling system functions and error
conditions in an orderly way. The exception model is defined by the OEA. There are two
kinds of exceptions—those caused directly by the execution of an instruction and those
caused by an asynchronous event. Either may cause components of the system software to
be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

• An attempt to execute an illegal instruction causes the illegal instruction (program
exception) error handler to be invoked. An attempt by a user-level program to
execute the supervisor-level instructions listed below causes the privileged
instruction (program exception) handler to be invoked.

The PowerPC architecture provides the following supervisor-level instructions:
dcbi, mfmsr, mfspr, mfsr, mfsrin , mtmsr, mtspr, mtsr, mtsrin , rfi , tlbia , tlbie,
andtlbsync (defined by OEA).

NOTE: The privilege level of themfspr andmtspr instructions depends on the
SPR encoding.

• The execution of a defined instruction using an invalid form causes either the illegal
instruction error handler or the privileged instruction handler to be invoked.

• The execution of an optional instruction that is not provided by the implementation
causes the illegal instruction error handler to be invoked.

• An attempt to access memory in a manner that violates memory protection, or an
attempt to access memory that is not available (page fault), causes the DSI exception
handler or ISI exception handler to be invoked.

• An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

• The execution of anscinstruction permits a program to call on the system to perform
a service, by causing a system call exception handler to be invoked.

• The execution of a trap instruction invokes the program exception trap handler.

• The execution of a floating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable exception handler.

• The execution of an instruction that causes a floating-point exception that is enabled
invokes the floating-point enabled exception handler.

• The execution of a floating-point instruction that requires system software assistance
causes the floating-point assist exception handler to be invoked. The conditions
under which such software assistance is required are implementation-dependent.

Exceptions caused by asynchronous events are described in Chapter 6, “Exceptions.”

U

U
V
O

4-10 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

4.2 PowerPC UISA Instructions
The PowerPC user instruction set architecture (UISA) includes the base user-level
instruction set (excluding a few user-level cache-control, synchronization, and time base
instructions), user-level registers, programming model, data types, and addressing modes.
This section discusses the instructions defined in the UISA.

4.2.1 Integer Instructions
The integer instructions consist of the following:

• Integer arithmetic instructions
• Integer compare instructions
• Integer logical instructions
• Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs. Integer arithmetic, shift, rotate, and string move instructions may update or read
values from the XER, and the condition register (CR) fields may be updated if the Rc bit of
the instruction is set.

These instructions treat the source operands as signed integers unless the instruction is
explicitly identified as performing an unsigned operation. For example, Multiply High-
Word Unsigned (mulhwu) and Divide Word Unsigned (divwu) instructions interpret both
operands as unsigned integers.

The integer instructions that are coded to update the condition register, and the integer
arithmetic instruction,addic., set CR bits 0–3 (CR0) to characterize the result of the
operation. CR0 is set to reflect a signed comparison of the result to zero.

The integer arithmetic instructions,addic, addic., subfic, addc, subfc, adde, subfe,
addme, subfme, addze, andsubfze, always set the XER bit, CA, to reflect the carry out of
bit 0. Integer arithmetic instructions with the overflow enable (OE) bit set in the instruction
encoding (instructions with o suffix) cause the XER[SO] and XER[OV] to reflect an
overflow of the result. These integer arithmetic instructions reflect the overflow of the 32-
bit result.

Instructions that select the overflow option (enable XER[OV]) or that set the XER carry bit
(CA) may delay the execution of subsequent instructions.

Unless otherwise noted, when CR0 and the XER are set, they characterize the value placed
in the target register.

Chapter 4. Addressing Modes and Instruction Set Summary 4-11

4

4.2.1.1 Integer Arithmetic Instructions
Table 4-1 lists the integer arithmetic instructions for the PowerPC processors.

Table 4-1. Integer Arithmetic Instructions

Name Mnemonic
Operand
Syntax

Operation

Add Immediate addi r D,rA,SIMM The sum (rA|0) + SIMM is placed into rD.

Add Immediate
Shifted

addis r D,rA,SIMM The sum (rA|0) + (SIMM || 0x0000) is placed into rD.

Add add
add.
addo
addo.

rD,rA,rB The sum (rA) + (rB) is placed into rD.

add Add
add. Add with CR Update. The dot suffix enables the update of

CR0.
addo Add with Overflow Enabled. The o suffix enables the overflow

bit (SO, OV) in the XER.
addo. Add with Overflow and CR Update. The o. suffix enables the

update of CR0 and enables the overflow bit (SO,OV) in the
XER.

Subtract From subf
subf.
subfo
subfo.

rD,rA,rB The sum ¬ (rA) + (rB) +1 is placed into rD.

subf Subtract From
subf. Subtract from with CR Update. The dot suffix enables the

update of CR0.
subfo Subtract from with Overflow Enabled. The o suffix enables the

overflow bits (SO,OV) in the XER.
subfo. Subtract from with Overflow and CR Update. The o. suffix

enables the update of CR0 and enables the overflow bits
(SO,OV) in the XER.

Add Immediate
Carrying

addic r D,rA,SIMM The sum (rA) + SIMM is placed into rD.

Add Immediate
Carrying and
Record

addic. r D,rA,SIMM The sum (rA) + SIMM is placed into rD. CR0 is updated.

Subtract from
Immediate
Carrying

subfic r D,rA,SIMM The sum ¬ (rA) + SIMM + 1 is placed into rD.

Add Carrying addc
addc.
addco
addco.

rD,rA,rB The sum (rA) + (rB) is placed into rD.

addc Add Carrying
addc. Add Carrying with CR Update. The dot suffix enables the

update of CR0.
addco Add Carrying with Overflow Enabled. The o suffix enables the

overflow bits (SO,OV) in the XER.
addco. Add Carrying with Overflow and CR Update. The o. suffix

enables the update of CR0 and enables the overflow bits
(SO,OV) in the XER.

4-12 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

Subtract from
Carrying

subfc
subfc.
subfco
subfco.

rD,rA,rB The sum ¬ (rA) + (rB) + 1 is placed into rD.

subfc Subtract from Carrying
subfc. Subtract from Carrying with CR0 Update. The dot suffix

enables the update of CR0.
subfco Subtract from Carrying with Overflow. The o suffix enables the

overflow bits (SO,OV) in the XER.
subfco. Subtract from Carrying with Overflow and CR0 Update. The

o. suffix enables the update of CR0 and enables the overflow
bits (SO,OV) in the XER.

Add
Extended

adde
adde.
addeo
addeo.

rD,rA,rB The sum (rA) + (rB) + XER[CA] is placed into rD.

adde Add Extended
adde. Add Extended with CR Update. The dot suffix enables the

update of CR0.
addeo Add Extended with Overflow. The o suffix enables the

overflow bits (SO,OV) in the XER.
addeo. Add Extended with Overflow and CR Update. The o. suffix

enables the update of CR0 and enables the overflow bits
(SO,OV) in the XER.

Subtract from
Extended

subfe
subfe.
subfeo
subfeo.

rD,rA,rB The sum ¬ (rA) + (rB) + XER[CA] is placed into rD.

subfe Subtract from Extended
subfe. Subtract from Extended with CR Update. The dot suffix

enables the update of CR0.
subfeo Subtract from Extended with Overflow. The o suffix enables

the overflow bits (SO,OV) in the XER.
subfeo. Subtract from Extended with Overflow and CR Update. The o.

suffix enables the update of CR0 and enables the overflow
(SO,OV) bits in the XER.

Add to Minus
One Extended

addme
addme.
addmeo
addmeo.

rD,rA The sum (rA) + XER[CA] added to 0xFFFF_FFFF is placed into rD.

addme Add to Minus One Extended
addme. Add to Minus One Extended with CR Update. The dot suffix

enables the update of CR0.
addmeo Add to Minus One Extended with Overflow. The o suffix

enables the overflow bits (SO,OV) in the XER.
addmeo. Add to Minus One Extended with Overflow and CR Update.

The o. suffix enables the update of CR0 and enables the
overflow (SO,OV) bits in the XER.

Subtract from
Minus One
Extended

subfme
subfme.
subfmeo
subfmeo.

rD,rA The sum ¬ (rA) + XER[CA] added to 0xFFFF_FFFF is placed into rD.

subfme Subtract from Minus One Extended
subfme. Subtract from Minus One Extended with CR Update. The dot

suffix enables the update of CR0.
subfmeo Subtract from Minus One Extended with Overflow. The o

suffix enables the overflow bits (SO,OV) in the XER.
subfmeo. Subtract from Minus One Extended with Overflow and CR

Update. The o. suffix enables the update of CR0 and enables
the overflow bits (SO,OV) in the XER.

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

Chapter 4. Addressing Modes and Instruction Set Summary 4-13

4

Add to Zero
Extended

addze
addze.
addzeo
addzeo.

rD,rA The sum (rA) + XER[CA] is placed into rD.

addze Add to Zero Extended
addze. Add to Zero Extended with CR Update. The dot suffix enables

the update of CR0.
addzeo Add to Zero Extended with Overflow. The o suffix enables the

overflow bits (SO,OV) in the XER.
addzeo. Add to Zero Extended with Overflow and CR Update. The o.

suffix enables the update of CR0 and enables the overflow
bits (SO,OV) in the XER.

Subtract from
Zero Extended

subfze
subfze.
subfzeo
subfzeo.

rD,rA The sum ¬ (rA) + XER[CA] is placed into rD.

subfze Subtract from Zero Extended
subfze. Subtract from Zero Extended with CR Update. The dot suffix

enables the update of CR0.
subfzeo Subtract from Zero Extended with Overflow. The o suffix

enables the overflow bits (SO,OV) in the XER.
subfzeo. Subtract from Zero Extended with Overflow and CR Update.

The o. suffix enables the update of CR0 and enables the
overflow bits (SO,OV) in the XER.

Negate neg
neg.
nego
nego.

rD,rA The sum ¬ (rA) + 1 is placed into rD.

neg Negate
neg. Negate with CR Update. The dot suffix enables the update of

CR0.
nego Negate with Overflow. The o suffix enables the overflow bits

(SO,OV) in the XER.
nego. Negate with Overflow and CR Update. The o. suffix enables

the update of CR0 and enables the overflow bits (SO,OV) in
the XER.

Multiply Low
Immediate

mulli r D,rA,SIMM The low-order 32 bits of the 64-bit product (rA) ∗ SIMM are placed into
rD.

This instruction can be used with mulhw x to calculate a full 64-bit
product.

Multiply Low mullw
mullw.
mullwo
mullwo.

rD,rA,rB The low order 32-bits of the 64 bit product (rA) ∗ (rB) are placed into
register rD.

This instruction can be used with mulhw x to calculate a full 64-bit
product.

mullw Multiply Low
mullw. Multiply Low with CR Update. The dot suffix enables the

update of CR0.
mullwo Multiply Low with Overflow. The o suffix enables the overflow

bits (SO,OV) in the XER.
mullwo. Multiply Low with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables the
overflow bits (SO,OV) in the XER.

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

4-14 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

Although there is no “Subtract Immediate” instruction, its effect can be achieved by using
an addi instruction with the immediate operand negated. Simplified mnemonics are
provided that include this negation. Thesubf instructions subtract the second operand (rA)
from the third operand (rB). Simplified mnemonics are provided in which the third operand
is subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” for
examples.

4.2.1.2 Integer Compare Instructions
The integer compare instructions algebraically or logically compare the contents of register
rA with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of registerrB. The comparison is signed for thecmpi

Multiply High
Word

mulhw
mulhw.

rD,rA,rB The contents of rA and rB are interpreted as 32-bit signed integers. The
64-bit product is formed. The high-order 32 bits of the 64-bit product are
placed into rD.

mulhw Multiply High Word
mulhw. Multiply High Word with CR Update. The dot suffix enables

the update of CR0.

Multiply High
Word Unsigned

mulhwu
mulhwu.

rD,rA,rB The contents of rA and of rB are interpreted as 32-bit unsigned integers.
The 64-bit product is formed. The high-order 32-bits of the 64-bit product
are placed into rD.

mulhwu Multiply High Word Unsigned
mulhwu. Multiply High Word Unsigned with CR Update. The dot suffix

enables the update of CR0.

Divide Word divw
divw.
divwo
divwo.

rD,rA,rB The dividend is the signed value of rA. The divisor is the signed value of
rB. The low-order 32-bits of the 64 bit quotient are placed into rD. The
remainder is not supplied as a result.

divw Divide Word
divw. Divide Word with CR Update. The dot suffix enables the update

of CR0.
divwo Divide Word with Overflow. The o suffix enables the overflow

bits (SO,OV) in the XER.
divwo. Divide Word with Overflow and CR Update. The o. suffix

enables the update of CR0 and enables the overflow bits
(SO,OV) in the XER.

Divide Word
Unsigned

divwu
divwu.
divwuo
divwuo.

rD,rA,rB The dividend is the value in rA. The divisor is the value in rB. The low-
order 32-bits of the 64 bit quotient are placed into rD. The remainder is
not supplied as a result.

divwu Divide Word Unsigned
divwu. Divide Word Unsigned with CR Update. The dot suffix

enables the update of CR0.
divwuo Divide Word Unsigned with Overflow. The o suffix enables the

overflow bits (SO,OV) in the XER.
divwuo. Divide Word Unsigned with Overflow and CR Update. The o.

suffix enables the update of CR0 and enables the overflow
bits (SO,OV) in the XER.

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

Chapter 4. Addressing Modes and Instruction Set Summary 4-15

4

and cmp instructions, and unsigned for thecmpli and cmpl instructions. Table 4-2
summarizes the integer compare instructions.

The integer compare instructions (shown in Table 4-2) set one of the leftmost three bits of
the designated CR field, and clear the other two. XER[SO] is copied into bit 3 of the CR
field.

The crfD operand can be omitted if the result of the comparison is to be placed in CR0.
Otherwise the target CR field must be specified in the instructioncrfD field, using an
explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, “Simplified Mnemonics.”

4.2.1.3 Integer Logical Instructions
The logical instructions shown in Table 4-3 perform bit-parallel operations on 32-bit
operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructionsandi. andandis.set CR field CR0 (bits 0 to 2) to characterize the result of the
logical operation. Logical instructions without CR update and the remaining logical
instructions do not modify the CR. Logical instructions do not affect the XER[SO],
XER[OV], and XER[CA] bits.

Table 4-2. Integer Compare Instructions

Name Mnemonic Operand Syntax Operation

Compare
Immediate

cmpi crf D,L,rA,SIMM The value in register rA is compared with the sign-extended value of
the SIMM operand, treating the operands as signed integers. The
result of the comparison is placed into the CR field specified by
operand crf D.

Compare cmp crf D,L,rA,rB The value in register rA is compared with the value in register rB,
treating the operands as signed integers. The result of the comparison
is placed into the CR field specified by operand crf D.

Compare
Logical
Immediate

cmpli crf D,L,rA,UIMM The value in register rA is compared with 0x0000 || UIMM, treating the
operands as unsigned integers. The result of the comparison is placed
into the CR field specified by operand crf D.

Compare
Logical

cmpl crf D,L,rA,rB The value in register rA is compared with the value in register rB,
treating the operands as unsigned integers. The result of the
comparison is placed into the CR field specified by operand crf D.

4-16 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

See Appendix F, “Simplified Mnemonics,” for simplified mnemonic examples for integer
logical operations.

Table 4-3. Integer Logical Instructions

Name Mnemonic
Operand
Syntax

Operation

AND
Immediate

andi. r A,rS,UIMM The contents of rS are ANDed with 0x0000 || UIMM and the result is placed
into rA.
CR0 is updated.

AND
Immediate
Shifted

andis. r A,rS,UIMM The contents of rS are ANDed with UIMM || 0x0000 and the result is placed
into rA.
CR0 is updated.

OR
Immediate

ori r A,rS,UIMM The contents of rS are ORed with 0x0000 || UIMM and the result is placed
into rA.

The preferred no-op is ori 0,0,0

OR
Immediate
Shifted

oris r A,rS,UIMM The contents of rS are ORed with UIMM || 0x0000 and the result is placed
into rA.

XOR
Immediate

xori r A,rS,UIMM The contents of rS are XORed with 0x0000 || UIMM and the result is placed
into rA.

XOR
Immediate
Shifted

xoris r A,rS,UIMM The contents of rS are XORed with UIMM || 0x0000 and the result is placed
into rA.

AND and
and.

rA,rS,rB The contents of rS are ANDed with the contents of register rB and the result
is placed into rA.

and AND
and. AND with CR Update. The dot suffix enables the update of CR0.

OR or
or.

rA,rS,rB The contents of rS are ORed with the contents of rB and the result is placed
into rA.

or OR
or. OR with CR Update. The dot suffix enables the update of CR0.

XOR xor
xor.

rA,rS,rB The contents of rS are XORed with the contents of rB and the result is
placed into rA.

xor XOR
xor. XOR with CR Update. The dot suffix enables the update of CR0.

NAND nand
nand.

rA,rS,rB The contents of rS are ANDed with the contents of rB and the one’s
complement of the result is placed into rA.

nand NAND
nand. NAND with CR Update. The dot suffix enables the update of CR0.
Note : t nand x, with rS = rB, can be used to obtain the one's complement.

NOR nor
nor.

rA,rS,rB The contents of rS are ORed with the contents of rB and the one’s
complement of the result is placed into rA.

nor NOR
nor. NOR with CR Update. The dot suffix enables the update of CR0.
Note :t nor x, with rS = rB, can be used to obtain the one's complement.

Chapter 4. Addressing Modes and Instruction Set Summary 4-17

4

4.2.1.4 Integer Rotate and Shift Instructions
Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. The rotation operations rotate a 32-bit quantity left by a
specified number of bit positions. Bits that exit from position 0 enter at position 31.

The rotate and shift instructions employ a mask generator. The mask is 32 bits long and
consists of ‘1’ bits from a start bit, Mstart, through and including a stop bit, Mstop, and ‘0’
bits elsewhere. The values of Mstart and Mstop range from 0 to 31. If Mstart > Mstop, the
‘1’ bits wrap around from position 31 to position 0. Thus the mask is formed as follows:

if Mstart ≤ Mstop then

Equivalent eqv
eqv.

rA,rS,rB The contents of rS are XORed with the contents of rB and the
complemented result is placed into rA.

eqv Equivalent
eqv. Equivalent with CR Update. The dot suffix enables the update of

CR0.

AND with
Complement

andc
andc.

rA,rS,rB The contents of rS are ANDed with the one’s complement of the contents of
rB and the result is placed into rA.

andc AND with Complement
andc. AND with Complement with CR Update. The dot suffix enables the

update of CR0.

OR with
Complement

orc
orc.

rA,rS,rB The contents of rS are ORed with the complement of the contents of rB and
the result is placed into rA.

orc OR with Complement
orc. OR with Complement with CR Update. The dot suffix enables the

update of CR0.

Extend Sign
Byte

extsb
extsb.

rA,rS The contents of the low-order eight bits of rS are placed into the low-order
eight bits of rA. Bit 24 is placed into the remaining high-order bits of rA.

extsb Extend Sign Byte
extsb. Extend Sign Byte with CR Update. The dot suffix enables the

update of CR0.

Extend Sign
Half Word

extsh
extsh.

rA,rS The contents of the low-order 16 bits of rS are placed into rA. Bit 16 is
placed into the remaining high-order bits of rA.

extsh Extend Sign Half Word
extsh. Extend Sign Half Word with CR Update. The dot suffix enables the

update of CR0.

Count
Leading
Zeros Word

cntlzw
cntlzw.

rA,rS A count of the number of consecutive zero bits starting at bit 0 of rS is
placed into rA. This number ranges from 0 to 32, inclusive.

If Rc = 1 (dot suffix), LT is cleared in CR0.

cntlzw Count Leading Zeros Word
cntlzw. Count Leading Zeros Word with CR Update. The dot suffix enables

the update of the CR.

Table 4-3. Integer Logical Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

4-18 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

mask[mstart–mstop] = ones
mask[all other bits] = zeros

else
mask[mstart–31] = ones
mask[0–mstop] = ones
mask[all other bits] = zeros

It is not possible to specify an all-zero mask. The use of the mask is described in the
following sections.

If CR updating is enabled, rotate and shift instructions set CR0[0–2] according to the
contents ofrA at the completion of the instruction. Rotate and shift instructions do not
change the values of XER[OV] and XER[SO] bits. Rotate and shift instructions, except
algebraic right shifts, do not change the XER[CA] bit.

See Appendix F, “Simplified Mnemonics,” for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

4.2.1.4.1 Integer Rotate Instructions
Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is either zeroed or unchanged), or ANDed with a mask before being
placed into the target register.

Rotate left instructions allow apparent right-rotation of the contents of a register to be
performed by a left-rotation of 32 –n, wheren is the number of bits by which to rotate right.
The integer rotate instructions are summarized in Table 4-4.

Table 4-4. Integer Rotate Instructions

Name Mnemonic Operand Syntax Operation

Rotate Left
Word
Immediate
then AND with
Mask

rlwinm
rlwinm.

rA,rS,SH,MB,ME The contents of register rS are rotated left by the number of bits
specified by operand SH. A mask is generated having 1 bits from
the bit specified by operand MB through the bit specified by
operand ME and 0 bits elsewhere. The rotated data is ANDed with
the generated mask and the result is placed into register rA.

rlwinm Rotate Left Word Immediate then AND with Mask
rlwinm. Rotate Left Word Immediate then AND with Mask with

CR Update. The dot suffix enables the update of CR0.

Chapter 4. Addressing Modes and Instruction Set Summary 4-19

4

4.2.1.4.2 Integer Shift Instructions
The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics”) are provided to make coding of such shifts simpler and easier to understand.

Any shift right algebraic instruction, followed byaddze, can be used to divide quickly by
2n. The setting of XER[CA] by the shift right algebraic instruction is independent of mode.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts.”

The integer shift instructions are summarized in Table 4-5.

Rotate Left
Word then
AND with
Mask

rlwnm
rlwnm.

rA,rS,rB,MB,ME The contents of rS are rotated left by the number of bits specified
by operand in the low-order five bits of rB. A mask is generated
having 1 bits from the bit specified by operand MB through the bit
specified by operand ME and 0 bits elsewhere. The rotated word
is ANDed with the generated mask and the result is placed into rA.

rlwnm Rotate Left Word then AND with Mask
rlwnm. Rotate Left Word then AND with Mask with CR Update.

The dot suffix enables the update of CR0.

Rotate Left
Word
Immediate
then Mask
Insert

rlwimi
rlwimi.

rA,rS,SH,MB,ME The contents of rS are rotated left by the number of bits specified
by operand SH. A mask is generated having 1 bits from the bit
specified by operand MB through the bit specified by operand ME
and 0 bits elsewhere. The rotated word is inserted into rA under
control of the generated mask.

rlwimi Rotate Left Word Immediate then Mask
rlwimi. Rotate Left Word Immediate then Mask Insert with CR

Update. The dot suffix enables the update of CR0.

Table 4-5. Integer Shift Instructions

Name Mnemonic
Operand
Syntax

Operation

Shift Left
Word

slw
slw.

rA,rS,rB The contents of rS are shifted left the number of bits specified by the low-
order six bits of rB. Bits shifted out of position 0 are lost. Zeros are supplied
to the vacated positions on the right. The 32-bit result is placed into rA.

slw Shift Left Word
slw. Shift Left Word with CR Update. The dot suffix enables the

update of CR0.

Shift Right
Word

srw
srw.

rA,rS,rB The contents of rS are shifted right the number of bits specified by the low-
order six bits of rB. Bits shifted out of position 31 are lost. Zeros are supplied
to the vacated positions on the left. The 32-bit result is placed into rA.

srw Shift Right Word

srw. Shift Right Word with CR Update. The dot suffix enables the
update of CR0.

Table 4-4. Integer Rotate Instructions (Continued)

Name Mnemonic Operand Syntax Operation

4-20 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

4.2.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

• Floating-point arithmetic instructions
• Floating-point multiply-add instructions
• Floating-point rounding and conversion instructions
• Floating-point compare instructions
• Floating-point status and control register instructions
• Floating-point move instructions

NOTE: MSR[FP] must be set in order for any of these instructions (including the
floating-point loads and stores) to be executed.
If MSR[FP] = 0 when any floating-point instruction is attempted, the floating-
point unavailable exception is taken (see Section 6.4.8, “Floating-Point
Unavailable Exception (0x00800)”).
See Section 4.2.3, “Load and Store Instructions,” for information about floating-
point loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE-754
standard, but requires software support to conform with that standard. Floating-point
operations conform to the IEEE-754 standard, with the exception of operations performed
with thefmadd, fres, fsel, andfrsqrte instructions, or if software sets the non-IEEE mode
bit (NI) in the FPSCR. Refer to Section 3.3, “Floating-Point Execution Models—UISA,”
for detailed information about the floating-point formats and exception conditions. Also,
refer to Appendix D, “Floating-Point Models,” for more information on the floating-point
execution models used by the PowerPC architecture.

Shift Right
Algebraic
Word
Immediate

srawi
srawi.

rA,rS,SH The contents of rS are shifted right the number of bits specified by operand
SH. Bits shifted out of position 31 are lost. Bit 0 of rS is replicated to fill the
vacated positions on the left. The 32-bit result is placed into rA.

srawi Shift Right Algebraic Word Immediate
srawi. Shift Right Algebraic Word Immediate with CR Update. The dot

suffix enables the update of CR0.

Shift Right
Algebraic
Word

sraw
sraw.

rA,rS,rB The contents of rS are shifted right the number of bits specified by the low-
order six bits of rB. Bits shifted out of position 31 are lost. Bit 0 of rS is
replicated to fill the vacated positions on the left. The 32-bit result is placed
into rA.

sraw Shift Right Algebraic Word
sraw. Shift Right Algebraic Word with CR Update. The dot suffix

enables the update of CR0.

Table 4-5. Integer Shift Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

Chapter 4. Addressing Modes and Instruction Set Summary 4-21

4

4.2.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 4-6.

Table 4-6. Floating-Point Arithmetic Instructions

Name Mnemonic
Operand
Syntax

Operation

Floating
 Add
(Double-
Precision)

fadd
fadd.

frD,frA,frB The floating-point operand in register frA is added to the floating-point
operand in register frB. If the most significant bit of the resultant significand
is not a one the result is normalized. The result is rounded to the target
precision under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

fadd Floating Add (Double-Precision)
fadd. Floating Add (Double-Precision) with CR Update. The dot suffix

enables the update of CR1.

Floating
Add Single

fadds
fadds.

frD,frA,frB The floating-point operand in register frA is added to the floating-point
operand in register frB. If the most significant bit of the resultant significand
is not a one, the result is normalized. The result is rounded to the target
precision under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

fadds Floating Add Single
fadds. Floating Add Single with CR Update. The dot suffix enables the

update of CR1.

Floating
Subtract
(Double-
Precision)

fsub
fsub.

frD,frA,frB The floating-point operand in register frB is subtracted from the floating-
point operand in register frA. If the most significant bit of the resultant
significand is not 1, the result is normalized. The result is rounded to the
target precision under control of the floating-point rounding control field RN
of the FPSCR and placed into register frD.

fsub Floating Subtract (Double-Precision)
fsub. Floating Subtract (Double-Precision) with CR Update. The dot

suffix enables the update of CR1.

Floating
Subtract
Single

fsubs
fsubs.

frD,frA,frB The floating-point operand in register frB is subtracted from the floating-
point operand in register frA. If the most significant bit of the resultant
significand is not 1, the result is normalized. The result is rounded to the
target precision under control of the floating-point rounding control field RN
of the FPSCR and placed into frD.

fsubs Floating Subtract Single
fsubs. Floating Subtract Single with CR Update. The dot suffix enables

the update of CR1.

Floating
Multiply
(Double-
Precision)

fmul
fmul.

frD,frA,frC The floating-point operand in register frA is multiplied by the floating-point
operand in register frC.

fmul Floating Multiply (Double-Precision)
fmul. Floating Multiply (Double-Precision) with CR Update. The dot

suffix enables the update of CR1.

Floating
Multiply
Single

fmuls
fmuls.

frD,frA,frC The floating-point operand in register frA is multiplied by the floating-point
operand in register frC.

fmuls Floating Multiply Single
fmuls. Floating Multiply Single with CR Update. The dot suffix enables

the update of CR1.

4-22 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

Floating
Divide
(Double-
Precision)

fdiv
fdiv.

frD,frA,frB The floating-point operand in register frA is divided by the floating-point
operand in register frB. No remainder is preserved.

fdiv Floating Divide (Double-Precision)
fdiv. Floating Divide (Double-Precision) with CR Update. The dot

suffix enables the update of CR1.

Floating
Divide
Single

fdivs
fdivs.

frD,frA,frB The floating-point operand in register frA is divided by the floating-point
operand in register frB. No remainder is preserved.

fdivs Floating Divide Single
fdivs. Floating Divide Single with CR Update. The dot suffix enables

the update of CR1.

Floating
Square
Root
(Double-
Precision)

fsqrt
fsqrt.

frD,frB The square root of the floating-point operand in register frB is placed into
register frD.

fsqrt Floating Square Root (Double-Precision)
fsqrt. Floating Square Root (Double-Precision) with CR Update. The

dot suffix enables the update of CR1.
This instruction is optional.

Floating
Square
Root
Single

fsqrts
fsqrts.

frD,frB The square root of the floating-point operand in register frB is placed into
register frD.

fsqrts Floating Square Root Single
fsqrts. Floating Square Root Single with CR Update. The dot suffix

enables the update of CR1.
This instruction is optional.

Floating
Reciprocal
Estimate
Single

fres
fres.

frD,frB A single-precision estimate of the reciprocal of the floating-point operand in
register frB is placed into frD. The estimate placed into frD is correct to a
precision of one part in 256 of the reciprocal of frB.

fres Floating Reciprocal Estimate Single
fres. Floating Reciprocal Estimate Single with CR Update. The dot

suffix enables the update of CR1.
This instruction is optional.

Floating
Reciprocal
Square
Root
Estimate

frsqrte
frsqrte.

frD,frB A double-precision estimate of the reciprocal of the square root of the
floating-point operand in register frB is placed into frD. The estimate
placed into frD is correct to a precision of one part in 32 of the reciprocal of
the square root of frB.

frsqrte Floating Reciprocal Square Root Estimate
frsqrte. Floating Reciprocal Square Root estimate with CR Update. The

dot suffix enables the update of CR1.
This instruction is optional.

Floating
Select

fsel fr D,frA,frC,frB The floating-point operand in frA is compared to the value zero. If the
operand is greater than or equal to zero, frD is set to the contents of frC. If
the operand is less than zero or is a NaN, frD is set to the contents of frB.
The comparison ignores the sign of zero (that is, regards +0 as equal to
–0).

fsel Floating Select
fsel. Floating Select with CR Update. The dot suffix enables the

update of CR1.
This instruction is optional.

Table 4-6. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

Chapter 4. Addressing Modes and Instruction Set Summary 4-23

4

4.2.2.2 Floating-Point Multiply-Add Instructions
These instructions combine multiply and add operations without an intermediate rounding
operation. The fractional part of the intermediate product is 106 bits wide, and all 106 bits
take part in the add/subtract portion of the instruction.

Status bits are set as follows:

• Overflow, underflow, and inexact exception bits, the FR and FI bits, and the FPRF
field are set based on the final result of the operation, and not on the result of the
multiplication.

• Invalid operation exception bits are set as if the multiplication and the addition were
performed using two separate instructions (fmuls, followed byfaddsor fsubs). That
is, multiplication of infinity by zero or of anything by an SNaN, and/or addition of
an SNaN, cause the corresponding exception bits to be set.

The floating-point multiply-add instructions are summarized in Table 4-7.

Table 4-7. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax Operation

Floating
Multiply-
Add
(Double-
Precision)

fmadd
fmadd.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is added to this intermediate result.

fmadd Floating Multiply-Add (Double-Precision)
fmadd. Floating Multiply-Add (Double-Precision) with CR Update.

The dot suffix enables the update of the CR1.

Floating
Multiply-
Add
Single

fmadds
fmadds.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is added to this intermediate result.

fmadds Floating Multiply-Add Single
fmadds. Floating Multiply-Add Single with CR Update. The dot suffix

enables the update of the CR1.

Floating
Multiply-
Subtract
(Double-
Precision)

fmsub
fmsub.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is subtracted from this intermediate result.

fmsub Floating Multiply-Subtract (Double-Precision)
fmsub. Floating Multiply-Subtract (Double-Precision) with CR

Update. The dot suffix enables the update of the CR1.

Floating
Multiply-
Subtract
Single

fmsubs
fmsubs.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is subtracted from this intermediate result.

fmsubs Floating Multiply-Subtract Single
fmsubs. Floating Multiply-Subtract Single with CR Update. The dot

suffix enables the update of the CR1.

4-24 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

For more information on multiply-add instructions, refer to Section D.2, “Execution Model
for Multiply-Add Type Instructions.”

4.2.2.3 Floating-Point Rounding and Conversion Instructions
The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The floating-
point convert instructions convert a 64-bit double-precision floating-point number to a 32-
bit signed integer number.

The PowerPC architecture defines bits 0–31 of floating-point registerfr D as undefined
when executing the Floating Convert to Integer Word (fctiw) and Floating Convert to
Integer Word with Round toward Zero (fctiwz) instructions. The floating-point rounding
instructions are shown in Table 4-8.

Floating
Negative
Multiply-
Add
(Double-
Precision)

fnmadd
fnmadd.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is added to this intermediate result.

fnmadd Floating Negative Multiply-Add (Double-Precision)
fnmadd. Floating Negative Multiply-Add (Double-Precision) with CR

Update. The dot suffix enables update of the CR1.

Floating
Negative
Multiply-
Add
Single

fnmadds
fnmadds.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is added to this intermediate result.

fnmadds Floating Negative Multiply-Add Single
fnmadds. Floating Negative Multiply-Add Single with CR Update. The

dot suffix enables the update of the CR1.

Floating
Negative
Multiply-
Subtract
(Double-
Precision)

fnmsub
fnmsub.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is subtracted from this intermediate result.

fnmsub Floating Negative Multiply-Subtract (Double-Precision)
fnmsub. Floating Negative Multiply-Subtract (Double-Precision) with

CR Update. The dot suffix enables the update of the CR1.

Floating
Negative
Multiply-
Subtract
Single

fnmsubs
fnmsubs.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is subtracted from this intermediate result.

fnmsubs Floating Negative Multiply-Subtract Single
fnmsubs. Floating Negative Multiply-Subtract Single with CR Update.

The dot suffix enables the update of the CR1.

Table 4-7. Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Chapter 4. Addressing Modes and Instruction Set Summary 4-25

4

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models.”

4.2.2.4 Floating-Point Compare Instructions
Floating-point compare instructions compare the contents of two floating-point registers
and the comparison ignores the sign of zero (that is +0 = –0). The comparison can be
ordered or unordered. The comparison sets one bit in the designated CR field and clears the
other three bits. The FPCC (floating-point condition code) in bits 16–19 of the FPSCR
(floating-point status and control register) is set in the same way.

The CR field and the FPCC are interpreted as shown in Table 4-9.

Table 4-8. Floating-Point Rounding and Conversion Instructions

Name Mnemonic
Operand
Syntax

Operation

Floating Round
to Single-
Precision

frsp
frsp.

frD,frB The floating-point operand in frB is rounded to single-precision using the
rounding mode specified by FPSCR[RN] and placed into frD.

frsp Floating Round to Single-Precision
frsp. Floating Round to Single-Precision with CR Update. The dot

suffix enables the update of the CR1.

Floating Convert
to Integer Word

fctiw
fctiw.

frD,frB The floating-point operand in register frB is converted to a 32-bit signed
integer, using the rounding mode specified by FPSCR[RN], and placed in
the low-order 32 bits of frD. Bits 0–31 of frD are undefined.

fctiw Floating Convert to Integer Word
fctiw. Floating Convert to Integer Word with CR Update. The dot suffix

enables the update of the CR1.

Floating Convert
to Integer Word
with Round
toward Zero

fctiwz
fctiwz.

frD,frB The floating-point operand in register frB is converted to a 32-bit signed
integer, using the rounding mode Round toward Zero, and placed in the low-
order 32 bits of frD. Bits 0–31 of frD are undefined.

fctiwz Floating Convert to Integer Word with Round toward Zero
fctiwz. Floating Convert to Integer Word with Round toward Zero with

CR Update. The dot suffix enables the update of the CR1.

Table 4-9. CR Bit Settings

Bit Name Description

0 FL (frA) < (frB)

1 FG (frA) > (frB)

2 FE (frA) = (frB)

3 FU (frA)? (frB) (unordered)

4-26 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

The floating-point compare instructions are summarized in Table 4-10.

4.2.2.5 Floating-Point Status and Control Register Instructions
Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. In particular:

• All exceptions caused by the previously initiated instructions are recorded in the
FPSCR before the FPSCR instruction is initiated.

• All invocations of the floating-point exception handler caused by the previously
initiated instructions have occurred before the FPSCR instruction is initiated.

• No subsequent floating-point instruction that depends on or alters the settings of any
FPSCR bits appears to be initiated until the FPSCR instruction has completed.

Floating-point memory access instructions are not affected by the execution of the FPSCR
instructions.

The FPSCR instructions are summarized in Table 4-11.

Table 4-10. Floating-Point Compare Instructions

Name Mnemonic
Operand
Syntax

Operation

Floating
Compare
Unordered

fcmpu crf D,frA,frB The floating-point operand in frA is compared to the floating-point operand
in frB. The result of the compare is placed into crf D and the FPCC.

Floating
Compare
Ordered

fcmpo crf D,frA,frB The floating-point operand in frA is compared to the floating-point operand
in frB. The result of the compare is placed into crf D and the FPCC.

Table 4-11. Floating-Point Status and Control Register Instructions

Name Mnemonic
Operand
Syntax

Operation

Move from
FPSCR

mffs
mffs.

frD The contents of the FPSCR are placed into bits 32–63 of frD. Bits 0–31 of
frD are undefined.

mffs Move from FPSCR
mffs. Move from FPSCR with CR Update. The dot suffix enables the

update of the CR1.

Move to
Condition
Register from
FPSCR

mcrfs crf D,crf S The contents of FPSCR field specified by operand crf S are copied to the
CR field specified by operand crf D. All exception bits copied (except FEX
and VX bits) are cleared in the FPSCR.

Chapter 4. Addressing Modes and Instruction Set Summary 4-27

4

4.2.2.6 Floating-Point Move Instructions
Floating-point move instructions copy data from one FPR to another, altering the sign bit
(bit 0) as described for thefneg, fabs, andfnabs instructions in Table 4-12. Thefneg, fabs,
andfnabs instructions may alter the sign bit of a NaN. The floating-point move instructions
do not modify the FPSCR. The CR update option in these instructions controls the placing
of result status into CR1. If the CR update option is enabled, CR1 is set; otherwise, CR1 is
unchanged.

Table 4-12 provides a summary of the floating-point move instructions.

Move to
FPSCR Field
Immediate

mtfsfi
mtfsfi.

crf D,IMM The contents of the IMM field are placed into FPSCR field crf D. The
contents of FPSCR[FX] are altered only if crf D = 0.

mtfsfi Move to FPSCR Field Immediate
mtfsfi. Move to FPSCR Field Immediate with CR Update. The dot

suffix enables the update of the CR1.

Move to
FPSCR Fields

mtfsf
mtfsf.

FM,frB Bits 32-63 of frB are placed into the FPSCR under control of the field
mask specified by FM. The field mask identifies the 4-bit fields affected.
Let i be an integer in the range 0–7. If FM[i] = 1, FPSCR field i (FPSCR
bits 4∗i through 4∗i+3) is set to the contents of the corresponding fields of
the lower order 32-bits of frB.

The contents of FPSCR[FX] are altered only if FM[0] = 1.

mtfsf Move to FPSCR Fields
mtfsf. Move to FPSCR Fields with CR Update. The dot suffix enables

the update of the CR1.

Move to
FPSCR Bit 0

mtfsb0
mtfsb0.

crb D The FPSCR bit location specified by operand crb D is cleared.

Bits 1 and 2 (FEX and VX) cannot be reset explicitly.

mtfsb0 Move to FPSCR Bit 0
mtfsb0. Move to FPSCR Bit 0 with CR Update. The dot suffix enables

the update of the CR1.

Move to
FPSCR Bit 1

mtfsb1
mtfsb1.

crb D The FPSCR bit location specified by operand crb D is set.

Bits 1 and 2 (FEX and VX) cannot be set explicitly.

mtfsb1 Move to FPSCR Bit 1
mtfsb1. Move to FPSCR Bit 1 with CR Update. The dot suffix enables

the update of the CR1.

Table 4-12. Floating-Point Move Instructions

Name Mnemonic Operand Syntax Operation

Floating
Move
Register

fmr
fmr.

frD,frB The contents of frB are placed into frD.

fmr Floating Move Register
fmr. Floating Move Register with CR Update. The dot suffix

enables the update of the CR1.

Table 4-11. Floating-Point Status and Control Register Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

4-28 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

4.2.3 Load and Store Instructions
Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

• Integer load instructions
• Integer store instructions
• Integer load and store with byte-reverse instructions
• Integer load and store multiple instructions
• Floating-point load instructions
• Floating-point store instructions
• Memory synchronization instructions

4.2.3.1 Integer Load and Store Address Generation
Integer load and store operations generate effective addresses using register indirect with
immediate index mode (register contents + immediate), register indirect with index mode
(register contents + register contents), or register indirect mode (register contents only). See
Section 4.1.4.2, “Effective Address Calculation,” for information about calculating
effective addresses.

NOTE: In some implementations, operations that are not naturally aligned may suffer
performance degradation. Refer to Section 6.4.6.1, “Integer Alignment
Exceptions,” for additional information about load and store address alignment
exceptions.

Floating
Negate

fneg
fneg.

frD,frB The contents of frB with bit 0 inverted are placed into frD.

fneg Floating Negate
fneg. Floating Negate with CR Update. The dot suffix enables the

update of the CR1.

Floating
Absolute
Value

fabs
fabs.

frD,frB The contents of frB with bit 0 cleared are placed into frD.

fabs Floating Absolute Value
fabs. Floating Absolute Value with CR Update. The dot suffix

enables the update of the CR1.

Floating
Negative
Absolute
Value

fnabs
fnabs.

frD,frB The contents of frB with bit 0 set are placed into frD.

fnabs Floating Negative Absolute Value
fnabs. Floating Negative Absolute Value with CR Update. The dot

suffix enables the update of the CR1.

Table 4-12. Floating-Point Move Instructions (Continued)

Chapter 4. Addressing Modes and Instruction Set Summary 4-29

4

4.2.3.1.1 Register Indirect with Immediate Index Addressing for Integer
Loads and Stores

Instructions using this addressing mode contain a signed 16-bit immediate index
(d operand) which is sign extended, and added to the contents of a general-purpose register
specified in the instruction (rA operand) to generate the effective address. If therA field of
the instruction specifiesr0, a value of zero is added to the immediate index (d operand) in
place of the contents ofr0. The option to specifyrA or 0 is shown in the instruction
descriptions as (rA|0).

Figure 4-1 shows how an effective address is generated when using register indirect with
immediate index addressing.

.

Figure 4-1. Register Indirect with Immediate Index Addressing for Integer
Loads/Stores

4.2.3.1.2 Register Indirect with Index Addressing for Integer Loads and
Stores
Instructions using this addressing mode cause the contents of two general-purpose registers
(specified as operandsrA andrB) to be added in the generation of the effective address. A
zero in place of therA operand causes a zero to be added to the contents of the general-
purpose register specified in operandrB (or the value zero forlswi andstswi instructions).
The option to specifyrA or 0 is shown in the instruction descriptions as (rA|0).

No

0 15 16 31

Sign Extension d

0 31

GPR (rA)

0

0 31

GPR (rD/rS)
Store
Load

Yes

Instruction Encoding:
0 5 6 1011 15 16 31

Opcode rD/rS rA d

+
0 31

Effective Address

rA=0?

Memory
Interface

4-30 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

Figure 4-2 shows how an effective address is generated when using register indirect with
index addressing.

Figure 4-2. Register Indirect with Index Addressing for Integer Loads/Stores

4.2.3.1.3 Register Indirect Addressing for Integer Loads and Stores
Instructions using this addressing mode use the contents of the general-purpose register
specified by therA operand as the effective address. A zero in therA operand causes an
effective address of zero to be generated. The option to specifyrA or 0 is shown in the
instruction descriptions as (rA|0).

No

0 31

GPR (rA)

0

+

0 31

GPR (rD/rS)
Memory
Interface

Store
Load

Yes

0 31

GPR (rB)

Instruction Encoding:

rA=0?

0 31

Effective Address

0 5 6 1011 15 16 20 21 30 31

Opcode rD/rS rA rB Subopcode 0Reserved

Chapter 4. Addressing Modes and Instruction Set Summary 4-31

4

Figure 4-3 shows how an effective address is generated when using register indirect
addressing.

Figure 4-3. Register Indirect Addressing for Integer Loads/Stores

4.2.3.2 Integer Load Instructions
For integer load instructions, the byte, half word, or word addressed by the EA (effective
address) is loaded intorD. Many integer load instructions have an update form, in which
rA is updated with the generated effective address. For these forms, ifrA ≠0andrA ≠ rD
(otherwise invalid), the EA is placed intorA and the memory element (byte, half word, or
word) addressed by the EA is loaded intorD.

NOTE: The PowerPC architecture defines load with update instructions with operand
rA = 0, orrA = rD as invalid forms.

The default byte and bit ordering is big-endian in the PowerPC architecture; see
Section 3.1.2, “Byte Ordering,” for information about little-endian byte ordering.

In some implementations of the architecture, the load algebraic instructions (lha, lhax) and
the load with update (lbzu, lbzux, lhau, lhaux, lhzu, lhzux, lwzu, lwzux) instructions may
execute with greater latency than other types of load instructions. Moreover, the load with
update instructions may take longer to execute in some implementations than the

No

Store
Load

Yes
0 31

0 0

Instruction Encoding:
0 5 6 10 11 15 16 20 21 30 31

rA=0?

0 31

GPR (rA)

0 31

Effective Address

Opcode rD/rS rA NB Subopcode 0

0 31

GPR (rD/rS)
Memory
Interface

Reserved

4-32 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

corresponding pair of a non-update load followed by an add instruction to update the
register.

Table 4-13 summarizes the integer load instructions.

Table 4-13. Integer Load Instructions

Name Mnemonic
Operand
Syntax

Operation

Load Byte and
Zero

lbz r D,d(rA) The EA is the sum (rA|0) + d. The byte in memory addressed by the EA is
loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared.

Load Byte and
Zero Indexed

lbzx r D,rA,rB The EA is the sum (rA|0) + (rB). The byte in memory addressed by the EA is
loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared.

Load Byte and
Zero with
Update

lbzu r D,d(rA) The EA is the sum (rA) + d. The byte in memory addressed by the EA is
loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared. The EA is placed into rA.

Load Byte and
Zero with
Update Indexed

lbzux r D,rA,rB The EA is the sum (rA) + (rB). The byte in memory addressed by the EA is
loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared. The EA is placed into rA.

Load Half Word
and Zero

lhz r D,d(rA) The EA is the sum (rA|0) + d. The half word in memory addressed by the EA
is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared.

Load Half Word
and Zero
Indexed

lhzx r D,rA,rB The EA is the sum (rA|0) + (rB). The half word in memory addressed by the
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared.

Load Half Word
and Zero with
Update

lhzu r D,d(rA) The EA is the sum (rA) + d. The half word in memory addressed by the EA is
loaded into the low-order 16 bits of rD. The remaining bits in rD are cleared.
The EA is placed into rA.

Load Half Word
and Zero with
Update Indexed

lhzux r D,rA,rB The EA is the sum (rA) + (rB). The half word in memory addressed by the EA
is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared. The EA is placed into rA.

Load Half Word
Algebraic

lha r D,d(rA) The EA is the sum (rA|0) + d. The half word in memory addressed by the EA
is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled
with a copy of the most significant bit of the loaded half word.

Load Half Word
Algebraic
Indexed

lhax r D,rA,rB The EA is the sum (rA|0) + (rB). The half word in memory addressed by the
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
filled with a copy of the most significant bit of the loaded half word.

Load Half Word
Algebraic with
Update

lhau r D,d(rA) The EA is the sum (rA) + d. The half word in memory addressed by the EA is
loaded into the low-order 16 bits of rD. The remaining bits in rD are filled with
a copy of the most significant bit of the loaded half word. The EA is placed
into rA.

Load Half Word
Algebraic with
Update Indexed

lhaux r D,rA,rB The EA is the sum (rA) + (rB). The half word in memory addressed by the EA
is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled
with a copy of the most significant bit of the loaded half word. The EA is
placed into rA.

Load Word and
Zero

lwz r D,d(rA) The EA is the sum (rA|0) + d. The word in memory addressed by the EA is
loaded into rD.

Chapter 4. Addressing Modes and Instruction Set Summary 4-33

4

4.2.3.3 Integer Store Instructions
For integer store instructions, the contents ofrS are stored into the byte, half word, or word
in memory addressed by the EA (effective address). Many store instructions have an update
form, in whichrA is updated with the EA. For these forms, the following rules apply:

• If rA≠0, the effective address is placed intorA.

• If rS =rA, the contents of registerrS are copied to the target memory element, then
the generated EA is placed intorA (rS).

In general, the PowerPC architecture defines a sequential execution model. However, when
a store instruction modifies a memory location that contains an instruction, software
synchronization (isync) is required to ensure that subsequent instruction fetches from that
location obtain the modified version of the instruction.

If a program modifies the instructions it intends to execute, it should call the appropriate
system library program before attempting to execute the modified instructions to ensure
that the modifications have taken effect with respect to instruction fetching.

The PowerPC architecture defines store with update instructions withrA = 0 as an invalid
form. In addition, it defines integer store instructions with the CR update option enabled
(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 4-14 provides
a summary of the integer store instructions.

Load Word and
Zero Indexed

lwzx r D,rA,rB The EA is the sum (rA|0) + (rB). The word in memory addressed by the EA is
loaded into rD.

Load Word and
Zero with
Update

lwzu r D,d(rA) The EA is the sum (rA) + d. The word in memory addressed by the EA is
loaded into rD. The EA is placed into rA.

Load Word and
Zero with
Update Indexed

lwzux r D,rA,rB The EA is the sum (rA) + (rB). The word in memory addressed by the EA is
loaded into rD. The EA is placed into rA.

Table 4-14. Integer Store Instructions

Name Mnemonic
Operand
Syntax

Operation

Store Byte stb r S,d(rA) The EA is the sum (rA|0) + d. The contents of the low-order eight bits
of rS are stored into the byte in memory addressed by the EA.

Store Byte Indexed stbx r S,rA,rB The EA is the sum (rA|0) + (rB). The contents of the low-order eight
bits of rS are stored into the byte in memory addressed by the EA.

Store Byte with
Update

stbu r S,d(rA) The EA is the sum (rA) + d. The contents of the low-order eight bits of
rS are stored into the byte in memory addressed by the EA. The EA is
placed into rA.

Table 4-13. Integer Load Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

4-34 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

4.2.3.4 Integer Load and Store with Byte-Reverse Instructions
Table 4-15 describes integer load and store with byte-reverse instructions.

NOTE: In some PowerPC implementations, load byte-reverse instructions may have
greater latency than other load instructions.

When used in a PowerPC system operating with the default big-endian byte order, these
instructions have the effect of loading and storing data in little-endian order. Likewise,
when used in a PowerPC system operating with little-endian byte order, these instructions

Store Byte with
Update Indexed

stbux r S,rA,rB The EA is the sum (rA) + (rB). The contents of the low-order eight bits
of rS are stored into the byte in memory addressed by the EA. The
EA is placed into rA.

Store Half Word sth r S,d(rA) The EA is the sum (rA|0) + d. The contents of the low-order 16 bits of
rS are stored into the half word in memory addressed by the EA.

Store Half Word
Indexed

sthx r S,rA,rB The EA is the sum (rA|0) + (rB). The contents of the low-order 16 bits
of rS are stored into the half word in memory addressed by the EA.

Store Half Word with
Update

sthu r S,d(rA) The EA is the sum (rA) + d. The contents of the low-order 16 bits of rS
are stored into the half word in memory addressed by the EA. The EA
is placed into rA.

Store Half Word with
Update Indexed

sthux r S,rA,rB The EA is the sum (rA) + (rB). The contents of the low-order 16 bits of
rS are stored into the half word in memory addressed by the EA. The
EA is placed into rA.

Store Word stw r S,d(rA) The EA is the sum (rA|0) + d. The contents of rS are stored into the
word in memory addressed by the EA.

Store Word Indexed stwx r S,rA,rB The EA is the sum (rA|0) + (rB). The contents of rS are stored into the
word in memory addressed by the EA.

Store Word with
Update

stwu r S,d(rA) The EA is the sum (rA) + d. The contents of rS are stored into the
word in memory addressed by the EA. The EA is placed into rA.

Store Word with
Update Indexed

stwux r S,rA,rB The EA is the sum (rA) + (rB). The contents of rS are stored into the
word in memory addressed by the EA. The EA is placed into rA.

Table 4-14. Integer Store Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

Chapter 4. Addressing Modes and Instruction Set Summary 4-35

4

have the effect of loading and storing data in big-endian order. For more information about
big-endian and little-endian byte ordering, see Section 3.1.2, “Byte Ordering.”

4.2.3.5 Integer Load and Store Multiple Instructions
The load/store multiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address translation of the second page.
Table 4-16 summarizes the integer load and store multiple instructions.

In the load/store multiple instructions, the combination of the EA andrD (rS) is such that
the low-order byte of GPR31 is loaded from or stored into the last byte of an aligned quad
word in memory; if the effective address is not correctly aligned, it may take significantly
longer to execute.

In some PowerPC implementations operating with little-endian byte order, execution of an
lmw or stmw instruction causes the system alignment error handler to be invoked; see
Section 3.1.2, “Byte Ordering,” for more information.

Table 4-15. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic
Operand
Syntax

Operation

Load Half
Word Byte-
Reverse
Indexed

lhbrx r D,rA,rB The EA is the sum (rA|0) + (rB). The high-order eight bits of the half word
addressed by the EA are loaded into the low-order eight bits of rD. The next eight
higher-order bits of the half word in memory addressed by the EA are loaded into
the next eight lower-order bits of rD. The remaining rD bits are cleared.

Load Word
Byte-
Reverse
Indexed

lwbrx r D,rA,rB The EA is the sum (rA|0) + (rB). Bits 0–7 of the word in memory addressed by
the EA are loaded into the low-order eight bits of rD. Bits 8–15 of the word in
memory addressed by the EA are loaded into bits 16–23 of rD. Bits 16–23 of the
word in memory addressed by the EA are loaded into bits 8–15. Bits 24–31 of
the word in memory addressed by the EA are loaded into bits 0–7.

Store Half
Word Byte-
Reverse
Indexed

sthbrx r S,rA,rB The EA is the sum (rA|0) + (rB). The contents of the low-order eight bits(24-31)
of rS are stored into the high-order eight bits(0-7) of the half word in memory
addressed by the EA. The contents of the next lower-order eight bits(16-23) of rS
are stored into the next eight bits(8-15) of the half word in memory addressed by
the EA.

Store
Word Byte-
Reverse
Indexed

stwbrx r S,rA,rB The effective address is the sum (rA|0) + (rB). The contents of the low-order
eight bits (24-31) of rS are stored into bits 0–7 of the word in memory addressed
by EA. The contents of the next eight lower-order bits(16-23) of rS are stored into
bits 8–15 of the word in memory addressed by the EA. The contents of the next
eight lower-order bits(8-15) of rS are stored into bits 16–23 of the word in
memory addressed by the EA. The contents of the next eight bits(0-7) of rS are
stored into bits 24–31 of the word addressed by the EA.

4-36 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

The PowerPC architecture defines the load multiple word (lmw) instruction withrA in the
range of registers to be loaded, including the case in whichrA = 0, as an invalid form.

4.2.3.6 Integer Load and Store String Instructions
The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 4-17
summarizes the integer load and store string instructions.

Load and store string instructions execute more efficiently whenrD or rS = 5, and the last
register loaded or stored is less than or equal to 12.

In some PowerPC implementations operating with little-endian byte order, execution of a
load or string instruction causes the system alignment error handler to be invoked; see
Section 3.1.2, “Byte Ordering,” for more information.

Load string and store string instructions may involve operands that are not word-aligned.
As described in Section 6.4.6, “Alignment Exception (0x00600),” a misaligned string
operation suffers a performance penalty compared to an aligned operation of the same type.
A non–word-aligned string operation that crosses a double-word boundary is also slower
than a word-aligned string operation.

4.2.3.7 Floating-Point Load and Store Address Generation
Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads and stores are not supported for direct-store interface accesses.

Table 4-16. Integer Load and Store Multiple Instructions

Name Mnemonic
Operand
Syntax

Operation

Load Multiple Word lmw r D,d(rA) The EA is the sum (rA|0) + d. n = (32 – rD).

Store Multiple Word stmw r S,d(rA) The EA is the sum (rA|0) + d. n = (32 – rS).

Table 4-17. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax Operation

Load String Word Immediate lswi r D,rA,NB The EA is (rA|0).

Load String Word Indexed lswx r D,rA,rB The EA is the sum (rA|0) + (rB).

Store String Word Immediate stswi r S,rA,NB The EA is (rA|0).

Store String Word Indexed stswx r S,rA,rB The EA is the sum (rA|0) + (rB).

Chapter 4. Addressing Modes and Instruction Set Summary 4-37

4

The use of floating-point loads and stores for direct-store interface accesses results in an
alignment exception.

NOTE: The direct-store facility is being phased out of the architecture and is not likely
to be supported in future devices.

4.2.3.7.1 Register Indirect (contents) with Immediate Index Addressing
for Floating-Point Loads and Stores
Instructions using this addressing mode contain a signed 16-bit immediate index
(d operand) which is sign extended to 32 bits, and added to the contents of a GPR specified
in the instruction (rA operand) to generate the effective address. If therA field of the
instruction specifiesr0, a value of zero is added to the immediate index (d operand) in place
of the contents ofr0. The option to specifyrA or 0 is shown in the instruction descriptions
as (rA|0).

Figure 4-4 shows how an effective address is generated when using register indirect with
immediate index addressing for floating-point loads and stores.

Figure 4-4. Register Indirect with Immediate Index Addressing for Floating-Point
Loads/Stores

4.2.3.7.2 Register Indirect (contents) with Index Addressing for Floating-
Point Loads and Stores

Instructions using this addressing mode add the contents of two GPRs (specified in
operandsrA and rB) to generate the effective address. A zero in therA operand causes a
zero to be added to the contents of the GPR specified in operandrB. This is shown in the
instruction descriptions as (rA|0).

No

0 15 16 31

Sign Extension d

0

+

Store
Load

Yes

Instruction Encoding:
0 5 6 10 11 15 16 31

Opcode frD/frS rA d

0 31

Effective Address

rA=0

Memory
Access

0 31

FPR (frD/frS)

0 31

GPR (rA)

4-38 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

Figure 4-5 shows how an effective address is generated when using register indirect with
index addressing.

Figure 4-5. Register Indirect with Index Addressing for Floating-Point Loads/Stores

The PowerPC architecture defines floating-point load and store with update instructions
(lfsu, lfsux, lfdu , lfdux , stfsu, stfsux, stfdu, stfdux) with operandrA = 0 as invalid forms
of the instructions. In addition, it defines floating-point load and store instructions with the
CR updating option enabled (Rc bit, bit 31 = 1) to be an invalid form.

The PowerPC architecture defines that the FPSCR[UE] bit should not be used to determine
whether denormalization should be performed on floating-point stores.

4.2.3.8 Floating-Point Load Instructions
There are two forms of the floating-point load instruction—single-precision and double-
precision operand formats. Because the FPRs support only the floating-point double-
precision format, single-precision floating-point load instructions convert single-precision
data to double-precision format before loading the operands into the target FPR. This
conversion is described fully in Section D.6, “Floating-Point Load Instructions.”
Table 4-18 provides a summary of the floating-point load instructions.

NOTE: The PowerPC architecture defines load with update instructions withrA = 0 as
an invalid form.

No

0 31

GPR (rA)

0

+

0 31

FPR (frD/frS)
Memory
Access

Store
Load

Yes

0 31

GPR (rB)

0 31

Effective Address

Instruction Encoding:
0 5 6 1011 1516 20 21 30 31

rA = 0?

Opcode frD/frS rA rB Subopcode 0Reserved

Chapter 4. Addressing Modes and Instruction Set Summary 4-39

4

4.2.3.9 Floating-Point Store Instructions
This section describes floating-point store instructions. There are three basic forms of the
store instruction—single-precision, double-precision, and integer. The integer form is
supported by thestfiwx instruction.

Table 4-18. Floating-Point Load Instructions

Name Mnemonic
Operand
Syntax

Operation

Load Floating-
Point Single

lfs fr D,d(rA) The EA is the sum (rA|0) + d.

The word in memory addressed by the EA is interpreted as a floating-point
single-precision operand. This word is converted to floating-point double-
precision format and placed into frD.

Load Floating-
Point Single
Indexed

lfsx fr D,rA,rB The EA is the sum (rA|0) + (rB).

The word in memory addressed by the EA is interpreted as a floating-point
single-precision operand. This word is converted to floating-point double-
precision format and placed into frD.

Load Floating-
Point Single
with Update

lfsu fr D,d(rA) The EA is the sum (rA) + d.

The word in memory addressed by the EA is interpreted as a floating-point
single-precision operand. This word is converted to floating-point double-
precision format and placed into frD.

The EA is placed into the register specified by rA.

Load Floating-
Point Single
with Update
Indexed

lfsux fr D,rA,rB The EA is the sum (rA) + (rB).

The word in memory addressed by the EA is interpreted as a floating-point
single-precision operand. This word is converted to floating-point double-
precision format and placed into frD.

The EA is placed into the register specified by rA.

Load Floating-
Point Double

lfd fr D,d(rA) The EA is the sum (rA|0) + d.

The double word in memory addressed by the EA is placed into register
frD.

Load Floating-
Point Double
Indexed

lfdx fr D,rA,rB The EA is the sum (rA|0) + (rB).

The double word in memory addressed by the EA is placed into register
frD.

Load Floating-
Point Double
with Update

lfdu fr D,d(rA) The EA is the sum (rA) + d.

The double word in memory addressed by the EA is placed into register
frD.

The EA is placed into the register specified by rA.

Load Floating-
Point Double
with Update
Indexed

lfdux fr D,rA,rB The EA is the sum (rA) + (rB).

The double word in memory addressed by the EA is placed into register
frD.

The EA is placed into the register specified by rA.

4-40 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

NOTE: Thestfiwx instruction is defined as optional by the PowerPC architecture to
ensure backwards compatibility with earlier processors; however, it will likely be
required for subsequent PowerPC processors.

Because the FPRs support only floating-point, double-precision format for floating-point
data, single-precision floating-point store instructions convert double-precision data to
single-precision format before storing the operands. The conversion steps are described
fully in Section D.7, “Floating-Point Store Instructions.” Table 4-19 provides a summary of
the floating-point store instructions.

NOTE: The PowerPC architecture defines store with update instructions withrA = 0 as
an invalid form.

Table 4-19 provides the floating-point store instructions for the PowerPC processors.

Table 4-19. Floating-Point Store Instructions

Name Mnemonic Operand Syntax Operation

Store Floating-
Point Single

stfs fr S,d(rA) The EA is the sum (rA|0) + d.
The contents of frS are converted to single-precision and stored
into the word in memory addressed by the EA.

Store Floating-
Point Single
Indexed

stfsx fr S,rA,rB The EA is the sum (rA|0) + (rB).
The contents of frS are converted to single-precision and stored
into the word in memory addressed by the EA.

Store Floating-
Point Single
with Update

stfsu fr S,d(rA) The EA is the sum (rA) + d.
The contents of frS are converted to single-precision and stored
into the word in memory addressed by the EA.

The EA is placed into rA.

Store Floating-
Point Single
with Update
Indexed

stfsux fr S,rA,rB The EA is the sum (rA) + (rB).

The contents of frS are converted to single-precision and stored
into the word in memory addressed by the EA.

The EA is placed into the rA.

Store Floating-
Point Double

stfd fr S,d(rA) The EA is the sum (rA|0) + d.

The contents of frS are stored into the double word in memory
addressed by the EA.

Store Floating-
Point Double
Indexed

stfdx fr S,rA,rB The EA is the sum (rA|0) + (rB).

The contents of frS are stored into the double word in memory
addressed by the EA.

Store Floating-
Point Double
with Update

stfdu fr S,d(rA) The EA is the sum (rA) + d.

The contents of frS are stored into the double word in memory
addressed by the EA.

The EA is placed into rA.

Chapter 4. Addressing Modes and Instruction Set Summary 4-41

4

4.2.4 Branch and Flow Control Instructions
Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

If an interlock is detected, the branch is considered unresolved and the direction of the
branch may either be predicted using they bit (as described in Table 4-20) or by using
dynamic prediction. The interlock is monitored while instructions are fetched for the
predicted branch. When the interlock is cleared, the processor determines whether the
prediction was correct based on the value of the CR bit. If the prediction is correct, the
branch is considered completed and instruction fetching continues along the predicted path.
If the prediction is incorrect, the fetched instructions are purged, and instruction fetching
continues along the alternate path.

4.2.4.1 Branch Instruction Address Calculation
Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the PowerPC processors ignore the two low-order
bits of the generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

• Branch relative
• Branch conditional to relative address
• Branch to absolute address
• Branch conditional to absolute address
• Branch conditional to link register
• Branch conditional to count register

Store Floating-
Point Double
with Update
Indexed

stfdux fr S,rA,rB The EA is the sum (rA) + (rB).

The contents of frS are stored into the double word in memory
addressed by EA.

The EA is placed into register rA.

Store Floating-
Point as
Integer Word
Indexed

stfiwx fr S,rA,rB The EA is the sum (rA|0) + (rB).

The contents of the low-order 32 bits of frS are stored, without
conversion, into the word in memory addressed by the EA.

Note : The stfiwx instruction is defined as optional by the PowerPC
architecture to ensure backwards compatibility with earlier
processors; however, it will likely be required for subsequent
PowerPC processors.

Table 4-19. Floating-Point Store Instructions (Continued)

Name Mnemonic Operand Syntax Operation

4-42 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

4.2.4.1.1 Branch Relative Addressing Mode
Instructions that use branch relative addressing generate the next instruction address by
sign extending and appending 0b00 to the immediate displacement operand LI, and adding
the resultant value to the current instruction address. Branches using this addressing mode
have the absolute addressing option disabled (AA field, bit 30, in the instruction
encoding = 0). The link register (LR) update option can be enabled (LK field, bit 31, in the
instruction encoding = 1). This option causes the effective address of the instruction
following the branch instruction to be placed in the LR.

Figure 4-6 shows how the branch target address is generated when using the branch relative
addressing mode.

Figure 4-6. Branch Relative Addressing

4.2.4.1.2 Branch Conditional to Relative Addressing Mode
If the branch conditions are met, instructions that use the branch conditional to relative
addressing mode generate the next instruction address by sign extending and appending
0b00 to the immediate displacement operand (BD) and adding the resultant value to the
current instruction address. Branches using this addressing mode have the absolute
addressing option disabled (AA field, bit 30, in the instruction encoding = 0). The link
register update option can be enabled (LK field, bit 31, in the instruction encoding = 1).
This option causes the effective address of the instruction following the branch instruction
to be placed in the LR.

0 5 6 29 30 31

18 LI AA LK

0 31

Branch Target Address

Instruction Encoding:

+
0 31

Current Instruction Address

0 5 6 29 30 31

LI 0 0Sign Extension

Reserved

Chapter 4. Addressing Modes and Instruction Set Summary 4-43

4

Figure 4-7 shows how the branch target address is generated when using the branch
conditional relative addressing mode.

Figure 4-7. Branch Conditional Relative Addressing

4.2.4.1.3 Branch to Absolute Addressing Mode
Instructions that use branch to absolute addressing mode generate the next instruction
address by sign extending and appending 0b00 to the LI operand. Branches using this
addressing mode have the absolute addressing option enabled (AA field, bit 30, in the

0 5 6 1011 15 16 30 31

16 BO BI BD AA LK

Yes

0 31

Branch Target Address

Instruction Encoding:

No

+
0 31

Current Instruction Address

0 31

Next Sequential Instruction Address

0 15 16 29 30 31

Sign Extension BD 0 0

Condition
Met?

Reserved

4-44 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

instruction encoding = 1). The link register update option can be enabled (LK field, bit 31,
in the instruction encoding = 1). This option causes the effective address of the instruction
following the branch instruction to be placed in the LR.

Figure 4-8 shows how the branch target address is generated when using the branch to
absolute addressing mode.

Figure 4-8. Branch to Absolute Addressing

4.2.4.1.4 Branch Conditional to Absolute Addressing Mode
If the branch conditions are met, instructions that use the branch conditional to absolute
addressing mode generate the next instruction address by sign extending and appending
0b00 to the BD operand.

Branches using this addressing mode have the absolute addressing option enabled (AA
field, bit 30, in the instruction encoding = 1).

The link register update option can be enabled (LK field, bit 31, in the instruction
encoding = 1).

This option causes the effective address of the instruction following the branch instruction
to be placed in the LR.

0 5 6 29 30 31

18 LI AA LK

0 5 6 29 30 31

0 29 30 31

Branch Target Address

Instruction Encoding:

LI 0 0Sign Extension

0 0

Chapter 4. Addressing Modes and Instruction Set Summary 4-45

4

Figure 4-9 shows how the branch target address is generated when using the branch
conditional to absolute addressing mode.

Figure 4-9. Branch Conditional to Absolute Addressing

4.2.4.1.5 Branch Conditional to Link Register Addressing Mode
If the branch conditions are met, the branch conditional to link register instruction generates
the next instruction address by using the contents of the LR and clearing the two low-order
bits to zero. The result becomes the effective address from which the next instructions are
fetched.

The link register update option can be enabled (LK field, bit 31, in the instruction encoding
= 1). This option causes the effective address of the instruction following the branch
instruction to be placed in the LR. This is done even if the branch is not taken.

0 5 6 1011 15 16 29 30 31

16 BO BI BD AA LK

0 15 16 29 30 31

0 29 30 31

Branch Target Address

Instruction Encoding:

No
0 31

Next Sequential Instruction Address

Sign Extension BD 0 0

Condition
Met?

Yes

0 0

4-46 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

Figure 4-10 shows how the branch target address is generated when using the branch
conditional to link register addressing mode.

Figure 4-10. Branch Conditional to Link Register Addressing

4.2.4.1.6 Branch Conditional to Count Register Addressing Mode
If the branch conditions are met, the branch conditional to count register instruction
generates the next instruction address by using the contents of the count register (CTR) and
clearing the two low-order bits to zero. The result becomes the effective address from which
the next instructions are fetched.

The link register update option can be enabled (LK field, bit 31, in the instruction
encoding = 1). This option causes the effective address of the instruction following the
branch instruction to be placed in the LR. This is done even if the branch is not taken.

Figure 4-11 shows how the branch target address is generated when using the branch
conditional to count register addressing mode.

0 5 6 10 11 15 16 20 21 30 31

Condition
Met?

0 0

30 31

LR

0 29

0 31

Branch Target Address

Instruction Encoding:

No
0 31

Next Sequential Instruction Address

Yes

19 BO BI 0 0 0 0 0 16 LK

||

Reserved

Chapter 4. Addressing Modes and Instruction Set Summary 4-47

4

Figure 4-11. Branch Conditional to Count Register Addressing

4.2.4.2 Conditional Branch Control
For branch conditional instructions, theBO operand specifies the conditions under which
the branch is taken. The first four bits of theBO operand specify how the branch is affected
by or affects the condition and count registers. The fifth bit, shown in Table 4-20 as having
the valuey, is used by some PowerPC implementations for branch prediction as described
below.

The encodings for the BO operands are shown in Table 4-20. If the BO field specifies that
the CTR is to be decremented, the entire 32-bit CTR is decremented.

Table 4-20. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR≠0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR≠0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR≠0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

0 0

3031

CTR

0 29

0 31

Branch Target Address

Instruction Encoding:

Condition
Met?

No

Yes

0 31

Next Sequential Instruction Address

0 5 6 1011 15 16 20 21 30 31

19 BO BI 00000 528 LK

||

Reserved

4-48 PowerPC Microprocessor 32-bit Family: The Programming Environments

4 The branch always encoding of the BO operand does not have ay bit.

Clearing they bit indicates a predicted behavior for the branch instruction as follows:

• Forbcx with a negative value in the displacement operand, the branch is predicted
taken.

• In all other cases (bcx with a non-negative value in the displacement operand,bclrx,
or bcctrx), the branch is predicted not taken.

Setting they bit reverses the preceding indications.

The sign of the displacement operand is used as described above even if the target is an
absolute address. The default value for they bit should be 0, and should only be set to 1 if
software has determined that the prediction corresponding toy = 1 is more likely to be
correct than the prediction corresponding toy = 0. Software that does not compute branch
predictions should clear they bit.

In most cases, the branch should be predicted to be taken if the value of the following
expression is 1, and predicted to fall through if the value is 0.

((BO[0] & BO[2]) | S) = BO[4]

In the expression above, S (bit 16 of the branch conditional instruction coding) is the sign
bit of the displacement operand if the instruction has a displacement operand and is 0 if the
operand is reserved. BO[4] is they bit, or 0 for the branch always encoding of the BO
operand. (Advantage is taken of the fact that, forbclrx andbcctrx, bit 16 of the instruction
is part of a reserved operand and therefore must be 0.)

The 5-bit BI operand in branch conditional instructions specifies which of the 32 bits in the
CR represents the bit to test.

When the branch instructions contain immediate addressing operands, the branch target
addresses can be computed sufficiently ahead of the branch execution and instructions can
be fetched along the branch target path (if the branch is predicted to be taken or is an
unconditional branch). If the branch instructions use the link or count register contents for
the branch target address, instructions along the branch-taken path of a branch can be
fetched if the link or count register is loaded sufficiently ahead of the branch instruction
execution.

In this table, z indicates a bit that is ignored.
Note : The z bits should be cleared, as they may be assigned a meaning in some future version of the
PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by some
PowerPC implementations to improve performance.

Table 4-20. BO Operand Encodings (Continued)

BO Description

Chapter 4. Addressing Modes and Instruction Set Summary 4-49

4

Branching can be conditional or unconditional. The branch target address is first calculated
from the contents of the count or link register or from the branch immediate field.
Optionally, a branch return address can be loaded into the LR register (this sets the return
address for subroutine calls). When this option is selected (LK=1) the LR is loaded with the
effective address of the instruction following the branch instruction.

Some processors may keep a stack of the link register values most recently set by branch
and link instructions, with the possible exception of the form shown below for obtaining
the address of the next instruction. To benefit from this stack, the following programming
conventions should be used.

In the following examples, let A, B, and Glue represent subroutine labels:

• Obtaining the address of the next instruction– use the following form of branch and
link:

bcl 20,31,$+4

• Loop counts:

Keep loop counts in the count register, and use one of the branch conditional
instructions to decrement the count and to control branching (for example,
branching back to the start of a loop if the decremented counter value is nonzero).

• Computed GOTOs, case statements, etc.:

Use the count register to hold the address to branch to, and use thebcctr instruction
with the link register option disabled (LK = 0) to branch to the selected address.

• Direct subroutine linkage—where A calls B and B returns to A. The two branches
should be as follows:

— A calls B: use a branch instruction that enables the link register (LK = 1).

— B returns to A: use thebclr instruction with the link register option disabled
(LK = 0) (the return address is in, or can be restored to, the link register).

• Indirect subroutine linkage:

Where A calls Glue, Glue calls B, and B returns to A rather than to Glue. (Such a
calling sequence is common in linkage code used when the subroutine that the
programmer wants to call, here B, is in a different module from the caller: the binder
inserts “glue” code to mediate the branch.) The three branches should be as follows:

— A calls Glue: use a branch instruction that sets the link register with the link
register option enabled (LK = 1).

— Glue calls B: place the address of B in the count register, and use thebcctr
instruction with the link register option disabled (LK = 0).

— B returns to A: use thebclr instruction with the link register option disabled
(LK = 0) (the return address is in, or can be restored to, the link register).

4-50 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

4.2.4.3 Branch Instructions
Table 4-21 describes the branch instructions provided by the PowerPC processors.

Table 4-21. Branch Instructions

Name Mnemonic Operand Syntax Operation

Branch b
ba
bl
bla

target_addr b Branch. Branch to the address computed as the sum of the
immediate address and the address of the current instruction.

ba Branch Absolute. Branch to the absolute address specified.
bl Branch then Link. Branch to the address computed as the sum

of the immediate address and the address of the current
instruction. The instruction address following this instruction is
placed into the link register (LR).

bla Branch Absolute then Link. Branch to the absolute address
specified. The instruction address following this instruction is
placed into the LR.

Branch
Conditional

bc
bca
bcl
bcla

BO,BI,target_addr The BI operand specifies the bit in the CR to be used as the condition
of the branch. The BO operand is used as described in Table 4-20.

bc Branch Conditional. Branch conditionally to the address
computed as the sum of the immediate address and the
address of the current instruction.

bca Branch Conditional Absolute. Branch conditionally to the
absolute address specified.

bcl Branch Conditional then Link. Branch conditionally to the
address computed as the sum of the immediate address and
the address of the current instruction. The instruction address
following this instruction is placed into the LR.

bcla Branch Conditional Absolute then Link. Branch conditionally to
the absolute address specified. The instruction address
following this instruction is placed into the LR.

Branch
Conditional
to Link
Register

bclr
bclrl

BO,BI The BI operand specifies the bit in the CR to be used as the condition
of the branch. The BO operand is used as described in Table 4-20,
and the branch target address is LR[0–29] || 0b00.

bclr Branch Conditional to Link Register. Branch conditionally to
the address in the LR.

bclrl Branch Conditional to Link Register then Link. Branch
conditionally to the address specified in the LR. The instruction
address following this instruction is then placed into the LR.

Branch
Conditional
to Count
Register

bcctr
bcctrl

BO,BI The BI operand specifies the bit in the CR to be used as the condition
of the branch. The BO operand is used as described in Table 4-20,
and the branch target address is CTR[0–29] || 0b00.

bcctr Branch Conditional to Count Register. Branch conditionally to
the address specified in the count register.

bcctrl Branch Conditional to Count Register then Link. Branch
conditionally to the address specified in the count register.
The instruction address following this instruction is placed into
the LR.

Note: If the “decrement and test CTR” option is specified (BO[2] = 0),
the instruction form is invalid.

Chapter 4. Addressing Modes and Instruction Set Summary 4-51

4

4.2.4.4 Simplified Mnemonics for Branch Processor Instructions
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for the most frequently used forms of branch conditional, compare, trap, rotate
and shift, and certain other instructions. See Appendix F, “Simplified Mnemonics,” for a
list of simplified mnemonic examples.

4.2.4.5 Condition Register Logical Instructions
Condition register logical instructions, shown in Table 4-22, and the Move Condition
Register Field (mcrf) instruction are also defined as flow control instructions.

NOTE: If the LR update option is enabled for any of these instructions, the PowerPC
architecture defines these forms of the instructions as invalid.

Table 4-22. Condition Register Logical Instructions

Name Mnemonic Operand Syntax Operation

Condition
Register AND

crand crb D,crb A,crb B The CR bit specified by crb A is ANDed with the CR bit specified
by crb B. The result is placed into the CR bit specified by crb D.

Condition
Register OR

cror crb D,crb A,crb B The CR bit specified by crb A is ORed with the CR bit specified
by crb B. The result is placed into the CR bit specified by crb D.

Condition
Register XOR

crxor crb D,crb A,crb B The CR bit specified by crb A is XORed with the CR bit specified
by crb B. The result is placed into the CR bit specified by crb D.

Condition
Register NAND

crnand crb D,crb A,crb B The CR bit specified by crb A is ANDed with the CR bit specified
by crb B. The complemented result is placed into the CR bit
specified by crb D.

Condition
Register NOR

crnor crb D,crb A,crb B The CR bit specified by crb A is ORed with the CR bit specified
by crb B. The complemented result is placed into the CR bit
specified by crb D.

Condition
Register
Equivalent

creqv crb D,crb A, crb B The CR bit specified by crb A is XORed with the CR bit specified
by crb B. The complemented result is placed into the CR bit
specified by crb D.

Condition
Register AND
with Complement

crandc crb D,crb A, crb B The CR bit specified by crb A is ANDed with the complement of
the CR bit specified by crb B and the result is placed into the CR
bit specified by crb D.

Condition
Register OR with
Complement

crorc crb D,crb A, crb B The CR bit specified by crb A is ORed with the complement of
the CR bit specified by crb B and the result is placed into the CR
bit specified by crb D.

Move Condition
Register Field

mcrf crf D,crf S The contents of crf S are copied into crf D. No other condition
register fields are changed.

4-52 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

4.2.4.6 Trap Instructions
The trap instructions shown in Table 4-23 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally. See Appendix F, “Simplified Mnemonics,” for a complete set of simplified
mnemonics.

4.2.4.7 System Linkage Instruction—UISA
Table 4-24 describes the System Call (sc) instruction that permits a program to call on the
system to perform a service. See Section 4.4.1, “System Linkage Instructions—OEA,” for
a complete description of thesc instruction.

Table 4-23. Trap Instructions

Name Mnemonic
Operand
Syntax

Operand Syntax

Trap Word
Immediate

twi TO,rA,SIMM The contents of rA are compared with the sign-extended SIMM operand.
If any bit in the TO operand is set and its corresponding condition is met
by the result of the comparison, the system trap handler is invoked.

Trap Word tw TO,rA,rB The contents of rA are compared with the contents of rB. If any bit in the
TO operand is set and its corresponding condition is met by the result of
the comparison, the system trap handler is invoked.

Table 4-24. System Linkage Instruction—UISA

Name Mnemonic
Operand
Syntax

Operation

System
Call

sc — This instruction calls the operating system to perform a service. When control is
returned to the program that executed the system call, the content of the registers
will depend on the register conventions used by the program providing the system
service. This instruction is context synchronizing as described in Section 4.1.5.1,
“Context Synchronizing Instructions.”
See Section 4.4.1, “System Linkage Instructions—OEA,” for a complete description
of the sc instruction.

Chapter 4. Addressing Modes and Instruction Set Summary 4-53

4

4.2.5 Processor Control Instructions—UISA
Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs). See
Section 4.3.1, “Processor Control Instructions—VEA,” for themftb instruction and
Section 4.4.2, “Processor Control Instructions—OEA,” for information about the
instructions used for reading from and writing to the MSR and SPRs.

4.2.5.1 Move to/from Condition Register Instructions
Table 4-25 summarizes the instructions for reading from or writing to the condition register.

4.2.5.2 Move to/from Special-Purpose Register Instructions (UISA)
Table 4-26 provides a brief description of themtspr and mfspr instructions. For more
detailed information refer to Chapter 8, “Instruction set.”

Table 4-25. Move to/from Condition Register Instructions

Name Mnemonic
Operand
Syntax

Operation

Move to Condition
Register Fields

mtcrf CRM,rS The contents of rS are placed into the CR under control of the field
mask specified by operand CRM. The field mask identifies the 4-bit
fields affected. Let i be an integer in the range 0–7. If CRM(i) = 1, CR
field i (CR bits 4 * i through 4 * i + 3) is set to the contents of the
corresponding field of rS.

Move to Condition
Register from XER

mcrxr crf D The contents of XER[0–3] are copied into the condition register field
designated by crf D. All other CR fields remain unchanged. The
contents of XER[0–3] are cleared.

Move from
Condition Register

mfcr r D The contents of the CR are placed into rD.

Table 4-26. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic
Operand
Syntax

Operation

Move to Special-
Purpose Register

mtspr SPR,rS The value specified by rS are placed in the specified SPR.

Move from Special-
Purpose Register

mfspr r D,SPR The contents of the specified SPR are placed in rD.

U
V
O

U

4-54 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

4.2.6 Memory Synchronization Instructions—UISA
Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms.

The number of cycles required to complete async instruction depends on system
parameters and on the processor's state when the instruction is issued. As a result, frequent
use of this instruction may degrade performance slightly. Theeieioinstruction may be more
appropriate thansync for many cases.

The PowerPC architecture defines thesync instruction with CR update enabled (Rc field,
bit 31 = 1) to be an invalid form.

The proper paired use of thelwarx with stwcx.instructions allows programmers to emulate
common semaphore operations such as test and set, compare and swap, exchange memory,
and fetch and add. Examples of these semaphore operations can be found in Appendix E,
“Synchronization Programming Examples.” Thelwarx instruction must be paired with an
stwcx.instruction, with the same effective address specified by both instructions of the pair.
The only exception is that an unpairedstwcx. instruction to any (scratch) effective address
can be used to clear any reservation held by the processor.

NOTE: The reservation granularity is implementation-dependent.

The concept behind the use of thelwarx andstwcx., instructions is that a processor may
load a semaphore from memory, compute a result based on the value of the semaphore, and
conditionally store it back to the same location. The conditional store is performed based
upon the existence of a reservation established by the precedinglwarx instruction. If the
reservation exists when the store is executed, the store is performed and a bit is set in the
CR. If the reservation does not exist when the store is executed, the target memory location
is not modified and a bit is cleared in the CR.

The lwarx andstwcx., primitives allow software to read a semaphore, compute a result
based on the value of the semaphore, store the new value back into the semaphore location
only if that location has not been modified since it was first read, and determine if the store
was successful. If the store was successful, the sequence of instructions from the read of the
semaphore to the store that updated the semaphore appear to have been executed atomically
(that is, no other processor or mechanism modified the semaphore location between the
read and the update), thus providing the equivalent of a real atomic operation. However, in
reality, other processors may have read from the location during this operation.

Thelwarx andstwcx. instructions require the EA to be aligned.

In general, thelwarx and stwcx. instructions should be used only in system programs,
which can be invoked by application programs as needed.

At most one reservation exists simultaneously on any processor. The address associated
with the reservation can be changed by a subsequentlwarx instruction. The conditional

U

V

Chapter 4. Addressing Modes and Instruction Set Summary 4-55

4

store is performed based upon the existence of a reservation established by the preceding
lwarx instruction.

A reservation held by the processor is cleared (or may be cleared, in the case of the fourth
and fifth bullet items) by one of the following:

• The processor holding the reservation executes anotherlwarx instruction; this clears
the first reservation and establishes a new one.

• The processor holding the reservation executes astwcx. instruction whether its
address matches that of thelwarx .

• Some other processor executes a store ordcbz to the same reservation granule, or
modifies a referenced or changed bit in the same reservation granule.

• Some other processor executes adcbtst, dcbst, dcbf, ordcbi to the same reservation
granule; whether the reservation is cleared is undefined.

• Some other processor executes adcba to the same reservation granule. The
reservation is cleared if the instruction causes the target block to be newly
established in the data cache or to be modified; otherwise, whether the reservation
is cleared is undefined.

• Some other mechanism modifies a memory location in the same reservation granule.

NOTE: Exceptions do not clear reservations; however, system software invoked by
exceptions may clear reservations.

Table 4-27 summarizes the memory synchronization instructions as defined in the UISA.
See Section 4.3.2, “Memory Synchronization Instructions—VEA,” for details about
additional memory synchronization (eieio andisync) instructions.

Table 4-27. Memory Synchronization Instructions—UISA

Name Mnemonic
Operand
Syntax

Operation

Load Word
and Reserve
Indexed

lwarx r D,rA,rB The EA is the sum (rA|0) + (rB). The word in memory addressed by the EA is
loaded into rD.

Store Word
Conditional
Indexed

stwcx. r S,rA,rB The EA is the sum (rA|0) + (rB).

If a reservation exists and the effective address specified by the stwcx.
instruction is the same as that specified by the load and reserve instruction
that established the reservation, the contents of rS are stored into the word in
memory addressed by the EA, and the reservation is cleared.

If a reservation exists but the effective address specified by the stwcx.
instruction is not the same as that specified by the load and reserve
instruction that established the reservation, the reservation is cleared, and it is
undefined whether the contents of rS are stored into the word in memory
addressed by the EA.

If a reservation does not exist, the instruction completes without altering
memory or the contents of the cache.

U

4-56 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

4.2.7 Recommended Simplified Mnemonics
To simplify assembly language programs, a set of simplified mnemonics is provided for
some of the most frequently used operations (such as no-op, load immediate, load address,
move register, and complement register). Assemblers should provide the simplified
mnemonics listed in Section F.9, “Recommended Simplified Mnemonics.” Programs
written to be portable across the various assemblers for the PowerPC architecture should
not assume the existence of mnemonics not described in this document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics.”

4.3 PowerPC VEA Instructions
The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache-control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

4.3.1 Processor Control Instructions—VEA
The VEA defines themftb instruction (user-level instruction) for reading the contents of
the time base register; see Chapter 5, “Cache Model and Memory Coherency,” for more
information. Table 4-28 describes themftb instruction.

Simplified mnemonics are provided (See Section F.8, “Simplified Mnemonics for Special-
Purpose Registers”) for themftb instruction so it can be coded with the TBR name as part
of the mnemonic rather than requiring it to be coded as an operand. The simplified
mnemonics Move from Time Base (mftb) and Move from Time Base Upper (mftbu) are
variants of themftb instruction rather than of themfspr instruction. Themftb instruction
serves as both a basic and simplified mnemonic. Assemblers recognize anmftb mnemonic
with two operands as the basic form, and anmftb mnemonic with one operand as the
simplified form.

Synchronize sync — Executing a sync instruction ensures that all instructions preceding the sync
instruction appear to have completed before the sync instruction completes,
and that no subsequent instructions are initiated by the processor until after
the sync instruction completes. When the sync instruction completes, all
memory accesses caused by instructions preceding the sync instruction will
have been performed with respect to all other mechanisms that access
memory.

See Chapter 8, “Instruction set,” for more information.

Table 4-27. Memory Synchronization Instructions—UISA (Continued)

Name Mnemonic
Operand
Syntax

Operation

U
V
O

U

Chapter 4. Addressing Modes and Instruction Set Summary 4-57

4

Tt is not possible to read the entire 64-bit time base register in a single instruction. Themftb
simplified mnemonic moves from the lower half of the time base register (TBL) to a GPR,
and themftbu simplified mnemonic moves from the upper half of the time base (TBU) to
a GPR.

Table 4-29 summarizes the time base (TBL/TBU) register encodings to which user-level
access (usingmftb) is permitted (as specified by the VEA).

Table 4-30 summarizes the TBL and TBU register encodings to which supervisor-level
access (usingmtspr) is permitted.

4.3.2 Memory Synchronization Instructions—VEA
Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 5, “Cache Model
and Memory Coherency,” for additional information about these instructions and about
related aspects of memory synchronization.

System designs that use a second-level cache should take special care to recognize the
hardware signaling caused by async operation and perform the appropriate actions to
guarantee that memory references that may be queued internally to the second-level cache
have been performed globally.

Table 4-28. Move from Time Base Instruction

Name Mnemonic Operand Syntax Operation

Move
from
Time
Base

mftb r D, TBR The TBR field denotes either time base lower or time base upper, encoded
as shown in Table 4-29 and Table 4-30. The contents of the designated
register are copied to rD.

Table 4-29. User-Level TBR Encodings (VEA)

Decimal Value
in TBR Field

tbr[0–4] tbr[5–9]
Register

Name
Description

268 01100 01000 TBL Time base lower (read-only)

269 01101 01000 TBU Time base upper (read-only)

Table 4-30. Supervisor-Level TBR Encodings (VEA)

Decimal Value in
SPR Field spr[0–4] spr[5–9] Register Name Description

284 11100 01000 TBL1 Time base lower (write only)

285 11101 01000 TBU1 Time base upper (write only)

1Moving from the time base (TBL and TBU) can also be accomplished with the mftb instruction.

U

4-58 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

In addition to thesync instruction (specified by UISA), the VEA defines the Enforce In-
Order Execution of I/O (eieio) and Instruction Synchronize (isync) instructions; see
Table 4-31. The number of cycles required to complete aneieio instruction depends on
system parameters and on the processor's state when the instruction is issued. As a result,
frequent use of this instruction may degrade performance slightly.

The isync instruction causes the processor to wait for any preceding instructions to
complete, discard all prefetched instructions, and then branch to the next sequential
instruction after isync (which has the effect of clearing the pipeline of prefetched
instructions).

4.3.3 Memory Control Instructions—VEA
Memory control instructions include the following types:

• Cache management instructions (user-level and supervisor-level)
• Segment register manipulation instructions
• Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA.
See Section 4.4.3, “Memory Control Instructions—OEA,” for more information about
supervisor-level cache, segment register manipulation, and translation lookaside buffer
management instructions.

4.3.3.1 User-Level Cache Instructions—VEA
The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches if they are implemented. See Chapter 5, “Cache Model and
Memory Coherency,” for more information about cache topics.

As with other memory-related instructions, the effect of the cache management instructions
on memory are weakly ordered. If the programmer needs to ensure that cache or other

Table 4-31 Memory Synchronization Instructions—VEA

Name Mnemonic
Operand
Syntax

Operation

Enforce In-Order
Execution of I/O

eieio — The eieio instruction provides an ordering function for the effects of loads
and stores executed by a processor.

Instruction
Synchronize

isync — Executing an isync instruction ensures that all previous instructions
complete before the isync instruction completes, although memory
accesses caused by those instructions need not have been performed
with respect to other processors and mechanisms. It also ensures that the
processor initiates no subsequent instructions until the isync instruction
completes. Finally, it causes the processor to discard any prefetched
instructions, so subsequent instructions will be fetched and executed in
the context established by the instructions preceding the isync
instruction.

This instruction does not affect other processors or their caches.

V

V
O

Chapter 4. Addressing Modes and Instruction Set Summary 4-59

4

instructions have been performed with respect to all other processors and system
mechanisms, asyncinstruction must be placed in the program following those instructions.

NOTE: When data address translation is disabled (MSR[DR] = 0), the Data Cache Block
Clear to Zero (dcbz) and the Data Cache Block Allocate (dcba) instructions
allocate a cache block in the cache and may not verify that the physical address
(referred to as real address in the architecture specification) is valid. If a cache
block is created for an invalid physical address, a machine check condition may
result when an attempt is made to write that cache block back to memory. The
cache block could be written back as a result of the execution of an instruction
that causes a cache miss and the invalid addressed cache block is the target for
replacement or a Data Cache Block Store (dcbst) instruction.

Any cache control instruction that generates an effective address that corresponds to a
direct-store segment (segment descriptor[T] = 1) is treated as a no-op.

NOTE: The direct-store facility is being phased out of the architecture and will not likely
be supported for future processors.

Table 4-32 summarizes the cache instructions defined by the VEA.

NOTE: These instructions are accessible to user-level programs.

Table 4-32. User-Level Cache Instructions

Name Mnemonic
Operand
Syntax

Operation

Data
Cache
Block
Touch

dcbt r A,rB The EA is the sum (rA|0) + (rB).

This instruction is a hint that performance will probably be improved if the block
containing the byte addressed by EA is fetched into the data cache, because
the program will probably soon load from the addressed byte.

Data
Cache
Block
Touch for
Store

dcbtst r A,rB The EA is the sum (rA|0) + (rB).

This instruction is a hint that performance will probably be improved if the block
containing the byte addressed by EA is fetched into the data cache, because
the program will probably soon store into the addressed byte.

O

V

4-60 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

Data
Cache
Block
Allocate

dcba r A,rB The EA is the sum (rA|0) + (rB).

If the cache block containing the byte addressed by the EA is in the data cache,
all bytes of the cache block are made undefined, but the cache block is still
considered valid.
Note: Programming errors can occur if the data in this cache block is
subsequently read or used inadvertently.

If the page containing the byte addressed by the EA is not in the data cache and
the corresponding page is marked caching allowed (I = 0), the cache block is
allocated (and made valid) in the data cache without fetching the block from
main memory, and the value of all bytes of the cache block is undefined.

If the page containing the byte addressed by the EA is marked caching inhibited
(WIM = x1x), this instruction is treated as a no-op.

If the cache block addressed by the EA is located in a page marked as memory
coherent (WIM = xx1) and the cache block exists in the caches of other
processors, memory coherence is maintained in those caches.

The dcba instruction is treated as a store to the addressed byte with respect to
address translation, memory protection, referenced and changed recording,
and the ordering enforced by eieio or by the combination of caching-inhibited
and guarded attributes for a page.

This instruction is optional in the PowerPC architecture.

(In the PowerPC OEA, the dcba instruction is additionally defined to clear all
bytes of a newly established block to zero in the case that the block did not
already exist in the cache.)

Data
Cache
Block Clear
to Zero

dcbz r A,rB The EA is the sum (rA|0) + (rB).

If the cache block containing the byte addressed by the EA is in the data cache,
all bytes of the cache block are cleared to zero.

If the page containing the byte addressed by the EA is not in the data cache and
the corresponding page is marked caching allowed (I = 0), the cache block is
established in the data cache without fetching the block from main memory, and
all bytes of the cache block are cleared to zero.

If the page containing the byte addressed by the EA is marked caching inhibited
(WIM = x1x) or write-through (WIM = 1xx), either all bytes of the area of main
memory that corresponds to the addressed cache block are cleared to zero, or
an alignment exception occurs.

If the cache block addressed by the EA is located in a page marked as memory
coherent (WIM = xx1) and the cache block exists in the caches of other
processors, memory coherence is maintained in those caches.

The dcbz instruction is treated as a store to the addressed byte with respect to
address translation, memory protection, referenced and changed recording,
and the ordering enforced by eieio or by the combination of caching-inhibited
and guarded attributes for a page.

Table 4-32. User-Level Cache Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

Chapter 4. Addressing Modes and Instruction Set Summary 4-61

4

Data
Cache
Block Store

dcbst r A,rB The EA is the sum(rA|0) + (rB).

If the cache block containing the byte addressed by the EA is located in a page
marked memory coherent (WIM = xx1), and a cache block containing the byte
addressed by EA is in the data cache of any processor and has been modified,
the cache block is written to main memory.(Note: The architecture does not
stipulate that the modified status of the block be cleared, that decision is left to
the processor designer. Either action is logically correct.)

If the cache block containing the byte addressed by the EA is located in a page
not marked memory coherent (WIM = xx0), and a cache block containing the
byte addressed by EA is in the data cache of this processor and has been
modified, the cache block is written to main memory. (See note above.)

The function of this instruction is independent of the write-through/write-back
and caching-inhibited/caching-allowed modes of the cache block containing the
byte addressed by the EA.

The dcbst instruction is treated as a load from the addressed byte with respect
to address translation and memory protection. It may also be treated as a load
for referenced and changed bit recording except that referenced and changed
bit recording may not occur.

Data
Cache
Block Flush

dcbf r A,rB The EA is the sum (rA|0) + (rB).

The action taken depends on the memory mode associated with the target, and
on the state of the block. The following list describes the action taken for the
various cases, regardless of whether the page or block containing the
addressed byte is designated as write-through or if it is in the caching-inhibited
or caching-allowed mode.
• Coherency required (WIM = xx1)

— Unmodified block—Invalidates copies of the block in the caches of all
processors.

— Modified block—Copies the block to memory. Invalidates the copy of the
block in the cache where it is found.There should only be one modified
block.

— Absent block—If a modified copy of the block is in the cache of another
processor, causes it to be copied to memory and invalidated. If
unmodified copies are in the caches of other processors, causes those
copies to be invalidated.

• Coherency not required (WIM = xx0)
— Unmodified block—Invalidates the block in the processor’s cache.
— Modified block—Copies the block to memory. Invalidates the block in the

processor’s cache.
— Absent block—Does nothing.

The function of this instruction is independent of the write-through/write-back
and caching-inhibited/caching-allowed modes of the cache block containing the
byte addressed by the EA.

The dcbf instruction is treated as a load from the addressed byte with respect
to address translation and memory protection. It may also be treated as a load
for referenced and changed bit recording except that referenced and changed
bit recording may not occur.

Table 4-32. User-Level Cache Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

4-62 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

Instruction
Cache
Block
Invalidate

icbi r A,rB The EA is the sum (rA|0) + (rB).

If the cache block containing the byte addressed by EA is located in a page
marked memory coherent (WIM = xx1), and a cache block containing the byte
addressed by EA is in the instruction cache of any processor, the cache block is
made invalid in all such instruction caches, so that the next reference causes
the cache block to be refetched.

If the cache block containing the byte addressed by EA is located in a page not
marked memory coherent (WIM = xx0), and a cache block containing the byte
addressed by EA is in the instruction cache of this processor, the cache block is
made invalid in that instruction cache, so that the next reference causes the
cache block to be refetched.

The function of this instruction is independent of the write-through/write-back
and caching-inhibited/caching-allowed modes of the cache block containing the
byte addressed by the EA.

The icbi instruction is treated as a load from the addressed byte with respect to
address translation and memory protection. It may also be treated as a load for
referenced and changed bit recording except that referenced and changed bit
recording may not occur.

Table 4-32. User-Level Cache Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

Chapter 4. Addressing Modes and Instruction Set Summary 4-63

4

4.3.4 External Control Instructions
The external control instructions allow a user-level program to communicate with a special-
purpose device. Two instructions are provided and are summarized in Table 4-33.

Table 4-33. External Control Instructions

Name Mnemonic
Operand
Syntax

Operation

External
Control In
Word
Indexed

eciwx r D,rA,rB The EA is the sum (rA|0) + (rB).

A load word request for the physical address corresponding to the EA is sent to
the device identified by the EAR[RID] (bits 26–31), bypassing the cache. The
word returned by the device is placed into rD. The EA sent to the device must be
word-aligned.

This instruction is treated as a load from the addressed byte with respect to
address translation, memory protection, referenced and changed recording, and
the ordering performed by eieio .

This instruction is optional.

External
Control
Out Word
Indexed

ecowx r S,rA,rB The EA is the sum (rA|0) + (rB).

A store word request for the physical address corresponding to the EA and the
contents of rS are sent to the device identified by EAR[RID] (bits 26–31),
bypassing the cache. The EA sent to the device must be word-aligned.

This instruction is treated as a store to the addressed byte with respect to
address translation, memory protection, referenced and changed recording, and
the ordering performed by eieio . Software synchronization is required in order to
ensure that the data access is performed in program order with respect to data
accesses caused by other store or ecowx instructions, even though the
addressed byte is assumed to be caching-inhibited and guarded.

This instruction is optional.

4-64 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

4.4 PowerPC OEA Instructions
The PowerPC operating environment architecture (OEA) includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the OEA also adhere to the UISA and the VEA. This
section describes the instructions provided by the OEA.

4.4.1 System Linkage Instructions—OEA
This section describes the system linkage instructions (see Table 4-34). Thesc instruction
is a user-level instruction that permits a user program to call on the system to perform a
service and causes the processor to take an exception. Therfi instructions are supervisor-
level instructions that are useful for returning from an exception handler.

4.4.2 Processor Control Instructions—OEA
This section describes the processor control instructions that are used to read from and
write to the MSR and the SPRs.

Table 4-34. System Linkage Instructions—OEA

Name Mnemonic
Operand
Syntax

Operation

System Call sc — When executed, the effective address of the instruction following the sc
instruction is placed into SRR0. Bits 1–4, and 10–15 of SRR1 are
cleared. Additionally, bits 16–23, 25–27, and 30–31 of the MSR are
placed into the corresponding bits of SRR1. Depending on the
implementation, additional bits of MSR may also be saved in SRR1.
Then a system call exception is generated. The exception causes the
MSR to be altered as described in Section 6.4, “Exception Definitions.”

The exception causes the next instruction to be fetched from offset
0xC00 from the base physical address indicated by the old setting of
MSR[IP].

This instruction is context synchronizing.

Return from
Interrupt

rfi — Bits 16–23, 25–27, and 30–31 of SRR1 are placed into the
corresponding bits of the MSR. Depending on the implementation,
additional bits of MSR may also be restored from SRR1. If the new MSR
value does not enable any pending exceptions, the next instruction is
fetched, under control of the new MSR value, from the address
SRR0[0–29] || 0b00.

If the new MSR value enables one or more pending exceptions, the
exception associated with the highest priority pending exception is
generated. At this time SRR0 and SRR1 are left with their current values;
the MSR is loaded with new values as determined by the exception and
the processor branches to the exception handler to resolve the pending
exception.

This is a supervisor-level instruction and is context-synchronizing.

U
V
O

O

Chapter 4. Addressing Modes and Instruction Set Summary 4-65

4

4.4.2.1 Move to/from Machine State Register Instructions
Table 4-35 summarizes the instructions used for reading from and writing to the MSR.

4.4.2.2 Move to/from Special-Purpose Register Instructions (OEA)
Provided is a brief description of themtspr andmfspr instructions (see Table 4-36). For
more detailed information, see Chapter 8, “Instruction set.” Simplified mnemonics are
provided for themtspr andmfspr instructions in Appendix F, “Simplified Mnemonics.”
For a discussion of context synchronization requirements when altering certain SPRs, refer
to Appendix E, “Synchronization Programming Examples.”

For mtspr andmfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into
two 5-bit halves that are reversed in the instruction encoding, with the high-order 5 bits
appearing in bits 16–20 of the instruction encoding and the low-order 5 bits in bits 11–15.

For information on SPR encodings (both user- and supervisor-level), see Chapter 8,
“Instruction Set.”

NOTE: There are additional SPRs specific to each implementation; for implementation-
specific SPRs, see the user’s manual for your particular processor.

Table 4-35. Move to/from Machine State Register Instructions

Name Mnemonic
Operand
Syntax

Operation

Move to Machine
State Register

mtmsr r S The contents of rS are placed into the MSR.

This instruction is a supervisor-level instruction and is context
synchronizing except with respect to alterations to the POW and LE
bits. Refer to Section 2.3.17, “Synchronization Requirements for
Special Registers and for Lookaside Buffers,” for more information.

Move from Machine
State Register

mfmsr r D The contents of the MSR are placed into rD. This is a supervisor-level
instruction.

Table 4-36. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic
Operand
Syntax

Operation

Move to
Special-
Purpose
Register

mtspr SPR,rS The SPR field denotes a special-purpose register. The contents of rS
are placed into the designated SPR.

For this instruction, SPRs TBL and TBU are treated as separate 32-
bit registers; setting one leaves the other unaltered.

Move from
Special-
Purpose
Register

mfspr r D,SPR The SPR field denotes a special-purpose register. The contents of
the designated SPR are placed into rD.

4-66 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

4.4.3 Memory Control Instructions—OEA
Memory control instructions include the following types of instructions:

• Cache management instructions (supervisor-level and user-level)
• Segment register manipulation instructions
• Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. See Section 4.3.3,
“Memory Control Instructions—VEA,” for more information about user-level cache
management instructions.

4.4.3.1 Supervisor-Level Cache Management Instruction
Table 4-37 summarizes the operation of the only supervisor-level cache management
instruction. See Section 4.3.3.1, “User-Level Cache Instructions—VEA,” for cache
instructions that provide user-level programs the ability to manage the on-chip caches.

NOTE: Any cache control instruction that generates an effective address that
corresponds to a direct-store segment (segment descriptor[T] = 1) is treated as a
no-op..

Chapter 4. Addressing Modes and Instruction Set Summary 4-67

4

4.4.3.2 Segment Register Manipulation Instructions
The instructions listed in Table 4-38 provide access to the segment registers segments 0
through 15. These instructions operate completely independently of the MSR[IR] and
MSR[DR] bit settings. Refer to Section 2.3.17, “Synchronization Requirements for Special
Registers and for Lookaside Buffers,” for serialization requirements and other
recommended precautions to observe when manipulating the segment registers.

Table 4-37. Cache Management Supervisor-Level Instruction

Name Mnemonic
Operand
Syntax

Operation

Data
Cache
Block
Invalidate

dcbi r A,rB The EA is the sum (rA|0) + (rB).

The action taken depends on the memory mode associated with the target, and
the state (modified, unmodified) of the cache block. The following list describes
the action to take if the cache block containing the byte addressed by the EA is or
is not in the cache.

• Coherency required (WIM = xx1)
— Unmodified cache block—Invalidates copies of the cache block in the

caches of all processors.
— Modified cache block—Invalidates the copy of the cache block in the

cache of the processor where the block is found. (there can only be one
modified block). The modified contents are discarded.

— Absent cache block—If copies are in the caches of any other processor,
causes the copies to be invalidated. (Discards any modified contents.)

• Coherency not required (WIM = xx0)
— Unmodified cache block—Invalidates the cache block in the local cache.
— Modified cache block—Invalidates the cache block in the local cache.

(Discards the modified contents.)
— Absent cache block—No action is taken.

When data address translation is enabled, MSR[DT]=1, and the logical (effective)
address has no translation, a data access exception occurs.

The function of this instruction is independent of the write-through and cache-
inhibited/allowed modes determined by the WIM bit settings of the block
containing the byte addressed by the EA.

This instruction is treated as a store to the addressed byte with respect to
address translation and protection, except that the change bit need not be set,
and if the change bit is not set then the reference bit need not be set.

4-68 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

4.4.3.3 Translation Lookaside Buffer Management Instructions
The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTEs) used by PowerPC processors to locate the logical-to-physical address
mapping for a particular access. These segment descriptors and PTEs reside in segment
registers and page tables in memory, respectively.

For performance reasons, many processors implement one or more translation lookaside
buffers on-chip. These are buffers (caches) that cache a portion of the page frame table. As
changes are made to the address translation tables, it is necessary to maintain coherency
between the TLB and the updated tables. This is done by invalidating TLB entries, or
occasionally by invalidating the entire TLB, and allowing the translation caching
mechanism to refetch from the tables.

Each PowerPC implementation that has a TLB provides means for invalidating an
individual TLB entry and/or invalidating the entire TLB.

Table 4-38. Segment Register Manipulation Instructions

Name Mnemonic
Operand
Syntax

Operation

Move to Segment
Register

mtsr SR,rS The contents of rS are placed into segment register specified by
operand SR.

This is a supervisor-level instruction.

Move to Segment
Register Indirect

mtsrin r S,rB The contents of rS are copied to the segment register selected by bits
0–3 of rB.

This is a supervisor-level instruction.

Move from Segment
Register

mfsr r D,SR The contents of the segment register specified by operand SR are
placed into rD.

This is a supervisor-level instruction.

Move from Segment
Register Indirect

mfsrin r D,rB The contents of the segment register selected by bits 0–3 of rB are
copied into rD.

This is a supervisor-level instruction.

Chapter 4. Addressing Modes and Instruction Set Summary 4-69

4

Refer to Chapter 7, “Memory Management,” for more information about TLB operation.
Table 4-39 summarizes the operation of the SLB and TLB instructions.

Because the presence and exact semantics of the translation lookaside buffer management
instructions is implementation-dependent, system software should incorporate uses of the
instruction into subroutines to minimize compatibility problems.

Table 4-39. Translation Lookaside Buffer Management Instructions

Name Mnemonic
Operand
Syntax

Operation

TLB
Invalidate
Entry

tlbie r B The EA is the contents of rB. If the TLB contains an entry corresponding to the
EA, that entry is removed from the TLB. The TLB search is performed
regardless of the settings of MSR[IR] and MSR[DR]. Block address translation
for the EA, if any, is ignored.

This instruction causes the target TLB entry to be invalidated in all processors.

The operation performed by this instruction is treated as a caching inhibited
and guarded data access with respect to the ordering performed by eieio .

This is a supervisor-level instruction and optional in the PowerPC architecture.

TLB
Invalidate All

tlbia — All TLB entries are made invalid. The TLB is invalidated regardless of the
settings of MSR[IR] and MSR[DR].

This instruction does not cause the entries to be invalidated in other
processors.

This is a supervisor-level instruction and optional in the PowerPC architecture.

TLB
Synchronize

tlbsync — Executing a tlbsync instruction ensures that all tlbie instructions previously
executed by the processor executing the tlbsync instruction have completed
on all processors.

The operation performed by this instruction is treated as a caching inhibited
and guarded data access with respect to the ordering performed by eieio .

This is a supervisor-level instruction and optional in the PowerPC architecture.

4-70 PowerPC Microprocessor 32-bit Family: The Programming Environments

4

This page deliberately left blank.

Chapter 5. Cache Model and Memory Coherency 5-1

5

Chapter 5. Cache Model and Memory
Coherency
50
50

This chapter summarizes the cache model as defined by the virtual environment
architecture (VEA) as well as the built-in architectural controls for maintaining memory
coherency. This chapter describes the cache control instructions and special concerns for
memory coherency in single-processor and multiprocessor systems. Aspects of the
operating environment architecture (OEA) as they relate to the cache model and memory
coherency are also covered.

The PowerPC architecture provides for relaxed memory coherency. Features such as write-
back caching and out-of-order execution allow software engineers to exploit the
performance benefits of weakly-ordered memory access. The architecture also provides the
means to control the order of accesses for order-critical operations.

In this chapter, the term multiprocessor is used in the context of maintaining cache
coherency. In this context, a system could include other devices that access system memory,
maintain independent caches, and function as bus masters.

Each cache management instruction operates on an aligned unit of memory. The VEA
defines this cacheable unit as a block. Since the term ‘block’ is easily confused with the unit
of memory addressed by the block address translation (BAT) mechanism, this chapter uses
the term ‘cache block’ to indicate the cacheable unit. The size of the cache block can vary
by instruction and by implementation. In addition, the unit of memory at which coherency
is maintained is called the coherence block. The size of the coherence block is also
implementation-specific. However, the coherence block is often the same size as the cache
block.

5.1 The Virtual Environment
The user instruction set architecture (UISA) relies upon a memory space of 232 bytes for
applications. The VEA expands upon the memory model by introducing virtual memory,
caches, and shared memory multiprocessing. Although many applications will not need to
access the features introduced by the VEA, it is important that programmers are aware that
they are working in a virtual environment where the physical memory may be shared by
multiple processes running on one or more processors.

U
V
O

V

5-2 PowerPC Microprocessor 32-bit Family: The Programming Environments

5

This section describes load and store ordering, atomicity, the cache model, memory
coherency, and the VEA cache management instructions. The features of the VEA are
accessible to both user-level and supervisor-level applications (referred to as problem state
and privileged state, respectively, in the architecture specification).

The mechanism for controlling the virtual memory space is defined by the OEA. The
features of the OEA are accessible to supervisor-level applications only (typically operating
systems). For more information on the address translation mechanism, refer to Chapter 7,
“Memory Management.”

5.1.1 Memory Access Ordering
The VEA specifies a weakly consistent memory model for shared memory multiprocessor
systems. This model provides an opportunity for significantly improved performance over
a model that has stronger consistency rules, but places the responsibility for access ordering
on the programmer. When a program requires strict access ordering for proper execution,
the programmer must insert the appropriate ordering or synchronization instructions into
the program.

The order in which the processor performs memory accesses, the order in which those
accesses complete in memory, and the order in which those accesses are viewed as
occurring by another processor may all be different. A means of enforcing memory access
ordering is provided to allow programs (or instances of programs) to share memory. Similar
means are needed to allow programs executing on a processor to share memory with some
other mechanism, such as an I/O device, that can also access memory.

Various facilities are provided that enable programs to control the order in which memory
accesses are performed by separate instructions. First, if separate store instructions access
memory that is designated as both caching-inhibited and guarded, the accesses are
performed in the order specified by the program. Refer to Section 5.1.4, “Memory
Coherency,” and Section 5.2.1, “Memory/Cache Access Attributes,” for a complete
description of the caching-inhibited and guarded attributes. Additionally, two instructions,
eieio and sync, are provided that enable the program to control the order in which the
memory accesses caused by separate instructions are performed.

No ordering should be assumed among the memory accesses caused by a single instruction
(that is, by an instruction for which multiple accesses are not atomic), and no means are
provided for controlling that order. Chapter 4, “Addressing Modes and Instruction Set
Summary,” contains additional information about thesync andeieio instructions.

5.1.1.1 Enforce In-Order Execution of I/O Instruction
Theeieioinstruction permits the program to control the order in which loads and stores are
performed when the accessed memory has certain attributes, as described in Chapter 8,
“Instruction Set.” For example,eieiocan be used to ensure that a sequence of load and store
operations to an I/O device’s control registers updates those registers in the desired order.

Chapter 5. Cache Model and Memory Coherency 5-3

5

Theeieio instruction can also be used to ensure that all stores to a shared data structure are
visible to other processors before the store that releases the lock is visible to them.

The eieio instruction may complete before memory accesses caused by instructions
preceding theeieio instruction have been performed with respect to system memory or
coherent storage as appropriate.

If stronger ordering is desired, thesync instruction must be used.

5.1.1.2 Synchronize Instruction
When a portion of memory that requires coherency must be forced to a known state, it is
necessary to synchronize memory with respect to other processors and mechanisms. This
synchronization is accomplished by requiring programs to indicate explicitly in the
instruction stream, by inserting async instruction, that synchronization is required. Only
whensynccompletes are the effects of all coherent memory accesses previously executed
by the program guaranteed to have been performed with respect to all other processors and
mechanisms that access those locations coherently.

Thesyncinstruction ensures that all the coherent memory accesses, initiated by a program,
have been performed with respect to all other processors and mechanisms that access the
target locations coherently, before its next instruction is executed. A program can use this
instruction to ensure that all updates to a shared data structure, accessed coherently, are
visible to all other processors that access the data structure coherently, before executing a
store that will release a lock on that data structure. Execution of thesync instruction does
the following:

• Performs the functions described for thesyncinstruction in Section 4.2.6, “Memory
Synchronization Instructions—UISA.”

• Ensures that consistency operations, and the effects oficbi, dcbz, dcbst, dcbf, dcba,
anddcbi instructions previously executed by the processor executingsync, have
completed on such other processors as the memory/cache access attributes of the
target locations require.

• Ensures that TLB invalidate operations previously executed by the processor
executing thesynchave completed on that processor. Thesyncinstruction does not
wait for such invalidates to complete on other processors.

• Ensures that memory accesses due to instructions previously executed by the
processor executing thesyncare recorded in the R and C bits in the page table and
that the new values of those bits are visible to all processors and mechanisms; refer
to Section 7.5.3, “Page History Recording.”

The sync instruction is execution synchronizing. It is not context synchronizing, and
therefore need not discard prefetched instructions.

5-4 PowerPC Microprocessor 32-bit Family: The Programming Environments

5

For memory that does not require coherency, thesync instruction operates as described
above except that its only effect on memory operations is to ensure that all previous
memory operations have completed, with respect to the processor executing thesync
instruction, to the level of memory specified by the memory/cache access attributes
(including the updating of R and C bits).

5.1.2 Atomicity
An access is atomic if it is always performed in its entirety with no visible fragmentation.
Atomic accesses are thus serialized—each happens in its entirety in some order, even when
that order is neither specified in the program nor enforced between processors.

Only the following single-register accesses are guaranteed to be atomic:

• Byte accesses (all bytes are aligned on byte boundaries)
• Half-word accesses aligned on half-word boundaries
• Word accesses aligned on word boundaries

No other accesses are guaranteed to be atomic. In particular, the accesses caused by the
following instructions are not guaranteed to be atomic:

• Load and store instructions with misaligned operands
• lmw, stmw, lswi, lswx, stswi, orstswx instructions
• Floating-point double-word accesses
• Any cache management instructions

The lwarx /stwcx. instruction combination can be used to perform atomic memory
references. Thelwarx instruction is a load from a word–aligned location that has two side
effects:

1. A reservation for a subsequentstwcx. instruction is created.

2. The memory coherence mechanism is notified that a reservation exists for the
memory location accessed by thelwarx .

The stwcx. instruction is a store to a word–aligned location that is conditioned on the
existence of the reservation created bylwarx and on whether the same memory location is
specified by both instructions and whether the instructions are issued by the same
processor.

NOTE: When a reservation is made to a word in memory by the lwarx instruction, an
address is saved and a reservation is set. Both of these are necessary for the
memory coherence mechanism, however, some processors do not implement the
address compare for the stwcx. instruction. Only the reservation need be
established in order for thestwcx. to be successful. This requires that exception
handlers clear reservations if control is passed to another program. Programmers
should read the specifications for each individual processor.

Chapter 5. Cache Model and Memory Coherency 5-5

5

In a multiprocessor system, every processor (other than the one executinglwarx /stwcx.)
that might update the location must configure the addressed page as memory coherency
required. Thelwarx /stwcx. instructions function in caching-inhibited, as well as in
caching-allowed, memory. If the addressed memory is in write-through mode, it is
implementation-dependent whether these instructions function correctly or cause the DSI
exception handler to be invoked.

NOTE: Exceptions are referred to as interrupts in the architecture specification.

The lwarx /stwcx. instruction combination is described in Section 4.2.6, “Memory
Synchronization Instructions—UISA,” and Chapter 8, “Instruction Set.”

5.1.3 Cache Model
The PowerPC architecture does not specify the type, organization, implementation, or even
the existence of a cache. The standard cache model has separate instruction and data caches,
also known as a Harvard cache model. However, the architecture allows for many different
cache types. Some implementations will have a unified cache (where there is a single cache
for both instructions and data). Other implementations may not have a cache at all.

The function of the cache management instructions depends on the implementation of the
cache(s) and the setting of the memory/cache access modes. For a program to execute
properly on all implementations, software should use the Harvard model. In cases where a
processor is implemented without a cache, the architecture guarantees that instructions
affecting the nonimplemented cache will not halt execution.

NOTE: dcbz may cause an alignment exception on some implementations. For example,
a processor with no cache may treat a cache instruction as a no-op. Or, a
processor with a unified cache may treat theicbi instruction as a no-op. In this
manner, programs written for separate instruction and data caches will run on all
compliant implementations.

5.1.4 Memory Coherency
The primary objective of a coherent memory system is to provide the same image of
memory to all devices using the system. The VEA and OEA define coherency controls that
facilitate synchronization, cooperative use of shared resources, and task migration among
processors. These controls include the memory/cache access attributes, thesyncandeieio
instructions, and thelwarx /stwcx. instruction pair. Without these controls, the processor
could not support a weakly-ordered memory access model.

A strongly-ordered memory access model hinders performance by requiring excessive
overhead, particularly in multiprocessor environments. For example, a processor
performing a store operation in a strongly-ordered system requires exclusive access to an
address before making an update, to prevent another device from using stale data.

5-6 PowerPC Microprocessor 32-bit Family: The Programming Environments

5

The VEA defines a page as a unit of memory for which protection and control attributes are
independently specifiable. The OEA (supervisor level) specifies the size of a page as
4 Kbytes.

NOTE: The VEA (user level) does not specify the page size.

5.1.4.1 Memory/Cache Access Modes
The OEA defines the set of memory/cache access modes and the mechanism to implement
these modes. Refer to Section 5.2.1, “Memory/Cache Access Attributes,” for more
information. However, the VEA specifies that at the user level, the operating system can be
expected to provide the following attributes for each page of memory:

• Write-through or write-back
• Caching-inhibited or caching-allowed
• Memory coherency required or memory coherency not required
• Guarded or not guarded

User-level programs specify the memory/cache access attributes through an operating
system service.

5.1.4.1.1 Pages Designated as Write-Through

When a page is designated as write-through, store operations update the data in the cache
and also update the data in main memory. The processor writes to the cache and through to
main memory. Load operations use the data in the cache, if it is present.

In write-back mode, the processor is only required to update data in the cache. The
processor may (but is not required to) update main memory. Load and store operations use
the data in the cache, if it is present. The data in main memory does not necessarily stay
consistent with that same location’s data in the cache. Many implementations automatically
update main memory in response to a memory access by another device (for example, a
snoop hit). In addition, thedcbst anddcbf instructions can be used to explicitly force an
update of main memory.

The write-through attribute is meaningless for locations designated as caching-inhibited.

5.1.4.1.2 Pages Designated as Caching-Inhibited

When a page is designated as caching-inhibited, the processor bypasses the cache and
performs load and store operations to main memory. When a page is designated as caching-
allowed, the processor uses the cache and performs load and store operations to the cache
or main memory depending on the other memory/cache access attributes for the page.

It is important that all locations in a page are purged from the cache prior to changing the
memory/cache access attribute for the page from caching-allowed to caching-inhibited. It
is considered a programming error if a caching-inhibited memory location is found in the
cache. Software must ensure that the location has not previously been brought into the
cache, or, if it has, that it has been flushed from the cache. If the programming error occurs,
the result of the access is boundedly undefined.

Chapter 5. Cache Model and Memory Coherency 5-7

5

5.1.4.1.3 Pages Designated as Memory Coherency Required

When a page is designated as memory coherency required, store operations to that location
are serialized with all stores to that same location by all other processors that also access
the location coherently.This can be implemented, for example, by an ownership protocol
that allows at most one processor at a time to store to the location. Moreover, the current
copy of a cache block that is in this mode may be copied to main storage any number of
times, for example, by successivedcbst instructions.

Coherency does not ensure that the result of a store by one processor is visible immediately
to all other processors and mechanisms. Only after a program has executed thesync
instruction are the previous storage accesses it executed guaranteed to have been performed
with respect to all other processors and mechanisms.

5.1.4.1.4 Pages Designated as Memory Coherency Not Required

For a memory area that is configured such that coherency is not required, software must
ensure that the data cache is consistent with main storage before changing the mode or
allowing another device to access the area.

Executing adcbst or dcbf instruction specifying a cache block that is in this mode causes
the block to be copied to main memory if and only if the processor modified the contents
of a location in the block and the modified contents have not been written to main memory.

In a single-cache system, correct coherent execution may likely not require memory
coherency; therefore, using memory coherency not required mode improves performance.

5.1.4.1.5 Pages Designated as Guarded

The guarded attribute pertains to out-of-order execution. Refer to Section 5.2.1.5.3, “Out-
of-Order Accesses to Guarded Memory,” for more information about out-of-order
execution.

When a page is designated as guarded, instructions and data cannot be accessed out of
order. Additionally, if separate store instructions access memory that is both caching-
inhibited and guarded, the accesses are performed in the order specified by the program.
When a page is designated as not guarded, out-of-order fetches and accesses are allowed.

Guarded pages are traditionally used for memory-mapped I/O devices.

5.1.4.2 Coherency Precautions

Mismatched memory/cache attributes cause coherency paradoxes in both single-processor
and multiprocessor systems. When the memory/cache access attributes are changed, it is
critical that the cache contents reflect the new attribute settings. For example, if a block or
page that had allowed caching becomes caching-inhibited, the appropriate cache blocks
should be flushed to leave no indication that caching had previously been allowed.

Although coherency paradoxes are considered programming errors, specific
implementations may attempt to handle the offending conditions and minimize the negative
effects on memory coherency. Bus operations that are generated for specific instructions
and state conditions are not defined by the architecture.

5-8 PowerPC Microprocessor 32-bit Family: The Programming Environments

5

5.1.5 VEA Cache Management Instructions
The VEA defines instructions for controlling both the instruction and data caches. For
implementations that have a unified instruction/data cache, instruction cache control
instructions are valid instructions, but may function differently.

NOTE: Any cache control instruction that generates an EA that corresponds to a direct-
store segment (SR[T] = 1) is treated as a no-op. However, the direct-store facility
is being phased out of the architecture and will not likely be supported in future
devices. Thus, software should not depend on its effects.

This section briefly describes the cache management instructions available to programs at
the user privilege level. Additional descriptions of coding the VEA cache management
instructions is provided in Chapter 4, “Addressing Modes and Instruction Set Summary,”
and Chapter 8, “Instruction Set.” In the following instruction descriptions, the target is the
cache block containing the byte addressed by the effective address.

5.1.5.1 Data Cache Instructions

Data caches and unified caches must be consistent with other caches (data or unified),
memory, and I/O data transfers. To ensure consistency, aliased effective addresses (two
effective addresses that map to the same physical address) must have the same page offset.

NOTE: Physical address is referred to as real address in the architecture specification.

5.1.5.1.1 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst) Instructions

These instructions provide a method for improving performance through the use of
software-initiated prefetch hints. However, these instructions do not guarantee that a cache
block will be fetched.

A program uses thedcbt instruction to request a cache block fetch before it is needed by
the program. The program can then use the data from the cache rather than fetching from
main memory.

Thedcbtst instruction behaves similarly to thedcbt instruction. A program usesdcbtst to
request a cache block fetch to guarantee that a subsequent store will be to a cached location.

The processor does not invoke the exception handler for translation or protection violations
caused by either of the touch instructions. Additionally, memory accesses caused by these
instructions are not necessarily recorded in the page tables. If an access is recorded, then it
is treated in a manner similar to that of a load from the addressed byte. Some
implementations may not take any action based on the execution of these instructions, or
they may prefetch the cache block corresponding to the EA into their cache. For
information about the R and C bits, see Section 7.5.3, “Page History Recording.”

Bothdcbt anddcbtst are provided for performance optimization. These instructions do not
affect the correct execution of a program, regardless of whether they succeed (fetch the
cache block) or fail (do not fetch the cache block). If the target block is not accessible to
the program for loads, then no operation occurs.

Chapter 5. Cache Model and Memory Coherency 5-9

5

5.1.5.1.2 Data Cache Block Set to Zero (dcbz) Instruction
Thedcbz instruction clears a single cache block as follows:

• If the target is in the data cache, all bytes of the cache block are cleared.

• If the target is not in the data cache and the corresponding page is caching-allowed,
the cache block is established in the data cache (without fetching the cache block
from main memory), and all bytes of the cache block are cleared.

• If the target is designated as either caching-inhibited or write-through, then either all
bytes in main memory that correspond to the addressed cache block are cleared, or
the alignment exception handler is invoked. The exception handler should clear all
the bytes in main memory that correspond to the addressed cache block.

• If the target is designated as coherency required, and the cache block exists in the
data cache(s) of any other processor(s), it is kept coherent in those caches.

The dcbz instruction is treated as a store to the addressed byte with respect to address
translation, protection, referenced and changed recording, and the ordering enforced by
eieio or by the combination of caching-inhibited and guarded attributes for a page.

Refer to Chapter 6, “Exceptions,” for more information about a possible delayed machine
check exception that can occur by usingdcbz when the operating system has set up an
incorrect memory mapping.

5.1.5.1.3 Data Cache Block Store (dcbst) Instruction
The dcbst instruction permits the program to ensure that the latest version of the target
cache block is in main memory. Thedcbst instruction executes as follows:

• Coherency required—If the target exists in the data cache of any processor and has
been modified, the data is written to main memory. Only one processor in a
multiprocessor system should have possession of a modified cache block.

• Coherency not required—If the target exists in the data cache of the executing
processor and has been modified, the data is written to main memory.

The PowerPC architecture does not specify whether the modified status of the cache block
is left unchanged or is cleared (cleared implies valid-shared or valid-exclusive). That
decision is left to the implementation of individual processors. Either state is logically
correct.

The function of this instruction is independent of the write-through/write-back and
caching-inhibited/caching-allowed attributes of the target.

The memory access caused by adcbst instruction is not necessarily recorded in the page
tables. If the access is recorded, then it is treated as a load operation (not as a store
operation).

5-10 PowerPC Microprocessor 32-bit Family: The Programming Environments

5

5.1.5.1.4 Data Cache Block Flush (dcbf) Instruction
The action taken depends on the memory/cache access mode associated with the target, and
on the state of the cache block. The following list describes the action taken for the various
cases:

• Coherency required

Unmodified cache block—Invalidates copies of the cache block in the data caches
of all processors.

Modified cache block—Copies the cache block to memory. Invalidates the copy of
the cache block in the data cache of any processor where it is found. There should
only be one modified cache block in a coherency required multiprocessor system.

Target block not in cache—If a modified copy of the cache block is in the data cache
of another processor,dcbf causes the modified cache block to be copied to memory
and then invalidated. If unmodified copies are in the data caches of other processors,
dcbf causes those copies to be invalidated.

• Coherency not required

Unmodified cache block—Invalidates the cache block in the executing processor's
data cache.

Modified cache block—Copies the data cache block to memory and then invalidates
the cache block in the executing processor.

Target block not in cache—No action is taken.

The function of this instruction is independent of the write-through/write-back and
caching-inhibited/caching-allowed attributes of the target.

The memory access caused by adcbf instruction is not necessarily recorded in the page
tables. If the access is recorded, then it is treated as a load operation (not as a store
operation).

5.1.5.2 Instruction-Cache Instructions
Instruction caches, if they exist, are not required to be consistent with data caches, memory,
or I/O data transfers. Software must use the appropriate cache management instructions to
ensure that instruction caches are kept coherent when instructions are modified by the
processor or by input data transfer. When a processor alters a memory location that may be
contained in an instruction cache, software must ensure that updates to memory are visible
to the instruction fetching mechanism. Although the instructions to enforce consistency
vary among implementations, the following sequence for a uniprocessor system is typical:

1. dcbst (update memory)
2. sync (wait for update)
3. icbi (invalidate copy in instruction cache)
4. isync (perform context synchronization)

Chapter 5. Cache Model and Memory Coherency 5-11

5

NOTE: Most operating systems will provide a system service for this function. These
operations are necessary because the memory may be designated as write-back.
Since instruction fetching may bypass the data cache, changes made to items in
the data cache may not otherwise be reflected in memory until after the
instruction fetch completes.

For implementations used in multiprocessor systems, variations on this sequence may be
recommended. For example, in a multiprocessor system with a unified instruction/data
cache (at any level), if instructions are fetched without coherency being enforced, the
preceding instruction sequence is inadequate. Because theicbi instruction does not
invalidate blocks in a unified cache, adcbf instruction should be used instead of adcbst
instruction for this case.

5.1.5.2.1 Instruction Cache Block Invalidate (icbi) Instruction
The icbi instruction executes as follows:

• Coherency required

If the target is in the instruction cache of any processor, the cache block is made
invalid in all such processors, so that the next reference causes the cache block to be
refetched.

• Coherency not required

If the target is in the instruction cache of the executing processor, the cache block is
made invalid in the executing processor so that the next reference causes the cache
block to be refetched.

The icbi instruction is provided for use in processors with separate instruction and data
caches. The effective address is computed, translated, and checked for protection violations
as defined in Chapter 7, “Memory Management.” If the target block is not accessible to the
program for loads, then a DSI exception occurs.

The function of this instruction is independent of the write-through/write-back and
caching-inhibited/caching-allowed attributes of the target.

The memory access caused by anicbi instruction is not necessarily recorded in the page
tables. If the access is recorded, then it is treated as a load operation. Implementations that
have a unified cache treat theicbi instruction as a no-op except that they may invalidate the
target cache block in the instruction caches of other processors (in coherency required
mode).

5-12 PowerPC Microprocessor 32-bit Family: The Programming Environments

5

5.1.5.2.2 Instruction Synchronize (isync) Instruction
The isync instruction provides an ordering function for the effects of all instructions
executed by a processor. Executing anisync instruction ensures that all instructions
preceding theisync instruction have completed before theisync instruction completes,
except that memory accesses caused by those instructions need not have been performed
with respect to other processors and mechanisms. It also ensures that no subsequent
instructions are initiated by the processor until after theisync instruction completes.
Finally, it causes the processor to discard any prefetched instructions, with the effect that
subsequent instructions will be fetched and executed in the context established by the
instructions preceding theisync instruction. Theisync instruction has no effect on other
processors or on their caches.

5.2 The Operating Environment
The OEA defines the mechanism for controlling the memory/cache access modes
introduced in Section 5.1.4.1, “Memory/Cache Access Modes.” This section describes the
cache-related aspects of the OEA including the memory/cache access attributes, out-of-
order execution, direct-store interface considerations, and thedcbi instruction. The features
of the OEA are accessible to supervisor-level applications only. The mechanism for
controlling the virtual memory space is described in Chapter 7, “Memory Management.”

The memory model of PowerPC processors provides the following features:

• Flexibility to allow performance benefits of weakly-ordered memory access

• A mechanism to maintain memory coherency among processors and between a
processor and I/O devices controlled at the block and page level

• Instructions that can be used to ensure a consistent memory state

• Guaranteed processor access order

The memory implementations in PowerPC systems can take advantage of the performance
benefits of weak ordering of memory accesses between processors or between processors
and other external devices without any additional complications. Memory coherency can
be enforced externally by a snooping bus design, a centralized cache directory design, or
other designs that can take advantage of the coherency features of PowerPC processors.

Memory accesses performed by a single processor appear to complete sequentially from
the view of the programming model but may complete out of order with respect to the
ultimate destination in the memory hierarchy. Order is guaranteed at each level of the
memory hierarchy for accesses to the same address from the same processor. Thedcbst,
dcbf, icbi, isync, sync, eieio, lwarx , and stwcx. instructions allow the programmer to
ensure a consistent memory state.

O

Chapter 5. Cache Model and Memory Coherency 5-13

5

5.2.1 Memory/Cache Access Attributes
All instruction and data accesses are performed under the control of the four memory/cache
access attributes:

• Write-through (W attribute)
• Caching-inhibited (I attribute)
• Memory coherency (M attribute)
• Guarded (G attribute)

These attributes are maintained in the PTEs and BATs by the operating system for each
page and block respectively. The W and I attributes control how the processor performing
an access uses its own cache. The Mattribute ensures that coherency is maintained for all
copies of the addressed memory location. When an access requires coherency, the
processor performing the access must inform the coherency mechanisms throughout the
system that the access requires memory coherency. The G attribute prevents out-of-order
loading and prefetching from the addressed memory location.

NOTE: The memory/cache access attributes are relevant only when an effective address
is translated by the processor performing the access. Also not all combinations
of settings of these bits is supported. The attributes are not saved along with data
in the cache (for cacheable accesses), nor are they associated with subsequent
accesses made by other processors.

The operating system maintains the memory/cache access attribute for each page or block
as required. The WIMG attributes occupy four bits in the BAT registers for block address
translation and in the PTEs for page address translation. The WIMG bits are defined as
follows:

• The operating system uses themtspr instruction to store the WIMG bits in the BAT
registers for block address translation. The IBAT register pairs implement the W or
G bits; however, attempting to set either bit in IBAT registers causes boundedly-
undefined results.

• The operating system stores the WIMG bits for each page into the PTEs in system
memory as it sets up the page tables.

NOTE: For data accesses performed in real addressing mode (MSR[DR] = 0), the
WIMG bits are assumed to be 0b0011 (the data is write-back, caching is enabled,
memory coherency is enforced, and memory is guarded). For instruction
accesses performed in real addressing mode (MSR[IR] = 0), the WIMG bits are
assumed to be 0b0001 (the data is write-back, caching is enabled, memory
coherency is not enforced, and memory is guarded).

5-14 PowerPC Microprocessor 32-bit Family: The Programming Environments

5

5.2.1.1 Write-Through Attribute (W)
When an access is designated as write-through (W = 1), if the data is in the cache, a store
operation updates the cached copy of the data. In addition, the update is written to the
memory location. The definition of the memory location to be written to (in addition to the
cache) depends on the implementation of the memory system but can be illustrated by the
following examples:

• RAM—The store is sent to the RAM controller to be written into the target RAM.

• I/O device—The store is sent to the memory-mapped I/O controller to be written to
the target register or memory location.

In systems with multilevel caching, the store must be written to at least a depth in the
memory hierarchy that is seen by all processors and devices.

Multiple store instructions may be combined for write-through accesses except when the
store instructions are separated by async or eieio instruction. A store operation to a
memory location designated as write-through may cause any part of the cache block to be
written back to main memory.

Accesses that correspond to W = 0 areconsidered write-back. For this case, although the
store operation is performed to the cache, the data is copied to memory only when a copy-
back operation is required. Use of the write-back mode (W = 0) can improve overall
performance for areas of the memory space that are seldom referenced by other processors
or devices in the system.

Accesses to the same memory location using two effective addresses for which the W bit
setting differs meet the memory-coherency requirements if the accesses are performed by
a single processor. If the accesses are performed by two or more processors, coherence is
enforced by the hardware only if the write-through attribute is the same for all the accesses.

5.2.1.2 Caching-Inhibited Attribute (I)
If I = 1, the memory access is completed by referencing the location in main memory,
bypassing the cache. During the access, the addressed location is not loaded into the cache
nor is the location allocated in the cache.

It is considered a programming error if a copy of the target location of an access to caching-
inhibited memory is resident in the cache. Software must ensure that the location has not
been previously loaded into the cache, or, if it has, that it has been flushed from the cache.

Data accesses from more than one instruction may be combined for cache-inhibited
operations, except when the accesses are separated by async instruction, or by aneieio
instruction when the page or block is also designated as guarded.

Instruction fetches,dcbz instructions, and load and store operations to the same memory
location using two effective addresses for which the I bit setting differs must meet the
requirement that a copy of the target location of an access to caching-inhibited memory not

Chapter 5. Cache Model and Memory Coherency 5-15

5

be in the cache. Violation of this requirement is considered a programming error; software
must ensure that the location has not previously been brought into the cache or, if it has,
that it has been flushed from the cache. If the programming error occurs, the result of the
access is boundedly undefined. It is not considered a programming error if the target
location of any other cache management instruction to caching-inhibited memory is in the
cache.

5.2.1.3 Memory Coherency Attribute (M)
This attribute is provided to allow improved performance in systems where hardware-
enforced coherency is relatively slow, and software is able to enforce the required
coherency. When M = 0, there are no requirements to enforce data coherency. When M = 1,
the processor enforces data coherency.

When the M attribute is set, and the access is performed to memory, there is a hardware
indication to the rest of the system that the access is global. Other processors affected by
the access must then respond to this global access. For example, in a snooping bus design,
the processor may assert some type of global access signal. Other processors affected by
the access respond and signal whether the data is being shared. If the data in another
processor is modified, then the location is updated and the access is retried.

Because instruction memory does not have to be coherent with data memory, some
implementations may ignore the M attribute for instruction accesses. In a single-processor
(or single-cache) system, performance might be improved by designating all pages as
memory coherency not required.

Accesses to the same memory location using two effective addresses for which the M bit
settings differ may require explicit software synchronization before accessing the location
with M = 1 if the location has previously been accessed with M = 0. Any such requirement
is system-dependent. For example, no software synchronization may be required for
systems that use bus snooping. In some directory-based systems, software may be required
to executedcbf instructions on each processor to flush all storage locations accessed with
M = 0 before accessing those locations with M = 1.

5.2.1.4 W, I, and M Bit Combinations
Table 5-1 summarizes the six combinations of the WIM bits supported by the OEA. The
combinations where WIM = 11x are not supported.

NOTE: Either a zero or one setting for the G bit is allowed for each of these WIM bit
combinations.

Table 5-1. Combinations of W, I, and M Bits

WIM Setting Meaning

000 The processor may cache data (or instructions).
A load or store operation whose target hits in the cache may use that entry in the cache.
The processor does not need to enforce memory coherency for accesses it initiates.

5-16 PowerPC Microprocessor 32-bit Family: The Programming Environments

5

5.2.1.5 The Guarded Attribute (G)
When the guarded bit is set, the memory area (block or page) is designated as guarded. This
setting can be used to protect certain memory areas from read accesses made by the
processor that are not dictated directly by the program. If there are areas of physical
memory that are not fully populated (in other words, there are holes in the physical memory
map within this area), this setting can protect the system from undesired accesses caused
by out-of-order load operations or instruction prefetches that could lead to the generation
of the machine check exception. Also, the guarded bit can be used to prevent out-of-order
(speculative) load operations or prefetches from occurring to certain peripheral devices that
produce undesired results when accessed in this way.

5.2.1.5.1 Performing Operations Out of Order
An operation is said to be performed in-order if it is guaranteed to be required by the
sequential execution model. Any other operation is said to be performed out of order.

Operations are performed out of order by the hardware on the expectation that the results
will be needed by an instruction that will be required by the sequential execution model.
Whether the results are really needed is contingent on everything that might divert the
control flow away from the instruction, such as branch, trap, system call, andrfi
instructions, and exceptions, and on everything that might change the context in which the
instruction is executed.

Typically, the hardware performs operations out of order when it has resources that would
otherwise be idle, so the operation incurs little or no cost. If subsequent events such as
branches or exceptions indicate that the operation would not have been performed in the

001 Data (or instructions) may be cached.
A load or store operation whose target hits in the cache may use that entry in the cache.
The processor enforces memory coherency for accesses it initiates.

010 Caching is inhibited.
The access is performed to memory, completely bypassing the cache.
The processor does not need to enforce memory coherency for accesses it initiates.

011 Caching is inhibited.
The access is performed to memory, completely bypassing the cache.
The processor enforces memory coherency for accesses it initiates.

100 Data (or instructions) may be cached.
A load operation whose target hits in the cache may use that entry in the cache.
Store operations are written to memory. The target location of the store may be cached and is
updated on a hit.
The processor does not need to enforce memory coherency for accesses it initiates.

101 Data (or instructions) may be cached.
A load operation whose target hits in the cache may use that entry in the cache.
Store operations are written to memory. The target location of the store may be cached and is
updated on a hit.
The processor enforces memory coherency for accesses it initiates.

Table 5-1. Combinations of W, I, and M Bits (Continued)

WIM Setting Meaning

Chapter 5. Cache Model and Memory Coherency 5-17

5

sequential execution model, the processor abandons any results of the operation (except as
described below).

Most operations can be performed out of order, as long as the machine appears to follow
the sequential execution model. Certain out-of-order operations are restricted, as follows.

• Stores

A store instruction may not be executed out of order in a manner such that the
alteration of the target location can be observed by other processors or mechanisms.

• Accessing guarded memory

The restrictions for this case are given in Section 5.2.1.5.3, “Out-of-Order Accesses
to Guarded Memory.”

No error of any kind other than a machine check exception may be reported due to an
operation that is performed out of order, until such time as it is known that the operation is
required by the sequential execution model. The only other permitted side effects (other
than machine check) of performing an operation out of order are the following:

• Referenced and changed bits may be set as described in Section 7.2.5, “Page History
Information.”

• Nonguarded memory locations that could be fetched into a cache by in-order
execution may be fetched out of order into that cache.

5.2.1.5.2 Guarded Memory
Memory is said to be well behaved if the corresponding physical memory exists and is not
defective, and if the effects of a single access to it are indistinguishable from the effects of
multiple identical accesses to it. Data and instructions can be fetched out of order from
well-behaved memory without causing undesired side effects.

Memory is said to be guarded if either (a) the G bit is 1 in the relevant PTE or DBAT
register, or (b) the processor is in real addressing mode (MSR[IR] = 0 or MSR[DR] = 0 for
instruction fetches or data accesses respectively). In case (b), all of memory is guarded for
the corresponding accesses. In general, memory that is not well-behaved should be
guarded. Because such memory may represent an I/O device or may include locations that
do not exist, an out-of-order access to such memory may cause an I/O device to perform
incorrect operations or may result in a machine check.

NOTE: If separate store instructions access memory that is both caching-inhibited and
guarded, the accesses are performed in the order specified by the program. If an
aligned, elementary load or store to caching-inhibited, guarded memory has
accessed main memory and an external, decrementer, or imprecise-mode
floating-point enabled exception is pending, the load or store is completed before
the exception is taken.

5-18 PowerPC Microprocessor 32-bit Family: The Programming Environments

5

5.2.1.5.3 Out-of-Order Accesses to Guarded Memory
The circumstances in which guarded memory may be accessed out of order are as follows:

• Load instruction

If a copy of the target location is in a cache, the location may be accessed in the
cache or in main memory.

• Instruction fetch

In real addressing mode (MSR[IR] = 0), an instruction may be fetched if any of the
following conditions is met:

— The instruction is in a cache. In this case, it may be fetched from that cache.

— The instruction is in the same physical page as an instruction that is required by
the sequential execution model or is in the physical page immediately following
such a page.

If MSR[IR] = 1, instructions may not be fetched from either no-execute segments or
guarded memory. If the effective address of the current instruction is mapped to
either of these kinds of memory when MSR[IR] = 1, an ISI exception is generated.
However, it is permissible for an instruction from either of these kinds of memory
to be in the instruction cache if it was fetched into that cache when its effective
address was mapped to some other kind of memory. Thus, for example, the
operating system can access an application's instruction segments as no-execute
without having to invalidate them in the instruction cache.

Additionally, instructions are not fetched from direct-store segments (only applies
when MSR[IR] = 1). If an instruction fetch is attempted from a direct-store segment,
an ISI exception is generated.

NOTE: The direct-store facility is being phased out of the architecture and will not likely
be supported in future devices. Thus, software should not depend on its effects.

Software should ensure that only well-behaved memory is loaded into a cache, either by
marking as caching-inhibited (and guarded) all memory that may not be well-behaved, or
by marking such memory caching-allowed (and guarded) and referring only to cache
blocks that are well-behaved.

If a physical page contains instructions that will be executed in real addressing mode
(MSR[IR] = 0), software should ensure that this physical page and the next physical page
contain only well-behaved memory.

Chapter 5. Cache Model and Memory Coherency 5-19

5

5.2.2 I/O Interface Considerations
The PowerPC architecture defines two mechanisms for accessing I/O:

• Memory-mapped I/O interface operations where SR[T] = 0. These operations are
considered to address memory space and are therefore subject to the same coherency
control as memory accesses. Depending on the specific I/O interface, the
memory/cache access attributes (WIMG) and the degree of access ordering
(requiringeieio or sync instructions) need to be considered. This is the
recommended way of accessing I/O.

• Direct-store segment operations where SR[T] = 1. These operations are considered
to address the noncoherent and noncacheable direct-store segment space; therefore,
hardware need not maintain coherency for these operations, and the cache is
bypassed completely. Although the architecture defines this direct-store
functionality, it is being phased out of the architecture and will not likely be
supported in future devices. Thus, its use is discouraged, and new software should
not use it or depend on its effects.

5.2.3 OEA Cache Management Instruction—
Data Cache Block Invalidate (dcbi)

As described in Section 5.1.5, “VEA Cache Management Instructions,” the VEA defines
instructions for controlling both the instruction and data caches, The OEA defines one
instruction, the data cache block invalidate (dcbi) instruction, for controlling the data
cache. This section briefly describes the cache management instruction available to
programs at the supervisor privilege level. Additional descriptions of coding thedcbi
instruction are provided in Chapter 4, “Addressing Modes and Instruction Set Summary,”
and Chapter 8, “Instruction Set.” In the following description, the target is the cache block
containing the byte addressed by the effective address.

Any cache management instruction that generates an EA that corresponds to a direct-store
segment (SR[T] = 1) is treated as a no-op.

NOTE: The direct-store facility is being phased out of the architecture and will not likely
be supported in future devices. Thus, software should not depend on its effects.

The action taken depends on the memory/cache access mode associated with the target, and
on the state of the cache block. The following list describes the action taken for the various
cases:

• Coherency required

Unmodified cache block—Invalidates copies of the cache block in the data caches
of all processors.

Modified cache block—Invalidates the copy of the cache block in the data cache of
the processor where it is found. (Discards the modified data in the cache block.)
There can only be one modified cache block in a coherency required system.

5-20 PowerPC Microprocessor 32-bit Family: The Programming Environments

5

Target block not in cache—If copies of the target are in the data caches of other
processors,dcbi causes those copies to be invalidated, regardless of whether the data
is modified (see modified cache block above) or unmodified.

• Coherency not required

Unmodified cache block—Invalidates the cache block in the executing processor's
data cache.

Modified cache block—Invalidates the cache block in the executing processor's data
cache. (Discards the modified data in the cache block.)

Target block not in cache—No action is taken.

The processor treats thedcbi instruction as a store to the addressed byte with respect to
address translation and protection. It is not necessary to set the referenced and changed bits.

The function of this instruction is independent of the write-through/write-back and
caching-inhibited/caching-allowed attributes of the target. To ensure coherency, aliased
effective addresses (two effective addresses that map to the same physical address) must
have the same page offset.

Chapter 6. Exceptions 6-1

6

Chapter 6. Exceptions
60
60

The operating environment architecture (OEA) portion of the PowerPC architecture defines
the mechanism by which PowerPC processors implement exceptions (referred to as
interrupts in the architecture specification). Exception conditions may be defined at other
levels of the architecture. For example, the user instruction set architecture (UISA) defines
conditions that may cause floating-point exceptions; the OEA defines the mechanism by
which the exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the floating-point status and control register
(FPSCR). Additionally, certain exception conditions can be explicitly enabled or disabled
by software.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction-
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentially.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until all instructions currently in the execute stage successfully
complete execution and report their results.

NOTE: Exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested. It is up to the exception handler to save
the appropriate machine state if it is desired to allow control to ultimately return
to the excepting program.

In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the

O

6-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

next exception condition is encountered. This method of recognizing and handling
exception conditions sequentially guarantees that the machine state is recoverable and
processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the information
stored in SRR0 and SRR1 soon after the exception is taken to prevent this information from
being lost due to another exception being taken.

In this chapter, the following terminology is used to describe the various stages of exception
processing:

Recognition Exception recognition occurs when the condition that can cause an
exception is identified by the processor.

Taken An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervisor
mode (referred to as privileged state in the architecture
specification).

Chapter 6. Exceptions 6-3

6

6.1 Exception Classes
As specified by the PowerPC architecture, all exceptions can be described as either precise
or imprecise and either synchronous or asynchronous. Asynchronous exceptions are caused
by events external to the processor’s execution; synchronous exceptions are caused by
instructions.

The PowerPC exception types are shown in Table 6-1.

Exceptions, their offsets, and conditions that cause them, are summarized in Table 6-2. The
exception vectors described in the table correspond to physical address locations,
depending on the value of MSR[IP]. Refer to Section 7.2.1.2, “Predefined Physical
Memory Locations,” for a complete list of the predefined physical memory areas.
Remaining sections in this chapter provide more complete descriptions of the exceptions
and of the conditions that cause them.

Table 6-1. PowerPC Exception Classifications

Type Exception

Asynchronous/nonmaskable Machine Check
System Reset

Asynchronous/maskable External interrupt
Decrementer

Synchronous/Precise Instruction-caused exceptions, excluding floating-
point imprecise exceptions

Synchronous/Imprecise Instruction-caused imprecise exceptions
(Floating-point imprecise exceptions)

6-4 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

Table 6-2. Exceptions and Conditions—Overview

Exception
Type

Vector Offset
(hex)

Causing Conditions

System reset 00100 The causes of system reset exceptions are implementation-dependent. If the
conditions that cause the exception also cause the processor state to be corrupted
such that the contents of SRR0 and SRR1 are no longer valid or such that other
processor resources are so corrupted that the processor cannot reliably resume
execution, the copy of the RI bit copied from the MSR to SRR1 is cleared.

Machine
check

00200 The causes for machine check exceptions are implementation-dependent, but
typically these causes are related to conditions such as bus parity errors or
attempting to access an invalid physical address. Typically, these exceptions are
triggered by an input signal to the processor.
Note: Not all processors provide the same level of error checking.
The machine check exception is disabled when MSR[ME] = 0. If a machine check
exception condition exists and the ME bit is cleared, the processor goes into the
checkstop state.
If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRR0 and SRR1 are no longer valid or such that
other processor resources are so corrupted that the processor cannot reliably resume
execution, the copy of the RI bit written from the MSR to SRR1 is cleared.
Note: Physical address is referred to as real address in the architecture specification.

DSI 00300 A DSI exception occurs when a data memory access cannot be performed for any of
the reasons described in Section 6.4.3, “DSI Exception (0x00300).” Such accesses
can be generated by load/store instructions, certain memory control instructions, and
certain cache control instructions.

ISI 00400 An ISI exception occurs when an instruction fetch cannot be performed for a variety of
reasons described in Section 6.4.4, “ISI Exception (0x00400).”

External
interrupt

00500 An external interrupt is generated only when an external interrupt is pending (typically
signalled by a signal defined by the implementation) and the interrupt is enabled
(MSR[EE] = 1).

Alignment 00600 An alignment exception may occur when the processor cannot perform a memory
access for reasons described in Section 6.4.6, “Alignment Exception (0x00600).”
Note : An implementation is allowed to perform the operation correctly and not cause
an alignment exception.

Chapter 6. Exceptions 6-5

6

Program 00700 A program exception is caused by one of the following exception conditions, which
correspond to bit settings in SRR1 and arise during execution of an instruction:
• Floating-point enabled exception—A floating-point enabled exception condition is

generated when MSR[FE0–FE1] 00 and FPSCR[FEX] is set. The settings of FE0
and FE1 are described in Table 6-3.
FPSCR[FEX] is set by the execution of a floating-point instruction that causes an
enabled exception or by the execution of a Move to FPSCR instruction that sets
both an exception condition bit and its corresponding enable bit in the FPSCR.
These exceptions are described in Section 3.3.6, “Floating-Point Program
Exceptions.”

• Illegal instruction—An illegal instruction program exception is generated when
execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted (these
do not include those optional instructions that are treated as no-ops). The
PowerPC instruction set is described in Chapter 4, “Addressing Modes and
Instruction Set Summary.” See Section 6.4.7, “Program Exception (0x00700),” for
a complete list of causes for an illegal instruction program exception.

• Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR user privilege bit, MSR[PR], is set. This exception is also generated for
mtspr or mfspr with an invalid SPR field if spr[0] = 1 and MSR[PR] = 1.

• Trap—A trap type program exception is generated when any of the conditions
specified in a trap instruction is met.

For more information, refer to Section 6.4.7, “Program Exception (0x00700).”

Floating-
point
unavailable

00800 A floating-point unavailable exception is caused by an attempt to execute a floating-
point instruction (including floating-point load, store, and move instructions) when the
floating-point available bit is cleared, MSR[FP] = 0.

Decrementer 00900 The decrementer interrupt exception is taken if the exception is enabled (MSR[EE] =
1), and it is pending. The exception is created when the most-significant bit of the
decrementer changes from 0 to 1. If it is not enabled, the exception remains pending
until it is taken.

Reserved 00A00 This is reserved for implementation-specific exceptions. For example, the 601 uses
this vector offset for direct-store exceptions.

Reserved 00B00 —

System call 00C00 A system call exception occurs when a System Call (sc) instruction is executed.

Trace 00D00 Implementation of the trace exception is optional. If implemented, it occurs if either
the MSR[SE] = 1 and almost any instruction successfully completed or MSR[BE] = 1
and a branch instruction is completed. See Section 6.4.11, “Trace Exception
(0x00D00),” for more information.

Floating-
point assist

00E00 Implementation of the floating-point assist exception is optional. This exception can
be used to provide software assistance for infrequent and complex floating-point
operations such as denormalization.

Reserved 00E10–00FFF —

Reserved 01000–02FFF This is reserved for implementation-specific purposes. May be used for
implementation-specific exception vectors or other uses.

Table 6-2. Exceptions and Conditions—Overview (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

6-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

6.1.1 Precise Exceptions
When any precise exceptions occur SRR0 is set to point to the first instruction that has not
completed execution and all prior instructions in the instruction stream have completed
execution to a point where they cannot report exceptions. However, the instruction
addressed by SRR0 and those following it may have started execution (e.g. fetched,
dispatched, decoded, etc.) but have not completed execution.

When an exception occurs, instruction dispatch (the issuance of instructions by the
instruction fetch unit to any instruction execution mechanism) is halted and the following
synchronization is performed:

1. The exception mechanism waits for all previous instructions in the instruction
stream to complete to a point where they will not report any exceptions.

2. The processor ensures that all previous instructions in the instruction stream
complete in the context in which they began execution.

3. The exception mechanism implemented in hardware (the loading of registers SRR0
and SRR1) and the software handler (saving SRR0 and SRR1 in the stack and
updating stack pointer, etc.) are responsible for saving and restoring the processor
state.

The synchronization described conforms to the requirements for context synchronization.
A complete description of context synchronization is described in the following section.

6.1.2 Synchronization
The synchronization described in this section refers to the state of activities within the
processor that performs the synchronization.

6.1.2.1 Context Synchronization
An instruction or event is context synchronizing if it satisfies all the requirements listed
below. Such instructions and events are collectively called context-synchronizing
operations. Examples of context-synchronizing operations include thesc and
rfi instructions and most exceptions. A context-synchronizing operation has the following
characteristics:

1. The operation causes instruction fetching and dispatching (the issuance of
instructions by the instruction fetch mechanism to any instruction execution
mechanism) to be halted.

2. The operation is not initiated or, in the case ofisync, does not complete, until all
instructions in execution have completed to a point at which they have reported all
exceptions they will cause.

If a prior memory access instruction causes one or more direct-store interface error
exceptions, the results are guaranteed to be determined before this instruction is
executed. However, note that the direct-store facility is being phased out of the
architecture and will not likely be supported in future devices.

Chapter 6. Exceptions 6-7

6

3. Instructions that precede the operation complete execution in the context (for
example, the privilege, translation mode, and memory protection) in which they
were initiated.

4. If the operation either directly causes an exception (for example, thesc instruction
causes a system call exception) or is an exception, the operation is not initiated until
no exception exists having higher priority than the exception associated with the
context-synchronizing operation.

A context-synchronizing operation is necessarily execution synchronizing. Unlike thesync
instruction, a context-synchronizing operation need not wait for memory-related operations
to complete on this or other processors, or for referenced and changed bits in the page table
to be updated.

6.1.2.2 Execution Synchronization
An instruction is execution synchronizing if it satisfies the conditions of the first two items
described above for context synchronization. Thesyncinstruction is treated likeisyncwith
respect to the second item described above (that is, the conditions described in the second
item apply to the completion ofsync). Thesyncandmtmsr instructions are examples of
execution-synchronizing instructions.

All context-synchronizing instructions are execution-synchronizing. Unlike a context-
synchronizing operation, an execution-synchronizing instruction need not ensure that the
subsequent instructions execute in the context established by this and previous instructions.
This new context becomes effective sometime after the execution-synchronizing
instruction completes and before or at a subsequent context-synchronizing operation.

6.1.2.3 Synchronous/Precise Exceptions
When instruction execution causes a precise exception, the following conditions exist at the
exception point:

• SRR0 always points to the instruction causing the exception except for thesc
instruction. In this case SRR0 points to the immediately following instruction. The
instruction addressed can be determined from the exception type and status bits,
which are defined in the description of each exception. In all cases SRR0 points to
the first instruction that has not completed execution. Thesc instruction always
completes execution, updates the instruction pointer and reports the exception.
Hence, SRR0 points to the instructions followingsc.

• All instructions that precede the excepting instruction complete to a point where
they will not report exceptions before the exception is processed. However, some
memory accesses generated by these preceding instructions may not have been
performed with respect to all other processors or system devices.

• The instruction causing the exception may not have begun execution, may have
partially completed, or may have completed, depending on the exception type.
Handling of partially executed instructions is described in Section 6.1.4, “Partially
Executed Instructions.”

• Architecturally, no subsequent instruction has completed execution.

6-8 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

While instruction parallelism allows the possibility of multiple instructions reporting
exceptions during the same cycle, they are handled one at a time in program order.
Exception priorities are described in Section 6.1.5, “Exception Priorities.”

6.1.2.4 Asynchronous Exceptions
There are four asynchronous exceptions—system reset and machine check, which are
nonmaskable and highest-priority exceptions, and external interrupt and decrementer
exceptions which are maskable and low-priority. These two types of asynchronous
exceptions are discussed separately.

6.1.2.4.1 System Reset and Machine Check Exceptions
System reset and machine check exceptions have the highest priority and can occur while
other exceptions are being processed.

NOTE: Nonmaskable, asynchronous exceptions are never delayed; therefore, if two of
these exceptions occur in immediate succession, the state information saved by
the first exception may be overwritten when the subsequent exception occurs.
Also, these exceptions are context-synchronizing if they are recoverable; the
system uses the MSR[RI] to detect whether an exception is recoverable.

While a system is running the MSR[RI] bit is set. When an exception occurs a copy of the
MSR register is stored in SRR1. Then most bits in the MSR are clear including the RI bit
with various exceptions (see the exceptions types for new setting of the MSR bits, e.g. IP
is never cleared). The exception handler saves the state of the machine (saving SRR0 and
SRR1 into the stack and updating the stack pointer) to a point that it can incur another
exception. At this point the exception handler sets the MSR[RI] bit. Also the external
interrupt can be re-enabled. Now you can clearly understand that if the exception handler
ever sees in the SRR1 register a case where the MSR[RI] bit is not set, the exception is not
recoverable (because the exception occurred while the machine state was being saved) and
a system restart procedure should be initiated.

System reset and machine check exceptions cannot be masked by using the MSR[EE] bit.
Furthermore, if the machine check enable bit, MSR[ME], is cleared and a machine check
exception condition occurs, the processor goes directly into checkstop state as the result of
the exception condition. Clearly, one never wants to run in this mode (MSR[ME] cleared)
for extended periods of time. When one of these exceptions occur, the following conditions
exist at the exception point:

• For system reset exceptions, SRR0 addresses the instruction that would have
attempted to execute next if the exception had not occurred.

• For machine check exceptions, SRR0 holds either an instruction that would have
completed or some instruction following it that would have completed if the
exception had not occurred.

Chapter 6. Exceptions 6-9

6

• An exception is generated such that all instructions preceding the instruction
addressed by SRR0 appear to have completed with respect to the executing
processor.

6.1.2.4.2 External Interrupt and Decrementer Exceptions
For the external interrupt and decrementer exceptions, the following conditions exist at the
exception point (assuming these exceptions are enabled (MSR[EE] bit is set)):

• All instructions issued before the exception is taken and any instructions that
precede those instructions in the instruction stream appear to have completed before
the exception is processed.

• No subsequent instructions in the instruction stream have completed execution.

• SRR0 addresses the first instruction that has not completed execution.

That is, these exceptions are context-synchronizing. The external interrupt and decrementer
exceptions are maskable. When the machine state register external interrupt enable bit is
cleared (MSR[EE] = 0), these exception conditions are not recognized until the EE bit is
set. MSR[EE] is cleared automatically when an exception is taken, to delay recognition of
subsequent exception conditions. No two precise exceptions can be recognized
simultaneously. Exception handling does not begin until all currently executing instructions
complete and any synchronous, precise exceptions caused by those instructions have been
handled. Exception priorities are described in Section 6.1.5, “Exception Priorities.”

6.1.3 Imprecise Exceptions
The PowerPC architecture defines several imprecise exceptions. An imprecise exception is
one where the instruction addressed by SRR0 has nothing to do with the exception taking
place. That is some instruction has been previously executed created a condition that is now
causing an exception to take place. External and decrementer exceptions fit this description.
A third class of instructions that cause imprecise exceptions is the imprecise floating-point
enabled exception. This can be programmed as one of the conditions that can cause an
imprecise exception.

6.1.3.1 Imprecise Exception Status Description
When the execution of an instruction causes an imprecise exception, SRR0 contains
information related to the address of the excepting instruction as follows:

• SRR0 contains the address of an instruction that has nothing to do with the exception
currently taking place.

• The instruction addressed by SRR0 and all subsequent instructions have not
completed execution.

• The exception is generated such that all instructions preceding the instruction
addressed by SRR0 have completed with respect to the processor.

6-10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

6.1.3.2 Recoverability of Imprecise Floating-Point Exceptions
The enabled IEEE floating-point exception mode bits in the MSR (FE0 and FE1) together
define whether IEEE floating-point exceptions are handled precisely, imprecisely, or
whether they are taken at all. The possible settings are shown in Table 6-3. For further
details, see Section 3.3.6, “Floating-Point Program Exceptions.”

As shown in the table, the imprecise floating-point enabled exception has two
modes—nonrecoverable and recoverable. These modes are specified by setting the
MSR[FE0] and MSR[FE1] bits and are described as follows:

• Imprecise nonrecoverable floating-point enabled mode. MSR[FE0] = 0;
MSR[FE1] = 1. When an exception occurs, the exception handler is invoked at some
point at or beyond the instruction that caused the exception. It may not be possible
to identify the offending instruction or the data that caused the exception. Results
from the offending instruction may have been used by or affected data of subsequent
instructions executed before the exception handler was invoked.

• Imprecise recoverable floating-point enabled mode. MSR[FE0] = 1; MSR[FE1] = 0.
When an exception occurs, the floating-point enabled exception handler is invoked
at some point at or beyond the offending instruction that caused the exception.
Sufficient information is provided to the exception handler that it can identify the
offending instruction and correct any faulty data. In this mode, no incorrect data
caused by the offending instruction have been used by or affected data of subsequent
instructions that are executed before the exception handler is invoked.

Although these exceptions are maskable with these bits, they differ from other maskable
exceptions in that the masking is usually controlled by the application program rather than
by the operating system.

(As of the date of this publication no PowerPC processor has implemented these two modes
of floating-point exceptions and treats both of them as floating-point precise mode.)

Table 6-3. IEEE Floating-Point Program Exception Mode Bits

FE0 FE1 Mode

0 0 Floating-point exceptions ignored

0 1 Floating-point imprecise nonrecoverable

1 0 Floating-point imprecise recoverable

1 1 Floating-point precise mode

Chapter 6. Exceptions 6-11

6

6.1.4 Partially Executed Instructions
The architecture permits certain instructions to be partially executed when an alignment
exception or DSI exception occurs, or an imprecise floating-point exception is forced by an
instruction that causes an alignment or DSI exception. They are as follows:

• Load multiple/string instructions that cause an alignment or DSI exception—Some
registers in the range of registers to be loaded may have been loaded.

• Store multiple/string instructions that cause an alignment or DSI exception—Some
bytes in the addressed memory range may have been updated.

• Non-multiple/string store instructions that cause an alignment or DSI
exception—Some bytes just before the boundary may have been updated. If the
instruction normally alters CR0 (stwcx.), CR0 is set to an undefined value. For
instructions that perform register updates, the update register (rA) is not altered.

• Floating-point load instructions that cause an alignment or DSI exception—The
target register may be altered. For update forms, the update register (rA) is not
altered.

• A load or store to a direct-store segment that causes a DSI exception due to a direct-
store interface error exception—Some of the associated address/data transfers may
not have been initiated. All initiated transfers are completed before the exception is
reported, and the transfers that have not been initiated are aborted. Thus the
instruction completes before the DSI exception occurs. However, note that the
direct-store facility is being phased out of the architecture and will not likely be
supported in future devices.

In the cases above, the number of registers and the amount of memory altered are
implementation-, instruction-, and boundary-dependent. However, memory protection is
not violated. Furthermore, if some of the data accessed are in a direct-store segment and the
instruction is not supported for use in such memory space, the locations in the direct-store
segment are not accessed. Again, note that the direct-store facility is being phased out of
the architecture and will not likely be supported in future devices.

Partial execution is not allowed when integer load operations (except multiple/string
operations) cause an alignment or DSI exception. The target register is not altered. For
update forms of the integer load instructions, the update register (rA) is not altered.

6-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

6.1.5 Exception Priorities
Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other
exceptions—system reset and machine check exceptions (although the machine
check exception condition can be disabled so that the condition causes the processor
to go directly into the checkstop state). These two types of exceptions in this class
cannot be delayed by exceptions in other classes, and do not wait for the completion
of any other exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

3. Maskable asynchronous exceptions (external interrupt and decrementer exceptions)
have lowest priority.

 The exceptions are listed in Table 6-4 in order of highest to lowest priority.

Table 6-4. Exception Priorities

Exception
Class

Priority Exception

Nonmaskable,
asynchronous

1 System reset—The system reset exception has the highest priority of all exceptions. If this
exception exists, the exception mechanism ignores all other exceptions and generates a
system reset exception. When the system reset exception is generated, previously issued
instructions can no longer generate exception conditions that cause a nonmaskable
exception.

2 Machine check—The machine check exception is the second-highest priority exception. If
this exception occurs, the exception mechanism ignores all other exceptions (except reset)
and generates a machine check exception.When the machine check exception is
generated, previously issued instructions can no longer generate exception conditions that
cause a nonmaskable exception.

Chapter 6. Exceptions 6-13

6

Synchronous,
precise

3 Instruction dependent— When an instruction causes an exception, the exception
mechanism waits for any instructions prior to the offending instruction in the instruction
stream to complete. Any exceptions caused by these instructions are handled first. It then
generates the appropriate exception if no higher priority exception exists.
Note: A single instruction can cause multiple exceptions. When this occurs, those
exceptions are ordered in priority as indicated in the following:
A. Integer loads and stores

a. Alignment
b. DSI
c. Trace (if implemented)

B. Floating-point loads and stores
a. Floating-point unavailable
b. Alignment
c. DSI
d. Trace (if implemented)

C. Other floating-point instructions
a. Floating-point unavailable
b. Program—Precise-mode floating-point enabled exception
c. Floating-point assist (if implemented)
d. Trace (if implemented)

D. and mtmsr
a. Program—Privileged Instruction
b. Program—Precise-mode floating-point enabled exception
c. Trace (if implemented), for mtmsr only
If precise-mode IEEE floating-point enabled exceptions are enabled and the
FPSCR[FEX] bit is set, a program exception occurs no later than the next
synchronizing event.

E. Other instructions
a. These exceptions are mutually exclusive and have the same priority:

—Program: Trap
— System call (sc)
—Program: Privileged Instruction
—Program: Illegal Instruction

b. Trace (if implemented)
F. ISI exception
The ISI exception has the lowest priority in this category. It is only recognized when all
instructions prior to the instruction causing this exception appear to have completed and
that instruction is to be executed. The priority of this exception is specified for
completeness and to ensure that it is not given more favorable treatment. An
implementation can treat this exception as though it had a lower priority.

Imprecise 4 Program imprecise floating-point mode enabled exceptions—When this exception occurs,
the exception handler is invoked at or beyond the floating-point instruction that caused the
exception. The PowerPC architecture supports recoverable and nonrecoverable imprecise
modes, which are enabled by setting MSR[FE0] MSR[FE1]. For more information see,
Section 6.1.3, “Imprecise Exceptions.”

Table 6-4. Exception Priorities (Continued)

Exception
Class

Priority Exception

6-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6 Nonmaskable, asynchronous exceptions (namely, system reset or machine check
exceptions) may occur at any time. That is, these exceptions are not delayed if another
exception is being handled (although machine check exceptions can be delayed by system
reset exceptions). As a result, state information for the interrupted exception handler may
be lost.

All other exceptions have lower priority than system reset and machine check exceptions,
and the exception may not be taken immediately when it is recognized. Only one
synchronous, precise exception can be reported at a time. If a maskable, asynchronous or
an imprecise exception condition occurs while instruction-caused exceptions are being
processed, its handling is delayed until all exceptions caused by previous instructions in the
program flow are handled and those instructions complete execution.

6.2 Exception Processing
When an exception is taken, the processor uses the save/restore registers, SRR1 and SRR0,
respectively, to save the contents of the MSR for the interrupted process and to help
determine where instruction execution should resume after the exception is handled.

When an exception occurs, the address saved in SRR0 is used to help calculate where
instruction processing should resume when the exception handler returns control to the
interrupted process. Depending on the exception, this may be the address in SRR0 or at the
next address in the program flow. All instructions in the program flow preceding this one
will have completed execution and no subsequent instruction will have completed
execution. This may be the address of the instruction that caused the exception or the next
one (as in the case of a system call or trap exception). The SRR0 register is shown in
Figure 6-1.

Maskable,
imprecise,
asynchronous

5 External interrupt—The external interrupt mechanism waits for instructions currently or
previously dispatched to complete execution. After all such instructions are completed, and
any exceptions caused by those instructions have been handled, the exception mechanism
generates this exception if no higher priority exception exists. This exception is enabled
only if MSR[EE] is currently set. If EE is zero when the exception is detected, it is delayed
until the bit is set.

6 Decrementer—This exception is the lowest priority exception. When this exception is
created, the exception mechanism waits for all other possible exceptions to be reported. It
then generates this exception if no higher priority exception exists. This exception is
enabled only if MSR[EE] is currently set. If EE is zero when the exception is detected, it is
delayed until the bit is set.

Table 6-4. Exception Priorities (Continued)

Exception
Class

Priority Exception

Chapter 6. Exceptions 6-15

6

Figure 6-1. Machine Status Save/Restore Register 0

The save/restore register 1 (SRR1) is used to save machine status (selected bits from the
MSR and other implementation-specific status bits as well) on exceptions and to restore
those values when is executed. SRR1 is shown in Figure 6-2.

Figure 6-2. Machine Status Save/Restore Register 1

When an exception occurs, SRR1 1–4 and 10–15 are loaded with exception-specific
information and MSR bits 16–23, 25–27, and 30-31 are placed into the corresponding bit
positions of SRR1. Depending on the implementation, additional bits of the MSR may be
copied to SRR1.

NOTE: In some implementations, every instruction fetch when MSR[IR] = 1, and every
data access requiring address translation when MSR[DR] = 1 may modify SRR0
and SRR1.

The MSR is 32 bits wide as shown in Figure 6-3.

Figure 6-3. Machine State Register (MSR)

Table 6-5 shows the bit definitions for the MSR.

Table 6-5. MSR Bit Settings

Bit(s) Name Description

0–12 — Reserved

13 POW Power management enable
0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).
Note : Power management functions are implementation-dependent. If the function is not

implemented, this bit is treated as reserved.

14 — Reserved

SRR0 (holds EA for instruction in interrupted program flow)

0 293031

0 0

Reserved

0 31

Exception-specific information and MSR bit values

0 12 13 14 15 16 17 18 19 20 21 22 23 24 252627282930 31

Reserved

0000 0000 0000 0 POW 0 ILE EE PR FP ME FE0 SE BE FE1 0 IP IR DR 00 RI LE

6-16 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to select
the endian mode for the context established by the exception.

16 EE External interrupt enable
0 While the bit is cleared the processor delays recognition of external interrupts and decrementer

exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18 FP Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point loads,

stores, and moves.
1 The processor can execute floating-point instructions.

19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 FE0 Floating-point exception mode 0 (see Table 2-9).

21 SE Single-step trace enable (Optional)
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of the

next instruction.
Note: If the function is not implemented, this bit is treated as reserved.

22 BE Branch trace enable (Optional)
0 The processor executes branch instructions normally.
1 The processor generates a branch trace exception after completing the execution of a branch

instruction, regardless of whether or not the branch was taken.
Note: If the function is not implemented, this bit is treated as reserved.

23 FE1 Floating-point exception mode 1 (See Table 2-9).

24 — Reserved

25 IP Exception prefix. The setting of this bit specifies whether an exception vector offset is prepended
with Fs or 0s. In the following description, nnnnn is the offset of the exception vector. See Table 6-2.
0 Exceptions are vectored to the physical address 0x000n_nnnn .
1 Exceptions are vectored to the physical address 0xFFFn_nnnn.
In most systems, IP is set to 1 during system initialization, and then cleared to 0 when initialization is
complete.

26 IR Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information see Chapter 7, “Memory Management.”

27 DR Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information see Chapter 7, “Memory Management.”

28–29 — Reserved

Table 6-5. MSR Bit Settings (Continued)

Bit(s) Name Description

Chapter 6. Exceptions 6-17

6

When an exception occurs instruction fetching, dispatching, decoding of instructions stops.
The processor waits until all previous instructions have completed to a point where no other
exceptions will be reported. SRR0 is loaded with the address where program execution will
resume when the exception has been processed. SRR1 is loaded with the MSR register
along with any status bits for this exception. A new value is loaded into the MSR and
instruction execution resumes at the entry point for the exception handler under the
influence of the new MSR.

The data address register (DAR) may be used by several exceptions (for example, DSI and
alignment exceptions) to identify the address of a memory element.

6.2.1 Enabling and Disabling Exceptions
When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition as follows:

• IEEE floating-point enabled exceptions (a type of program exception) are ignored
when both MSR[FE0] and MSR[FE1] are cleared. If either of these bits is set, all
IEEE enabled floating-point exceptions are taken and cause a program exception.

• Asynchronous, maskable exceptions (that is, the external and decrementer
interrupts) are enabled by setting the MSR[EE] bit. When MSR[EE] = 0, recognition
of these exception conditions is delayed. MSR[EE] is cleared automatically when an
exception is taken, to delay recognition of conditions causing those exceptions.

• A machine check exception can only occur if the machine check enable bit,
MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into checkstop
state when a machine check exception condition occurs.

30 RI Recoverable exception (for system reset and machine check exceptions).
0 Exception is not recoverable.
1 Exception is recoverable.
For more information see Section 6.4.1, “System Reset Exception (0x00100),”and Section 6.4.2,

“Machine Check Exception (0x00200).”

31 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

Table 6-5. MSR Bit Settings (Continued)

Bit(s) Name Description

6-18 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

6.2.2 Steps for Exception Processing
After it is determined that the exception can be taken (by confirming that any instruction-
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1. The machine status save/restore register 0 (SRR0) is loaded with an instruction
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.
Normally, SRR0 contains the address to the first instruction to execute if the
exception handler resumes program execution.

2. SRR1 1–4 and 10–15 are loaded with information specific to the exception type.

3. MSR 16–23, 25–27, and 30-31 are loaded with a copy of the corresponding bits of
the MSR.

NOTE: Depending on the implementation, additional bits from the MSR may be
saved in SRR1.

4. The MSR is set as described in Table 6-5. The new values take effect beginning with
the fetching of the first instruction of the exception-handler routine located at the
exception vector address.

NOTE: MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

Also, the MSR[ILE] bit setting at the time of the exception is copied to
MSR[LE] when the exception is taken (as shown in Table 6-5).

5. The MSR[RI] bit is cleared. This indicates that the interrupt handler is operating in
the “window-of-venerability” and cannot recover if another exception now occurs.
After the machine state is saved (SRR0 and SRR1) and stack pointer has been
updated, the exception handler sets this bit to indicate that it could now handle
another exception. See section 6.1.2.4.1, “System Reset and Machine Check
Exceptions” for more details.

6. Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by adding the exception's
vector offset (see Table 6-2) to the base address determined by MSR[IP]. If IP is
cleared, exceptions are vectored to the physical address 0x000n_nnnn. If IP is set,
exceptions are vectored to the physical address 0xFFFn_nnnn. For a machine check
exception that occurs when MSR[ME] = 0 (machine check exceptions are disabled),
the checkstop state is entered (the machine stops executing instructions). See
Section 6.4.2, “Machine Check Exception (0x00200).”

In some implementations, any instruction fetch with MSR[IR] = 1 and any load or store
with MSR[DR] = 1 may cause SRR0 and SRR1 to be modified.

Chapter 6. Exceptions 6-19

6

6.2.3 Returning from an Exception Handler
The Return from Interrupt (rfi instruction performs context synchronization by allowing
previously issued instructions to complete before returning to the interrupted process.
Execution of the instruction ensures the following:

• All previous instructions have completed to a point where they can no longer cause
an exception.

If a previous instruction causes a direct-store interface error exception, the results
are determined before this instruction is executed. However, note that the direct-
store facility is being phased out of the architecture and will not likely be supported
in future devices.

• Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

• The instruction copies SRR1 bits back into the MSR.

• The processor branches to the instruction addressed by SRR0 and begins program
execution under control of the MSR bits loaded from SRR1 register.

For a complete description of context synchronization, refer to Section 6.1.2.1, “Context
Synchronization.”

6.3 Process Switching
The operating system should execute the following when processes are switched:

• Thesync instruction, which orders the effects of instruction execution. All
instructions previously initiated appear to have completed before thesync
instruction completes, and no subsequent instructions appear to be initiated until the
sync instruction completes.

• Theisync instruction, which waits for all previous instructions to complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation,
protection, etc.) established by the previous instructions.

• Thestwcx. instruction, to clear any outstanding reservations, which ensures that an
lwarx instruction in the old process is not paired with an stwcx. instruction in the
new process. This is necessary because some implementations of the PowerPC
architecture do not do an address compare when thestwcx. is executed. Only the
reservation is required for thestwcx. to be successful.

The operating system should handle MSR[RI] as follows:

• In machine check and system reset exception handlers—If the SRR1 bit
corresponding to MSR[RI] is cleared, the exception is not recoverable.

• In each exception handler—When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSR[RI].

6-20 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

• At the end of each exception handler—Clear MSR[RI], set the SRR0 and SRR1
registers appropriately, update stack pointers and then execute .

NOTE: The RI bit being set indicates that, with respect to the processor, enough
processor state data is valid for the processor to continue, but it does not
guarantee that the interrupted process can resume.

6.4 Exception Definitions
shows all the types of exceptions that can occur and certain MSR bit settings when the

exception handler is invoked. Depending on the exception, certain of these bits are stored
in SRR1 when an exception is taken. The following subsections describe each exception in
detail.

Table 6-6. MSR Setting Due to Exception

Exception Type
MSR Bit

POW ILE EE PR FP ME FE0 SE BE FE1 IP IR DR RI LE

System reset 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Machine check 0 — 0 0 0 0 0 0 0 0 — 0 0 0 ILE

Data access 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Instruction access 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

External 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Alignment 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Program 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Floating-point
unavailable

0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Decrementer 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

System call 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Trace exception 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Floating-point
assist exception

0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

0 Bit is cleared
1 Bit is set
ILE Bit is copied from the ILE bit in the MSR.
— Bit is not altered
Reading of reserved bits may return 0, even if the value last written to it was 1.

Chapter 6. Exceptions 6-21

6

6.4.1 System Reset Exception (0x00100)
The system reset exception is a nonmaskable, asynchronous exception signaled to the
processor typically through the assertion of a system-defined signal; see Table 6-7.

When a system reset exception is taken, instruction execution continues at offset 0x00100
from the physical base address determined by MSR[IP].

If the exception is recoverable, the value of the MSR[RI] bit is copied to the corresponding
SRR1 bit. The exception functions as a context-synchronizing operation. If a reset
exception causes the loss of:

• An external exception (interrupt or decrementer),
• Direct-store error type DSI (the direct-store facility is being phased out of the

Architecture—not likely to be supported in future devices), or
• Floating-point enabled type program exception,

then the exception is not recoverable. If the SRR1 bit corresponding to MSR[RI] is cleared,
the exception is context-synchronizing only with respect to subsequent instructions.

NOTE: Each implementation provides a means for software to distinguish between
power-on reset and other types of system resets (such as soft reset).

Table 6-7. System Reset Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if
no exception conditions were present.

SRR1 1–4
10–15
16–23
25–27
30
31

Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded from the equivalent MSR bit, MSR[RI], if the exception is recoverable;
otherwise cleared.
Loaded with equivalent bit from the MSR

Note : Depending on the implementation, additional bits in the MSR may be copied to SRR1.
If the processor state is corrupted to the extent that execution cannot resume reliably, the bit
corresponding to MSR[RI], in SRR1 is cleared.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
RI 0
LE Set to value of ILE

6-22 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

6.4.2 Machine Check Exception (0x00200)
If no higher-priority exception is pending (namely, a system reset exception), the processor
initiates a machine check exception when the appropriate condition is detected.

NOTE: The causes of machine check exceptions are implementation- and system-
dependent, and are typically signalled to the processor by the assertion of a
specified signal on the processor interface.

When a machine check condition occurs and MSR[ME] = 1, the exception is recognized
and handled. If MSR[ME] = 0 and a machine check occurs, the processor generates an
internal checkstop condition. When a processor is in checkstop state, instruction processing
is suspended and generally cannot continue without resetting the processor. Some
implementations may preserve some or all of the internal state of the processor when
entering the checkstop state, so that the state can be analyzed as an aid in problem
determination.

In general, it is expected that a bus error signal would be used by a memory controller to
indicate a memory parity error or an uncorrectable memory ECC error.

NOTE: The resulting machine check exception has priority over any exceptions caused
by the instruction that generated the bus operation.

If a machine check exception causes an exception that is not context-synchronizing, the
exception is not recoverable. Also, a machine check exception is not recoverable if it causes
the loss of one of the following:

• An external exception (interrupt or decrementer)

• Direct-store error type DSI (the direct-store facility is being phased out of the
architecture and is not likely to be supported in future devices)

• Floating-point enabled type program exception

If the SRR1 bit corresponding to MSR[RI] is cleared, the exception is context-
synchronizing only with respect to subsequent instructions. If the exception is recoverable,
the SRR1 bit corresponding to MSR[RI] is set and the exception is context-synchronizing.

NOTE: If the error is caused by the memory subsystem, incorrect data could be loaded
into the processor and register contents could be corrupted regardless of whether
the exception is considered recoverable by the SRR1 bit corresponding to
MSR[RI].

On some implementations, a machine check exception may be caused by referring to a
nonexistent physical (real) address, either because translation is disabled (MSR[IR] or
MSR[DR] = 0) or through an invalid translation. On such a system, execution of thedcbz
or dcba instruction can cause a delayed machine check exception by introducing a block
into the data cache that is associated with an invalid physical (real) address. A machine
check exception could eventually occur when and if a subsequent attempt is made to store
that block to memory (for example, as the block becomes the target for replacement, or as
the result of executing adcbst instruction).

Chapter 6. Exceptions 6-23

6

When a machine check exception is taken, registers are updated as shown in Table 6-8.

If MSR[RI] is set, the machine check exception may still be unrecoverable in the sense that
executioncan resume in the same context that existed before the exception.

When a machine check exception is taken, instruction execution resumes at offset 0x00200
from the physical base address determined by MSR[IP].

6.4.3 DSI Exception (0x00300)
A DSI exception occurs when no higher priority exception exists and a data memory access
cannot be performed. The condition that caused the DSI exception can be determined by
reading the DSISR, a supervisor-level SPR (SPR18) register that can be read by using the
mfspr instruction. Bit settings are provided in Table 6-9. Table 6-9 also indicates which
memory element is pointed to by the DAR. DSI exceptions can be generated by load/store
instructions, cache-control instructions (icbi, dcbi, dcbz, dcbst, and dcbf), or the
eciwx/ecowx instructions for any of the following reasons:

• A load or a store instruction results in a direct-store error exception.

NOTE: The direct-store facility is being phased out of the architecture and is not
likely to be supported in future devices.

• The effective address cannot be translated. That is, there is a page fault for this
portion of the translation, so a DSI exception must be taken to retrieve the page and
update the translation tables. For example read a page from a storage device such as
a hard disk drive.

Table 6-8. Machine Check Exception—Register Settings

Register Setting Description

SRR0 On a best-effort basis, implementations can set this to an EA of some instruction that was
executing or about to be executing when the machine check condition occurred.

SRR1 Bit 30 is loaded from MSR[RI] if the processor is in a recoverable state. Otherwise cleared. The
setting of all other SRR1 bits is implementation-dependent.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME * —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
RI 0
LE Set to value of ILE

*Note : When a machine check exception is taken, the exception handler should set MSR[ME] as soon as it
is practical to handle another machine check exception. Otherwise, subsequent machine check excep-
tions cause the processor to automatically enter the checkstop state.

6-24 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

• The instruction is not supported for the type of memory addressed.

— For lwarx /stwcx.instructions that reference a memory location that is write-
through required. If the exception is not taken, the instructions execute correctly.

— For lwarx /stwcx.or eciwx/ecowxinstructions that attempt to access direct-store
segments (direct-store facility is being phased out of the architecture—not likely
to be supported in future devices). If the exception does not occur, the results are
boundedly undefined.

• The access violates memory protection.

• The execution of aneciwx or ecowx instruction is disallowed because the external
access register enable bit (EAR[E]) is cleared.

• A data address breakpoint register (DABR) match occurs. The DABR facility is
optional to the PowerPC architecture, but if one is implemented, it is recommended,
but not required, that it be implemented as follows. A data address breakpoint match
is detected for a load or store instruction if the three following conditions are met for
any byte accessed:

— EA[0–28]= DABR[DAB]

— MSR[DR] = DABR[BT]

— The instruction is a store and DABR[DW] = 1, or the instruction is a load and
DABR[DR] = 1.

The DABR is described in Section 2.3.15, “Data Address Breakpoint Register
(DABR).” DAR settings are described in Table 6-9. If the above conditions are
satisfied, it is undefined whether a match occurs in the following cases:

— The instruction is store conditional but the store is not performed.

— The instruction is a load/store string of zero length.

— The instruction isdcbz, eciwx, orecowx.

The cache management instructions other thandcbz never cause a match. Ifdcbz
causes a match, some or all of the target memory locations may have been updated.
For the purpose of determining whether a match occurs,eciwx is treated as a load,
andecowx anddcbz are treated as stores.

If an stwcx. instruction has an EA for which a normal store operation would cause a DSI
exception but the processor does not have the reservation fromlwarx whether a DSI
exception is taken is implementation-dependent.

If the value in XER[25–31] indicates that a load or store string instruction has a length of
zero, a DSI exception does not occur, regardless of the effective address.

Chapter 6. Exceptions 6-25

6

The condition that caused the exception is defined in the DSISR. As shown in Table 6-9,
this exception also sets the data address register (DAR).

Table 6-9. DSI Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1 1–4
10–15
16–23
25–27
30–31

Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note : Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
RI 0
LE Set to value of ILE

DSISR 0 Set if a load or store instruction results in a direct-store error exception; otherwise cleared.
Note : The direct-store facility is being phased out of the architecture and is not likely to be
supported in future devices.

1 Set if the translation of an attempted access is not found in the primary hash table entry group
(HTEG), or in the rehashed secondary HTEG, or in the range of a DBAT register (page fault
condition); otherwise cleared.

2–3 Cleared
4 Set if a memory access is not permitted by the page or DBAT protection mechanism; otherwise

cleared.
5 Set if the eciwx , ecowx , lwarx, or stwcx. , instruction is attempted to direct-store interface

space, or if the lwarx or stwcx instruction is used with addresses that are marked as write-
through. Otherwise cleared to 0.
Note : The direct-store facility is being phased out of the architecture and is not likely to be
supported in future devices.

6 Set for a store operation and cleared for a load operation.
7–8 Cleared
9 Set if a DABR match occurs. Otherwise cleared.
10 Cleared
11 Set if the instruction is an eciwx or ecowx and EAR[E] = 0; otherwise cleared.
12–31 Cleared
Due to the multiple exception conditions possible from the execution of a single instruction, the
following combinations of bits of DSISR may be set concurrently:
• Bits 1 and 11
• Bits 4 and 5
• Bits 4 and 11
• Bits 5 and 11
Additionally, bit 6 is set if the instruction that caused the exception is a store, ecowx , dcbz , dcba , or
dcbi and bit 6 would otherwise be cleared. Also, bit 9 (DABR match) may be set alone, or in
combination with any other bit, or with any of the other combinations shown above.

6-26 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6
When a DSI exception is taken, instruction execution resumes at offset 0x00300 from the
physical base address determined by MSR[IP].

6.4.4 ISI Exception (0x00400)
An ISI exception occurs when no higher priority exception exists and an attempt to fetch
the next instruction to be executed fails for any of the following reasons:

• The effective address cannot be translated. For example, when there is a page fault
for this portion of the translation, an ISI exception must be taken to retrieve the page
(and possibly the translation), typically from a storage device.

• An attempt is made to fetch an instruction from a no-execute segment.

• An attempt is made to fetch an instruction from guarded memory and MSR[IR] = 1.

• The fetch access violates memory protection.

• An attempt is made to fetch an instruction from a direct-store segment.

NOTE: The direct-store facility is being phased out of the architecture and is not
likely to be supported in future devices.

DAR Set to the effective address of a memory element as described in the following list:
• A byte in the first word accessed in the segment or BAT area that caused the DSI exception, for a

byte, half word, or word memory access (to a segment or BAT area).
• A byte in the first double word accessed in the segment or BAT area that caused the DSI exception,

for a double-word memory access (to a segment or BAT area).
• A byte in the block that caused the exception for a cache management instruction.
• Any EA in the memory range addressed (for direct-store error exceptions).

Note : The direct-store facility is being phased out of the architecture and is not likely to be
supported in future devices.

• The EA computed by the instruction for the attempted execution of an eciwx or ecowx instruction
when EAR[E] is cleared.

• If the exception is caused by a DABR match, the DAR is set to the effective address of any byte in
the range from A to B inclusive, where A is the effective address of the word (for a byte, half word, or
word access) or double word (for a double word access) specified by the EA computed by the
instruction, and B is the EA of the last byte in the word or double word in which the match occurred.

Table 6-9. DSI Exception—Register Settings (Continued)

Register Setting Description

Chapter 6. Exceptions 6-27

6

Register settings for ISI exceptions are shown in Table 6-10.

When an ISI exception is taken, instruction execution resumes at offset 0x00400 from the
physical base address determined by MSR[IP].

6.4.5 External Interrupt (0x00500)
An external interrupt exception is signaled to the processor by the assertion of the external
interrupt signal. The exception may be delayed by other higher priority exceptions or if the
MSR[EE] bit is zero when the exception is detected.

NOTE: The occurrence of this exception does not cancel the external request.

Table 6-10. ISI Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present (if the exception occurs on attempting to fetch a branch target,
SRR0 is set to the branch target address).

SRR1 1

2
3

4

10–15
16–23
25–27
30–31

Set if the translation of an attempted access is not found in the primary hash
table entry group (HTEG), or in the rehashed secondary HTEG, or in the
range of an IBAT register (page fault condition); otherwise cleared.
Cleared
Set if the fetch access occurs to a direct-store segment (SR[T] = 1), to a no-
execute segment (N bit set in segment descriptor), or to guarded memory
when MSR[IR] = 1. Otherwise, cleared.
Note : The direct-store facility is being phased out of the architecture and is
not likely to be supported in future devices.
Set if a memory access is not permitted by the page or IBAT protection
mechanism, described in Chapter 7, “Memory Management”; otherwise
cleared.
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note: Only one of 1, 3, and 4 can be set.
Also, note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
RI 0
LE Set to value of ILE

6-28 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

The register settings for the external interrupt exception are shown in Table 6-11.

When an external interrupt exception is taken, instruction execution resumes at offset
0x00500 from the physical base address determined by MSR[IP].

6.4.6 Alignment Exception (0x00600)
This section describes conditions that can cause alignment exceptions in the processor.
Similar to DSI exceptions, alignment exceptions use the SRR0 and SRR1 to save the
machine state and the DSISR to determine the source of the exception. An alignment
exception occurs when no higher priority exception exists and the implementation cannot
perform a memory access for one of the following reasons:

• The operand of a floating-point load or store instruction is not word-aligned.

• The operand oflmw, stmw, lwarx , stwcx. eciwx, orecowx is not aligned.

• The instruction islmw, stmw, lswi, lswx, stswi, orstswx and the processor is in
little-endian mode.

• The operand of an elementary or string load or store crosses a protection boundary.

• The operand oflmw or stmw crosses a segment or BAT boundary.

Table 6-11. External Interrupt—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no interrupt conditions were present.

SRR1 1–4
10–15
16–23
25–27
30–31

Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note : Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
RI 0
LE Set to value of ILE

Chapter 6. Exceptions 6-29

6

• The operand ofdcbz is in memory that is write-through-required or caching
inhibited, ordcbz is executed in an implementation that has either no data cache or
a write-through data cache.

• The operand of a floating-point load or store instruction is in a direct-store segment
(T = 1).

NOTE: The direct-store facility is being phased out of the architecture and is not
likely to be supported in future devices.

For lmw, stmw, lswi, lswx, stswi, and stswx instructions in little-endian mode, an
alignment exception always occurs. Forlmw andstmw instructions with an operand that is
not aligned in big-endian mode, and forlwarx , stwcx., eciwx, andecowxwith an operand
that is not aligned in either endian mode, an implementation may yield boundedly-
undefined results instead of causing an alignment exception (foreciwx andecowxwhen
EAR[E] = 0, a third alternative is to cause a DSI exception). For all other cases listed above,
an implementation may execute the instruction correctly instead of causing an alignment
exception. For thedcbz instruction, correct execution means clearing each byte of the block
in main memory. See Section 3.1, “Data Organization in Memory and Data Transfers,” for
a complete definition of alignment in the PowerPC architecture.

The term, ‘protection boundary’, refers to the boundary between protection domains. A
protection domain is a segment, a block of memory defined by a BAT entry, a virtual 4-
Kbyte page, or a range of unmapped effective addresses. Protection domains are defined
only when the corresponding address translation (instruction or data) is enabled (MSR[IR]
or MSR[DR] = 1).

The register settings for alignment exceptions are shown in Table 6-12.

Table 6-12. Alignment Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1 1–4
10–15
16–23
25–27
30–31

Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note : Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
RI 0
LE Set to value of ILE

6-30 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

The architecture does not support the use of a misaligned EA by load/store with reservation
instructions or by theeciwxandecowxinstructions. If one of these instructions specifies a
misaligned EA, the exception handler should not emulate the instruction but should treat
the occurrence as a programming error.

DSISR 0–14 Cleared
15–16 For instructions that use register indirect with index addressing—set to bits 29–30 of the

instruction encoding.
For instructions that use register indirect with immediate index addressing—cleared

17 For instructions that use register indirect with index addressing—set to bit 25 of the instruction
encoding.
For instructions that use register indirect with immediate index addressing— set to bit 5 of the
instruction encoding.

18–21 For instructions that use register indirect with index addressing—set to bits 21–24 of the
instruction encoding.
For instructions that use register indirect with immediate index addressing—set to bits 1–4 of the
instruction encoding.

22–26 Set to bits 6–10 (identifying either the source or destination) of the instruction encoding.
Undefined for dcbz .

27–31 Set to bits 11–15 of the instruction encoding (rA) for update-form instructions
Set to either bits 11–15 of the instruction encoding or to any register number not in the range of
registers loaded by a valid form instruction for lmw , lswi , and lswx instructions. Otherwise
undefined.

Note : For load or store instructions that use register indirect with index addressing, the DSISR can be
set to the same value that would have resulted if the corresponding instruction uses register indirect
with immediate index addressing had caused the exception. Similarly, for load or store instructions that
use register indirect with immediate index addressing, DSISR can hold a value that would have resulted
from an instruction that uses register indirect with index addressing. For example, a misaligned lwarx
instruction that crosses a protection boundary would normally cause the DSISR to be set to the
following binary value:

000000000000 00 0 01 0 0101 ttttt ?????
The value ttttt refers to the destination register and ????? indicates undefined bits.
However, this register may be set as if the instruction were lwa , as follows:
000000000000 10 0 00 0 1101 ttttt ?????
If there is no corresponding instruction, no alternative value can be specified.

The instruction pairs that can use the same DSISR values are as follows:
lbz /lbzx lbzu /lbzux lhz /lhzx lhzu /lhzux lha /lhax lhau /lhaux
lwz /lwzx lwzu /lwzux lwa /lwax stb /stbx stbu /stbux sth /sthx
sthu /sthux stw /stwx stwu /stwux lfs /lfsx lfsu /lfsux stfs /stfsx
stfsu /stfsux

DAR Set to the EA of the data access as computed by the instruction causing the alignment exception.

Table 6-12. Alignment Exception—Register Settings (Continued)

Register Setting Description

Chapter 6. Exceptions 6-31

6

6.4.6.1 Integer Alignment Exceptions
Operations that are not naturally aligned may suffer performance degradation, depending
on the processor design, the type of operation, the boundaries crossed, and the mode that
the processor is in during execution. More specifically, these operations may either cause
an alignment exception or they may cause the processor to break the memory access into
multiple, smaller accesses with respect to the cache and the memory subsystem.

6.4.6.1.1 Page Address Translation Access Considerations
A page address translation access occurs when MSR[DR] is set, SR[T] is cleared, and there
is no BAT match.

NOTE: A dcbz instruction causes an alignment exception if the access is to a page or
block with the W (write-through) or I (cache-inhibit) bit set.

Misaligned memory accesses that do not cause an alignment exception may not perform as
well as an aligned access of the same type. The resulting performance degradation due to
misaligned accesses depends on how well each individual access behaves with respect to
the memory hierarchy.

Particular details regarding page address translation is implementation-dependent; the
reader should consult the user’s manual for the appropriate processor for more information.

6.4.6.1.2 Direct-Store Interface Access Considerations
The following apply for direct-store interface accesses:

• If a 256-Mbyte boundary will be crossed by any portion of the direct-store interface
space accessed by an instruction (the entire string for strings/multiples), an
alignment exception is taken.

• Floating-point loads and stores to direct-store segments may cause an alignment
exception, regardless of operand alignment.

• The load/store with reservation instructions that map into a direct-store segment
always cause a DSI exception. However, if the instruction crosses a segment
boundary an alignment exception is taken instead.

NOTE: The direct-store facility is being phased out of the architecture and is not likely
to be supported in future devices.

6.4.6.2 Little-Endian Mode Alignment Exceptions
The OEA allows implementations to take alignment exceptions on misaligned accesses (as
described in Section 3.1.4, “PowerPC Byte Ordering”) in little-endian mode but does not
require them to do so. Some implementations may perform some misaligned accesses
without taking an alignment exception.

6-32 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

6.4.6.3 Interpretation of the DSISR as Set by an Alignment Exception
For most alignment exceptions, an exception handler may be designed to emulate the
instruction that causes the exception. To do this, the handler requires the following
characteristics of the instruction:

• Load or store

• Length (half word or word)

• String, multiple, or normal load/store

• Integer or floating-point

• Whether the instruction performs update

• Whether the instruction performs byte reversal

• Whether it is a dcbz instruction

The PowerPC architecture provides this information implicitly, by setting opcode bits in the
DSISR that identify the excepting instruction type. The exception handler does not need to
load the excepting instruction from memory. The mapping for all exception possibilities is
unique except for the few exceptions discussed below.

Table 6-13 shows the inverse mapping—how the DSISR bits identify the instruction that
caused the exception.

The alignment exception handler cannot distinguish a floating-point load or store that
causes an exception because it is misaligned, or because it addresses the direct-store
interface space. However, this does not matter; in either case it is emulated with integer
instructions. However, floating-point instructions are distinguished from integer
instructions because different register files must be accessed while emulating the each
class. Bits 15-21 of the DSISR are used to identify whether the instruction is integer or
floating-point.

NOTE: The direct-store facility is being phased out of the architecture and is not likely
to be supported in future devices.

Table 6-13. DSISR(15–21) Settings to Determine Misaligned Instruction

DSISR[15–21] Instruction DSISR[15–21] Instruction

00 0 0000 lwarx , lwz , special cases1 01 1 0101 —

00 0 0010 stw 10 0 0010 stwcx.

00 0 0100 lhz

00 0 0101 lha 10 0 1000 lwbrx

00 0 0110 sth 10 0 1010 stwbrx

00 0 0111 lmw 10 0 1100 lhbrx

Chapter 6. Exceptions 6-33

6

00 0 1000 lfs 10 0 1110 sthbrx

00 0 1001 — 10 1 0100 eciwx

00 0 1010 stfs 10 1 0110 ecowx

00 0 1011 — 10 1 1111 dcbz

00 0 1101 lwa 11 0 0000 lwzx

11 0 0010 stwx

00 1 0000 lwzu 11 0 0100 lhzx

00 1 0010 stwu 11 0 0101 lhax

00 1 0100 lhzu 11 0 0110 sthx

00 1 0101 lhau 11 0 1000 lfsx

00 1 0110 sthu 11 0 1001 —

00 1 0111 stmw 11 0 1010 stfsx

00 1 1000 lfsu 11 0 1011 —

00 1 1001 — 11 0 1111 stfiwx

00 1 1010 stfsu 11 1 0000 lwzux

00 1 1011 — 11 1 0010 stwux

11 1 0100 lhzux

11 1 0101 lhaux

01 0 0101 lwax 11 1 0110 sthux

01 0 1000 lswx 11 1 1000 lfsux

01 0 1001 lswi 11 1 1001 —

01 0 1010 stswx 11 1 1010 stfsux

01 0 1011 stswi 11 1 1011 —
1
The instructions lwz and lwarx give the same DSISR bits (all zero). But if lwarx causes an
alignment exception, it is an invalid form, so it need not be emulated in any precise way. It is
adequate for the alignment exception handler to simply emulate the instruction as if it were an
lwz . It is important that the emulator use the address in the DAR, rather than computing it
from rA/rB/D, because lwz and lwarx use different addressing modes.

If opcode 0 (“illegal or reserved”) can cause an alignment exception, it will be indistinguishable
to the exception handler from lwarx and lwz .

Table 6-13. DSISR(15–21) Settings to Determine Misaligned Instruction (Continued)

DSISR[15–21] Instruction DSISR[15–21] Instruction

6-34 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

6.4.7 Program Exception (0x00700)
A program exception occurs when no higher priority exception exists and one or more of
the following exception conditions, which correspond to bit settings in SRR1, occur during
execution of an instruction:

• System IEEE floating-point enabled exception—A system IEEE floating-point
enabled exception can be generated when FPSCR[FEX] is set and either (or both)
of the MSR[FE0] or MSR[FE1] bits is set.

FPSCR[FEX] is set by the execution of a floating-point instruction that causes an
enabled exception or by the execution of a “move to FPSCR” type instruction that
sets an exception bit when its corresponding enable bit is set. Floating-point
exceptions are described in Section 3.3.6, “Floating-Point Program Exceptions.”

• Illegal instruction—An illegal instruction program exception is generated when
execution of an instruction is attempted with an illegal opcode or illegal combination
of opcode and extended opcode fields (these include PowerPC instructions not
implemented in the processor), or when execution of an optional or a reserved
instruction not provided in the processor is attempted.

NOTE: Implementations are permitted to generate an illegal instruction program
exception when encountering the following instructions. If an illegal
instruction exception is not generated, then the alternative is shown in
parenthesis.

— An instruction corresponds to an invalid class (the results may be boundedly
undefined)

— An lswx instruction for whichrA or rB is in the range of registers to be loaded
(may cause results that are boundedly undefined)

— A move to/from SPR instruction with an SPR field that does not contain one of
the defined values

– MSR[PR] = 1 and spr[0] = 1 (this can cause a privileged instruction program
exception)

– MSR[PR] = 0 or spr[0] = 0 (may cause boundedly-undefined results.)

— An unimplemented floating-point instruction that is not optional (may cause a
floating-point assist exception)

• Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
processor is operating in user mode (MSR[PR] is set). It is also generated formtspr
or mfspr instructions that have an invalid SPR field that contain one of the defined
values having spr[0] = 1 and if MSR[PR] = 1. Some implementations may also
generate a privileged instruction program exception if a specified SPR field (for a
move to/from SPR instruction) is not defined for a particular implementation, but
spr[0] = 1; in this case, the implementation may cause either a privileged instruction
program exception, or an illegal instruction program exception may occur instead.

Chapter 6. Exceptions 6-35

6

• Trap—A trap program exception is generated when any of the conditions specified
in a trap instruction is met. Trap instructions are described in Section 4.2.4.6, “Trap
Instructions.”

The register settings when a program exception is taken are shown in Table 6-14.

When a program exception is taken, instruction execution resumes at offset 0x00700 from
the physical base address determined by MSR[IP].

6.4.8 Floating-Point Unavailable Exception (0x00800)
A floating-point unavailable exception occurs when no higher priority exception exists, an
attempt is made to execute a floating-point instruction (including floating-point load, store,
or move instructions), and the floating-point available bit in the MSR is cleared,
(MSR[FP] = 0).

Table 6-14. Program Exception—Register Settings

Register Setting Description

SRR0 The contents of SRR0 differ according to the following situations, also see SRR1[15]:
• For all program exceptions except floating-point enabled exceptions when operating in imprecise

mode (MSR[FE0] MSR[FE1]), SRR0 contains the EA of the excepting instruction.
• When the processor is in floating-point imprecise mode, SRR0 may contain the EA of the excepting

instruction or that of a subsequent unexecuted instruction. If the subsequent instruction is sync or
isync , SRR0 points no more than four bytes beyond the sync or isync instruction.

• If FPSCR[FEX] = 1, but IEEE floating-point enabled exceptions are disabled (MSR[FE0] =
MSR[FE1] = 0), the program exception occurs before the next synchronizing event if an instruction
alters those bits (thus enabling the program exception). When this occurs, SRR0 points to the
instruction that would have executed next and not to the instruction that modified MSR.

SRR1 1–4
10
11
12
13
14
15

16–23
25–27
30–31

Cleared
Cleared
Set for an IEEE floating-point enabled program exception; otherwise cleared.
Set for an illegal instruction program exception; otherwise cleared.
Set for a privileged instruction program exception; otherwise cleared.
Set for a trap program exception; otherwise cleared.
Cleared if SRR0 contains the address of the instruction causing the
exception, and set if SRR0 contains the address of a subsequent instruction.
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note : Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
RI 0
LE Set to value of ILE

6-36 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

The register settings for floating-point unavailable exceptions are shown in Table 6-15.

When a floating-point unavailable exception is taken, instruction execution resumes at
offset 0x00800 from the physical base address determined by MSR[IP].

6.4.9 Decrementer Exception (0x00900)
A decrementer exception occurs when no higher priority exception exists, a decrementer
exception condition occurs (for example, the decrementer register has completed
decrementing), and MSR[EE] = 1. The decrementer register counts down, causing an
exception request when it passes through zero. A decrementer exception request remains
pending until the decrementer exception is taken and then it is cancelled. The decrementer
implementation meets the following requirements:

• The counters for the decrementer and the time-base counter are driven by the same
fundamental time base.

• Loading a GPR from the decrementer does not affect the decrementer.

• Storing a GPR value to the decrementer replaces the value in the decrementer with
the value in the GPR.

• Whenever bit 0 of the decrementer changes from 0 to 1, a decrementer exception
request is signaled. If multiple decrementer exception requests are received before
the first can be reported, only one exception is reported. The occurrence of a
decrementer exception cancels the request.

• If the decrementer is altered by software and if bit 0 is changed from 0 to 1, an
exception request is signaled.

Table 6-15. Floating-Point Unavailable Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1 1–4
10–15
16–23
25–27
30–31

Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note : Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
RI 0
LE Set to value of ILE

Chapter 6. Exceptions 6-37

6

The register settings for the decrementer exception are shown in Table 6-16.

When a decrementer exception is taken, instruction execution resumes at offset 0x00900
from the physical base address determined by MSR[IP].

6.4.10 System Call Exception (0x00C00)
A system call exception occurs when a System Call (sc) instruction is executed. The
effective address of the instruction following thesc instruction is placed into SRR0. MSR
bits are saved in SRR1, as shown in Table 6-17. Then a system call exception is generated.

The system call exception causes the next instruction to be fetched from offset 0x00C00
from the physical base address determined by the new setting of MSR[IP]. As with most
other exceptions, this exception is context-synchronizing. Refer to Section 6.1.2.1,
“Context Synchronization,” for more information on the actions performed by a context-
synchronizing operation. Register settings are shown in Table 6-17.

Table 6-16. Decrementer Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 1–4
10–15
16–23
25–27
30–31

Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note : Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
RI 0
LE Set to value of ILE

Table 6-17. System Call Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction following the System Call instruction

SRR1 0–15
16–23
25–27
30–31

Undefined
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note : Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
RI 0
LE Set to value of ILE

6-38 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

When a system call exception is taken, instruction execution resumes at offset 0x00C00
from the physical base address determined by MSR[IP].

6.4.11 Trace Exception (0x00D00)
The trace exception is optional to the PowerPC architecture, and specific information about
how it is implemented can be found in user’s manuals for individual processors.

The trace exception provides a means of tracing the flow of control of a program for
debugging and performance analysis purposes. It is controlled by MSR bits SE and BE as
follows:

• MSR[SE] = 1: the processor generates a single-step type trace exception after each
instruction that completes without causing an exception or context change (such as
occurs when ansc, , or a load instruction that causes an exception, for example, is
executed).

• MSR[BE] = 1: the processor generates a branch-type trace exception after
completing the execution of a branch instruction, whether or not the branch is taken.

If this facility is implemented, a trace exception occurs when no higher priority exception
exists and either of the conditions described above exist. The following are not traced:

• instruction
• sc, and trap instructions that trap
• Other instructions that cause exceptions (other than trace exceptions)
• The first instruction of any exception handler
• Instructions that are emulated by software

MSR[SE, BE] are both cleared when the trace exception is taken. In the normal use of this
function, MSR[SE, BE] are restored when the exception handler returns to the interrupted
program using an instruction.

Chapter 6. Exceptions 6-39

6

Register settings for the trace mode are described in Table 6-18.

When a trace exception is taken, instruction execution resumes at offset 0x00D00 from the
base address determined by MSR[IP].

Table 6-18. Trace Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the next instruction to be executed in the program for which the trace
exception was generated.

SRR1 1–4
10–15
16–23
25–27
30–31

Cleared (also see user’s manuals for individual processors)
Cleared (ditto)
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note : Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
RI 0
LE Set to value of ILE

6-40 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6

6.4.12 Floating-Point Assist Exception (0x00E00)
The floating-point assist exception is optional to the PowerPC architecture. It can be used
to allow software to assist in the following situations:

• Execution of floating-point instructions for which an implementation uses software
routines to perform certain operations, such as those involving denormalization.

• Execution of floating-point instructions that are not optional and are not
implemented in hardware. In this case, the processor may generate an illegal
instruction type program exception instead.

Register settings for the floating-point assist exceptions are described in Table 6-19.

When a floating-point assist exception is taken, instruction execution resumes as offset
0x00E00 from the base address determined by MSR[IP].

Table 6-19. Floating-Point Assist Exception—Register Settings

Register Setting Description

SRR0 Set to the address of the next instruction to be executed in the program for which the floating-point
assist exception was generated.

SRR1 1–4
10–15
16–23
25–27
30–31

Implementation-specific information
Implementation-specific information
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note : Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
RI 0
LE Set to value of ILE

Chapter 7. Memory Management 7-1

7

Chapter 7. Memory Management
70
70

This chapter describes the memory management unit (MMU) specifications provided by
the PowerPC operating environment architecture (OEA) for PowerPC processors. The
primary function of the MMU in a PowerPC processor is to translate logical (effective)
addresses to physical addresses (referred to as real addresses in the architecture
specification) for memory accesses and I/O accesses (most I/O accesses are assumed to be
memory-mapped). In addition, the MMU provides various levels of access protection on a
segment, block, or page basis.

NOTE: There are many aspects of memory management that are implementation-
specific. This chapter describes the conceptual model of a PowerPC MMU;
however, PowerPC processors may differ in the specific hardware used to
implement the MMU model of the OEA, depending on the many design trade-
offs inherent in each implementation.

Two general types of accesses generated by PowerPC processors require address
translation—instruction accesses, and data accesses to memory generated by load and store
instructions. In addition, the addresses specified by cache instructions and the optional
external control instructions also require translation. Generally, the address translation
mechanism is defined in terms of segment descriptors and page tables used by PowerPC
processors to locate the effective to physical address mapping for instruction and data
accesses. The segment information translates the effective address to an interim virtual
address, and the page table information translates the virtual address to a physical address.

The definition of the segment and page table data structures provides significant flexibility
for the implementation of performance enhancement features in a wide range of processors.
Therefore, the performance enhancements used to store the segment or page table
information on-chip vary from implementation to implementation.

Translation lookaside buffers (TLBs) are commonly implemented in PowerPC processors
to keep recently-used page address translations on-chip. Although their exact
characteristics are not specified in the OEA, the general concepts that are pertinent to the
system software are described.

The segment information, used to generate the interim virtual addresses, is stored as
segment descriptors. These descriptors reside in on-chip segment registers.

O

7-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as pairs
of 32-bit BAT registers that are accessible as supervisor special-purpose registers (SPRs).

The MMU, together with the exception processing mechanism, provides the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 6, “Exceptions.” Section 2.3.1, “Machine State Register (MSR),” describes the
MSR, which controls some of the critical functionality of the MMU.

NOTE: The architecture specification refers to exceptions as interrupts.

7.1 MMU Features
The MMU of a PowerPC processor provides 4 Gbytes of effective address space, a 52-bit
interim virtual address and physical addresses that are< 32 bits in length.

This chapter describes address translation mechanisms from the perspective of the
programming model. As such, it describes the structure of the page and segment tables, the
MMU conditions that cause exceptions, the instructions provided for programming the
MMU, and the MMU registers. The hardware implementation details of a particular MMU
(including whether the hardware automatically performs a page table search in memory)
are not contained in the architectural definition of PowerPC processors and are invisible to
the PowerPC programming model; therefore, they are not described in this document. In
the case that some of the OEA model is implemented with some software assist mechanism,
this software should be contained in the area of memory reserved for implementation-
specific use and should not be visible to the operating system.

7.2 MMU Overview
The PowerPC MMU and exception models support demand-paged virtual memory. Virtual
memory management permits execution of programs larger than the size of physical
memory; the term demand paged implies that individual pages are loaded into physical
memory from backing storage only as they are accessed by an executing program.

The memory management model includes the concept of a virtual address that is not only
larger than that of the maximum physical memory allowed but a virtual address space that
is also larger than the effective address space. Effective addresses are 32 bits wide. In the
address translation process, the processor converts an effective address to 52-bit virtual
address, as per the information in the selected descriptor. Then the address is translated
back to a physical address the size (or less) of the effective address.

For implementations that support a physical address range that is smaller than 32 bits, the
higher-order bits of the effective addresscannot be ignored in the address translation
process. The remainder of this chapter assumes that implementations support the maximum
physical address range.

Chapter 7. Memory Management 7-3

7

The operating system manages the system’s physical memory resources. Consequently, the
operating system initializes the MMU registers (segment registers, BAT registers, and
SDR1 register) and sets up page tables in memory appropriately. The MMU then assists the
operating system by managing page status and optionally caching the recently-used address
translation information on-chip for quick access.

Effective address spaces are divided into 256-Mbyte regions called segments for virtual
addressing or into other large regions called blocks (128 Kbyte–256 Mbyte) and use the
BAT registers for translation. Segments that correspond to virtual memory can be further
subdivided into 4-Kbyte pages. For programs using virtual addressing only the most
recently used 4-Kbyte pages need be resident in memory whereas programs using block
address translation, the total block (128-256 Mbyte) must be resident in memory.

For each page, the operating system creates an address descriptor (page table entry (PTE)).
The MMU then uses this descriptor to generate the physical address, the protection
information, and other access control information each time an address within the page is
accessed. Address descriptors for 4kbyte pages reside in page tables in memory and are
cached in TLBs on chip for quick translation.

For each block the operating system creates an address descriptor in one of the four BAT
array entries. The MMU then uses this descriptor to generate the physical address, the
protection information, and other access control information each time an address within
the block is accessed. The MMU keeps the address descriptors for blocks on-chip in the
BAT array (comprised of the BAT registers).

This section provides an overview of the high-level organization and operational concepts
of the MMU in PowerPC processors, and a summary of all MMU control registers. For
more information about the MSR, see Section 2.3.1, “Machine State Register (MSR).”
Section 7.4.3, “BAT Register Implementation of BAT Array,” describes the BAT registers,
Section 7.5.2.1, “Segment Descriptor Definitions,” describes the segment registers,
Section 7.6.1.1, “SDR1 Register Definitions,” describes the SDR1.

7.2.1 Memory Addressing
A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches
the next instruction. The effective address is translated to a physical address (real)
according to the procedures described throughout this chapter. The memory subsystem uses
the physical address for the access. For a complete discussion of effective address
calculation, see Section 4.1.4.2, “Effective Address Calculation.”

7.2.1.1 Predefined Physical Memory Locations
There are four areas of the physical memory map that have predefined uses. The first 256
bytes of physical memory (or if MSR[IP] = 1, the first 256 bytes of memory located at
physical address 0xFFF0_0000are assigned for arbitrary use by the operating system. The
rest of that first page of physical memory defined by the vector base address (determined

7-4 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

by MSR[IP]) is either used for exception vectors, or reserved for future exception vectors.
The third predefined area of memory consists of the second and third physical pages of the
memory map, which are used for implementation-specific purposes. In some
implementations, the second and third pages located at physical address
0xFFF0_1000when MSR[IP] = 1 are also used for implementation-specific purposes.
Fourthly, the system software defines the locations in physical memory that contain the
page address translation tables.

These predefined memory areas are summarized in Table 7-1 in terms of the variable ‘Base’
and Table 7-2 decodes the actual value of ‘Base’.

Refer to Chapter 6, “Exceptions,” for more detailed information on the assignment of the
exception vector offsets.

7.2.2 MMU Organization
Figure 7-1 shows a conceptual block diagram of the MMU. After an address is generated,
the higher-order bits of the effective address, EA0–EA19 (or a smaller set of address bits,
EA0–EAn, in the cases of blocks), are translated into physical address bits PA0–PA19. The
lower-order address bits, A20–A31 are untranslated and therefore identical for both
effective and physical addresses. After translating the address, the MMU passes the
resulting 32-bit physical address to the memory subsystem.

Table 7-1. Predefined Physical Memory Locations

Memory Area Physical Address Range Predefined Use

1 Base || 0x0_0000–Base || 0x0_00FF Operating system

2 Base || 0x0_0100–Base || 0x0_0FFF Exception vectors

3 Base || 0x0_1000–Base || 0x0_2FFF Implementation-specific1

4 Software-specified—contiguous
sequence of physical pages

Page table

1Only valid for MSR[IP] = 1 on some implementations

Table 7-2. Value of Base for Predefined Memory Use

MSR[IP] Value of Base

0 Base = 0x000

1 Base = 0xFFF

Chapter 7. Memory Management 7-5

7

Figure 7-1. MMU Conceptual Block Diagram

MMU

A20–A31

X

E
A

0–
E

A
19

E
A

0–
E

A
19

EA0–EA3

0

15

Segment Registers
.
.
.

PA0–PA31

EA0–EA14

EA0–EA14

EA4–EA19

On-Chip
TLBs

Data
Accesses

Instruction
Accesses

A
20

–A
31

SPR25SDR1

+

X

DBAT0U
DBAT0L

•

•

DBAT3U
DBAT3L

PA15–PA19

X

←

X
EA15–EA19

Upper 24 bits of
virtual address

EA15–EA19

PA0–PA14

PA0–PA19

BAT
 Hit

IBAT0U
IBAT0L

•

•

IBAT3U
IBAT3L

+

Page Table
Search Logic

Optional

7-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

7.2.3 Address Translation Mechanisms
PowerPC processors support the following three types of address translation:

• Page address translation—translates the page frame address for a 4-Kbyte page size

• Block address translation—translates the block number for blocks that range in size
from 128 Kbyte to 256 Mbyte

• Real addressing mode —when address translation is disabled, the effective address
is used (identical) as the physical address.

In addition, earlier processors implement a direct-store facility that is used to generate
direct-store interface accesses on the external bus.

NOTE: This facility is not optimized for performance, was present for compatibility with
POWER devices, and is being phased out of the architecture. Future devices are
not likely to support it; software should not depend on its effects and new
software should not use it.

Figure 7-2 shows the address translation mechanisms provided by the MMU. The segment
descriptors shown in the figure control both the page and direct-store segment address
translation mechanisms. When an access uses the page or direct-store segment address
translation, the appropriate segment descriptor is required. One of the 16 on-chip segment
registers (which contain segment descriptors) is selected by the 4 high-order effective
address bits.

A control bit in the corresponding segment descriptor then determines if the access is to
memory (includes memory-mapped) or to a direct-store segment.

NOTE: The direct-store interface is present to allow certain older I/O devices to use this
interface. When an access is determined to be to the direct-store interface space,
the implementation invokes an elaborate hardware protocol for communication
with these devices. The direct-store interface protocol is not optimized for
performance, and therefore, its use is discouraged. The most efficient method for
accessing I/O is by memory-mapping the I/O areas.

For memory accesses translated by a segment descriptor, the interim virtual address is
generated using the information in the segment descriptor. Page address translation
corresponds to the conversion of this virtual address into the 32-bit physical address used
by the memory subsystem. In some cases, the physical address for the page resides in an
on-chip TLB and is available for quick access. However, if the page address translation
misses in a TLB, the MMU searches the page table in memory (using the virtual address
information and a hashing function) to locate the required physical address. Some
implementations may have dedicated hardware to perform the page table search
automatically, while others may define an exception handler routine that searches the page
table with software.

Chapter 7. Memory Management 7-7

7

Block address translation occurs in parallel with segment address translation but differs in
that BAT translations is a one step process. Also more high order bits from the effective
address are used in the comparison (as few as 4 and as many as 15-bits). Instead of segment
descriptors and a page table, block address translations use the on-chip BAT registers as a
BAT array and an associative search is made in the array. If an effective address matches
one of the corresponding fields in a BAT register, the information in that register is used to
generate the high-order physical address. When a BAT translation is successful, the results
of the page translation (occurring in parallel) are ignored.

NOTE: A matching BAT array entry takes precedence over a translation provided by the
segment descriptor in all cases (even if the segment is a direct-store segment).

Direct-store address translation is used when the optional direct-store translation control bit
(T bit) in the corresponding segment descriptor is set. In this case, the remaining
information in the segment descriptor is interpreted as identifier information that is used
with the remaining effective address bits to generate the protocol used in a direct-store
interface access on the external interface; additionally, no TLB lookup or page table search
is performed.

NOTE: This facility is not likely to be supported in future processors.

When the processor generates an access, and the corresponding address translation enable
bit in MSR is cleared, the effective address is used as the physical address and all other
translation mechanisms are ignored. Instruction and data address translation is enabled with
the MSR[IR] and MSR[DR] bits, respectively.

See Section 7.2.6.1, “Real Addressing Mode and Block Address Translation Selection,” for
more information.

7-8 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

Figure 7-2. Address Translation Types

7.2.4 Memory Protection Facilities
In addition to the translation of effective addresses to physical addresses, the MMU
provides access protection of supervisor areas from user access and can designate areas of
memory as read-only as well as no-execute. Table 7-3 shows the eight protection options
supported by the MMU for pages.

(T = 1) (T = 0)

0 31
Effective Address

0 51
Virtual Address

Segment Descriptor
Located

Match with BAT
Registers

0 31
Physical Address

0 31
Implementation-Dependent

0 31
Physical Address

0 31
Physical Address

Look Up in
Page Table

Address Translation Disabled

Page
Address

Direct-Store Segment
Translation

(see Section 7.7)

Block Address
Translation

(see Section 7.4)

(MSR[IR] = 0, or MSR[DR] = 0)

Real Addressing Mode
Effective Address = Physical Address

(see Section 7.3)

Chapter 7. Memory Management 7-9

7

The no-execute option provided in the segment descriptor lets the operating system
determine whether or not instruction fetches are allowed from an area of memory. The
remaining options are enforced based on a combination of information in the segment
descriptor and the page table entry. Thus, the supervisor-only option allows only read and
write operations generated while the processor is operating in supervisor mode (MSR[PR]
= 0) to access the page. User accesses that map into a supervisor-only page cause an
exception.

NOTE: Independent of the protection mechanisms, care must be taken when writing to
instruction areas as coherency must be maintained with on-chip copies of
instructions that may have been prefetched into a queue or an instruction cache.
Refer to Section 5.1.5.2, “Instruction-Cache Instructions,” for more information
on coherency within instruction areas.

As shown in the table, the supervisor-write-only option allows both user and supervisor
accesses to read from the page, but only supervisor programs can write to that area. There
is also an option that allows both supervisor and user programs read and write access (both
user/supervisor option), and finally, there is an option to designate a page as read-only, both
for user and supervisor programs (both read-only option).

For areas of memory that are translated by the block address translation mechanism, the
protection options are similar, except that blocks are translated by separate mechanisms for
instruction and data, blocks do not have a no-execute option, and blocks can be designated
as enabled for user and supervisor accesses independently. Therefore, a block can be
designated as supervisor-only, for example, but this block can be programmed such that all
user accesses simply ignore the block translation, rather than take an exception in the case

Table 7-3. Access Protection Options for Pages

Option
User Read

User
Write

Supervisor Read
Supervisor

Write
I-Fetch Data I-Fetch Data

Supervisor-only — — — y y y

Supervisor-only-no-execute — — — — y y

Supervisor-write-only y y — y y y

Supervisor-write-only-no-execute — y — — y y

Both user/supervisor y y y y y y

Both user/supervisor-no-execute — y y — y y

Both read-only y y — y y —

Both read-only-no-execute — y — — y —

y Access permitted
 — Protection violation

y

7-10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

of a match. This allows a flexible way for supervisor and user programs to use overlapping
effective address space areas that map to unique physical address areas (without exceptions
occurring).

For direct-store segments, the MMU calculates a key bit based on the protection values
programmed in the segment descriptor and the specific user/supervisor and read/write
information for the particular access. However, this bit is merely passed on to the system
interface to be transmitted in the context of the direct-store interface protocol. The MMU
does not itself enforce any protection or cause any exception based on the state of the key
bit for these accesses. The I/O controller device or other external hardware can optionally
use this bit to enforce any protection required.

NOTE: The direct-store facility is being phased out of the architecture and future devices
are not likely to implement it.

Finally, a facility defined in the VEA and OEA allows pages or blocks to be designated as
guarded, thus preventing out-of-order (a.k.a. out-of-sequence) accesses that may cause
undesired side effects. For example, areas of the memory-map that are used to control I/O
devices can be marked as guarded so that accesses (instruction stores) do not occur out-of-
order thus starting an I/O operation before all other control information has been received
by the device. Refer to Section 5.2.1.5.3, “Out-of-Order Accesses to Guarded Memory,” for
a complete description of how accesses to guarded memory are restricted.

7.2.5 Page History Information
The MMU of PowerPC processors also defines referenced (R) and changed (C) bits in the
page address translation mechanism that can be used as history information relevant to the
usage of a page. The C bit is used by the operating system to determine which pages have
changed and must be written back to disk when new pages arereplacing them in main
memory. The R bit is used to determine that a reference (e.g. Load instruction) has been
made to a page and the operating system can use this information when trying to decide
which page not to remove from memory. While these bits are initially allocated by the
operating system into the page table, the architecture specifies that the R and C bits are
updated by the processor when a program executes a load (R) or store (C) to a page.

7.2.6 General Flow of MMU Address Translation
The following sections describe the general flow used by PowerPC processors to translate
effective addresses to virtual and then physical addresses.

NOTE: Although there are references to the concept of an on-chip TLB, these entities
may not be present in a particular hardware implementation for performance
enhancement (and a particular implementation may have one or more TLBs).
Thus, they are shown here as optional and only the software ramifications of the
existence of a TLB are discussed.

Chapter 7. Memory Management 7-11

7

7.2.6.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data
translation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode translation is
used (physical address equals effective address) and the access continues to the memory
subsystem as described in Section 7.3, “Real Addressing Mode.”

Figure 7-3 shows the flow the MMU uses in determining whether to select real addressing
mode (no translation), block address translation (BAT), or the segment descriptor (virtual
translation) when addressing the memory subsystem.

Figure 7-3. General Flow of Address Translation

NOTE: If the BAT array search results in a hit, the access is qualified with the appropriate
protection bits. If the access is determined to be protected (not allowed), an
exception (ISI or DSI exception) is generated.

7.2.6.2 Page and Direct-Store Address Translation Selection
If address translation is enabled (real addressing mode translation not selected) and the
effective address information does not match with a BAT array entry, then the segment

BAT Array
Miss

BAT Array
Hit

Access
Protected

Access
Permitted

Perform Address Translation
with Segment Descriptor

Access Faulted Translate Address

D-accessI-access

Data
Translation Disabled

(MSR[DR] = 0)

Instruction
Translation Disabled

(MSR[IR] = 0)

Effective Address
Generated

Continue Access
to Memory
Subsystem

Instruction
Translation Enabled

(MSR[IR] = 1)

Data
Translation Enabled

(MSR[DR] = 1)

(See Figure 7-11)

(see Figure 7-4)

Perform Real
Addressing Mode

Translation (EA=PA)
Compare Address with
Instruction or Data BAT
Array (as appropriate)

Perform Real
Addressing Mode

Translation (EA=PA)

(See Figure 7-6)

7-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

descriptor must be located. Once the segment descriptor is located, the T bit in the segment
descriptor selects whether the translation is to a page or to a direct-store segment as shown
in Figure 7-4. In addition, Figure 7-4 also shows the way in which the no-execute
protection is enforced; if the N bit in the segment descriptor is set and the access is an
instruction fetch, the access is faulted.

The segment descriptor for an access is contained in one of 16 on-chip segment registers;
effective address bits EA0-EA3 select one of the 16 segment registers.

Chapter 7. Memory Management 7-13

7

Figure 7-4. General Flow of Page and Direct-Store Address Translation

Access Faulted

Access Faulted

Access
Protected

Access
Permitted

Continue Access
to Memory Subsystem

Translate Address

Perform Direct-Store
Segment Translation

Direct-Store
Segment Address

(T = 1)*

Page Address
Translation

(T = 0)

Load TLB Entry

TLB
Miss

Generate 52-Bit Virtual
Address from Segment

Descriptor

Compare Virtual
Address with TLB

Entries

Address Translation with
Segment Descriptor

(See Figure 7-27)

(See Figure 7-16)

(See Figure 7-25)

I-Fetch with N bit set in
Segment Descriptor

 (no-execute)

TLB
Hit

otherwise

Check T bit in
Segment Descriptor

Perform Page Table
Search Operation

PTE FoundPTE Not
Found

Notes :
* Not allowed for instruction accesses
(causes ISI exception)

Implementation-specific

Use EA0–EA3 to select
one of 16 segment

registers

See Section 7.6.2,
“Page Table Updates.”

7-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

7.2.6.2.1 Selection of Page Address Translation
If the T bit in the selected segment descriptor (bit[0]) is 0, page address translation method
is used. The information in the segment descriptor is used to generate the 52-bit virtual
address. The virtual address is used to identify the page address translation information
(stored as 2-word entries (PTEs) in a page table in memory). Once again, although the
architecture does not require the existence of a TLB, one or more TLBs may be
implemented in the hardware to store copies of recently-used PTEs on-chip for increased
performance. A TLB is used like a small cache of the much larger PTE tables in memory.

If an access hits in the TLB, the page translation occurs and the physical address bits are
forwarded to the memory subsystem. If the translation is not found in the TLB, the MMU
requires a search of the page table. The hardware of some implementations may perform
the table search automatically, while others may trap to an exception handler for the system
software to perform the page table search. If the translation is found, a new TLB entry is
created and the page translation is once again attempted. This time, the TLB is guaranteed
to hit. When the PTE is located, the access is qualified with the appropriate protection bits.
If the access is determined to be protected (not allowed), an exception (ISI or DSI
exception) is generated.

If the PTE is not found by the table search operation, an ISI or DSI exception is generated.
This is also known as a page fault.

7.2.6.2.2 Selection of Direct-Store Address Translation
When the segment descriptor has the T bit set, the access is considered a direct-store access
and the direct-store interface protocol of the external interface is used to perform the access.
The selection of address translation type differs for instruction and data accesses only in
that instruction accesses are not allowed from direct-store segments; attempting to fetch an
instruction from a direct-store segment causes an ISI exception.

NOTE: This facility is not optimized for performance, was present for compatibility with
POWER devices, and is being phased out of the architecture. Future devices are
not likely to support it; software should not depend on its effects and new
software should not use it. See Section 7.7, “Direct-Store Segment Address
Translation,” for more detailed information about the translation of addresses in
direct-store segments in those processors that implement this.

7.2.7 MMU Exceptions Summary
In order to complete any memory access, the effective address must be translated to a
physical address. A translation exception condition occurs if this translation fails for one of
the following reasons:

• There is no valid entry in the page table in memory for the virtual address generated
from the effective address and the segment descriptorand no BAT translation
occurs.

Chapter 7. Memory Management 7-15

7

• An address translation is found but the access is not allowed by the memory
protection mechanism.

The translation exception conditions cause either the ISI or the DSI exception to be taken
as shown in Table 7-4. The state saved by the processor for each of these exceptions
contains information that identifies the address of the failing instruction. Refer to
Chapter 6, “Exceptions,” for a more detailed description of exception processing, and the
bit settings of SRR1 and DSISR when an exception occurs.

In addition to the translation exceptions, there are other MMU-related conditions (some of
them implementation-specific) that can cause an exception to occur. These conditions map
to the exceptions as shown in Table 7-5. The only MMU exception conditions that occur
when MSR[DR] = 0 are those that cause the alignment exception for data accesses. For
more detailed information about the conditions that cause the alignment exception (in
particular for string/multiple instructions), see Section 6.4.6, “AlignmentException”
(0x00600).” Refer to Chapter 6, “Exceptions,”for a complete description of the SRR1 and
DSISR bit settings for these exceptions

Table 7-4. Translation Exception Conditions

Condition Description Exception

Page fault (no PTE found) No matching PTE found in page tables (and no
matching BAT array entry)

I access: ISI exception
SRR1[1] = 1

D access: DSI exception
DSISR[1] = 1

Block protection violation Conditions described in Table 7-10 for block I access: ISI exception
SRR1[4] = 1

D access: DSI exception
DSISR[4] = 1

Page protection violation Conditions described in Table 7-20 for page I access: ISI exception
SRR1[4] = 1

D access: DSI exception
DSISR[4] = 1

No-execute protection violation Attempt to fetch instruction when SR[N] = 1 ISI exception
SRR1[3] = 1

Instruction fetch from direct-store
segment—note that the direct-
store facility is optional and being
phased out of the architecture.

Attempt to fetch instruction when SR[T] = 1 ISI exception
SRR1[3] = 1

Instruction fetch from guarded
memory

Attempt to fetch instruction when MSR[IR] = 1
and either:
matching xBAT[G] = 1, or
no matching BAT entry and PTE[G] = 1

ISI exception
SRR1[3] = 1

7-16 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

7.2.8 MMU Instructions and Register Summary
By using the MMU instructions and registers, the operating systems establishes the total
framework for address translation. This in part includes loading BAT registers, segment
registers, SDR1 address register and allocating areas in memory for page table and BAT
program and data areas, etc.

NOTE: Because the implementation of TLB is optional, the instructions that refer to this
structure are also optional. However, as these structures serve as caches of the
page table, there must be a software protocol for maintaining coherency between
these caches (TLBs) and the tables in memory whenever changes are made to the
tables in memory. Therefore, the PowerPC OEA specifies that a processor
implementing a TLB is guaranteed to have a means for doing the following:

Table 7-5. Other MMU Exception Conditions

Condition Description Exception

dcbz with W = 1 or I = 1 (may cause
exception or operation may be
performed to memory)

dcbz instruction to write-through
or cache-inhibited segment or
block

Alignment exception
(implementation-dependent)

lwarx or stwcx. with W = 1 (may
cause exception or execute correctly)

Reservation instruction to write-
through segment or block

DSI exception (implementation-
dependent) DSISR[5] = 1

lwarx , stwcx. , eciwx , or ecowx
instruction to direct-store segment
(may cause exception or may produce
boundedly-undefined results)—note
that the direct-store facility is optional
and being phased out of the
architecture

Reservation instruction or
external control instruction when
SR[T] = 1

DSI exception (implementation-
dependent)

DSISR[5] = 1

Floating-point load or store to direct-
store segment (may cause exception
or instruction may execute
correctly)—note that the direct-store
facility is optional and being phased
out of the architecture

Floating-point memory access
when SR[T] = 1

Alignment exception
(implementation-dependent)

Load or store operation that causes a
direct-store error—note that the direct-
store facility is optional and being
phased out of the architecture

Direct-store interface protocol
signalled with an error condition

DSI exception
DSISR[0] = 1

eciwx or ecowx attempted when
external control facility disabled

eciwx or ecowx attempted with
EAR[E] = 0

DSI exception
DSISR[11] = 1

lmw , stmw , lswi , lswx , stswi , or
stswx instruction attempted in little-
endian mode

lmw , stmw , lswi , lswx , stswi , or
stswx instruction attempted
while MSR[LE] = 1

Alignment exception

Operand misalignment Translation enabled and operand
is misaligned as described in
Chapter 6, “Exceptions.”

Alignment exception (some of these
cases are implementation-
dependent)

Chapter 7. Memory Management 7-17

7

• Invalidating an individual TLB entry
• Invalidating the entire TLB

When the tables in memory are changed, the operating system purges these caches of the
corresponding entries, allowing the translation caching mechanism to re-fetch from the
tables when the corresponding entries are required.

A processor may implement one or more of the instructions described in this section to
support table invalidation. Alternatively, an algorithm may be specified that performs one
of the functions listed above (a loop invalidating individual TLB entries may be used to
invalidate the entire TLB, for example), or different instructions may be provided.

A processor may also perform additional functions (not described here) as well as those
described in the implementation of some of these instructions. For example, thetlbie
instruction may be implemented so as to purge all TLB entries in a congruence class (that
is, all TLB entries indexed by the specified EA which can include corresponding entries in
data and instruction TLBs) or the entire TLB.

NOTE: If a processor does not implement an optional instruction it treats the instruction
as a no-op or as an illegal instruction, depending on the implementation. Also,
note that the segment register and TLB concepts described here are conceptual;
that is, a processor may implement parallel sets of segment registers (and even
TLBs) for instructions and data.

Because the MMU specification for PowerPC processors is so flexible, it is recommended
that the software that uses these instructions and registers be encapsulated into subroutines
to minimize the impact of migrating across the family of implementations.

Table 7-6 summarizes the PowerPC instructions that specifically control the MMU. For
more detailed information about the instructions, refer to Chapter 8, “Instruction set.”

Table 7-6. Instruction Summary—Control MMU

Instruction Description

mtsr SR,rS Move to Segment Register
SR[SR]← rS

mtsrin r S,rB Move to Segment Register Indirect
SR[rB[0–3]]←rS

mfsr r D,SR Move from Segment Register
rD←SR[SR]

mfsrin r D,rB Move from Segment Register Indirect
rD←SR[rB[0–3]]

tlbia
(optional)

Translation Lookaside Buffer Invalidate All
For all TLB entries, TLB[V]←0
Causes invalidation of TLB entries only for processor that executed the tlbia

7-18 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

Table 7-7 summarizes the registers that the operating system uses to program the MMU.
These registers are accessible to supervisor-level software only (supervisor level is referred
to as privileged state in the architecture specification). These registers are described in
detail in Chapter 2, “PowerPC Register Set.”

7.2.9 TLB Entry Invalidation
Optionally, PowerPC processors implement TLB structures that store on-chip copies of the
PTEs that are resident in physical memory. These processors have the ability to invalidate
resident TLB entries through the use of thetlbie andtlbia instructions. Additionally, these
instructions may also enable a TLB invalidate signalling mechanism in hardware so that
other processors also invalidate their resident copies of the matching PTE. See Chapter 8,
“Instruction set,” for detailed information about thetlbie andtlbia instructions.

7.3 Real Addressing Mode
If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access,
the effective address is treated as the physical address and is passed directly to the memory
subsystem as a real addressing mode address translation. If an implementation has a smaller
physical address range than effective address range, the extra high-order bits of the effective
address may be ignored in the generation of the physical address.

tlbie r B
(optional)

Translation Lookaside Buffer Invalidate Entry
If TLB hit (for effective address specified as rB), TLB[V]←0
Causes TLB invalidation of entry in all processors in system

tlbsync
(optional)

Translation Lookaside Buffer Synchronize
Ensures that all tlbie instructions previously executed by the processor executing the tlbsync
instruction have completed on all processors

Table 7-7 MMU Registers

Register Description

Segment registers
(SR0–SR15)

The sixteen 32-bit segment registers are present in the PowerPC architecture.
Figure 7-13 shows the format of a segment register. The fields in the segment
register are interpreted differently depending on the value of bit 0. The segment
registers are accessed by the mtsr , mtsrin , mfsr , and mfsrin instructions.

BAT registers
(IBAT0U–IBAT3U,
IBAT0L–IBAT3L,
DBAT0U–DBAT3U, and
DBAT0L–DBAT3L)

There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBAT0U–IBAT3U paired with IBAT0L–IBAT3L) and four pairs of data BAT registers
(DBAT0U–DBAT3U paired with DBAT0L–DBAT3L). The BAT registers are defined as
32-bit registers. These are special-purpose registers that are accessed by the mtspr
and mfspr instructions.

SDR1 register The SDR1 register specifies the base and size of the page tables in memory. SDR1
is defined as a 32-bit register. This is a special-purpose register that is accessed by
the mtspr and mfspr instructions.

Table 7-6. Instruction Summary—Control MMU (Continued)

Instruction Description

Chapter 7. Memory Management 7-19

7

Section 2.3.17, “Synchronization Requirements for Special Registers and for Lookaside
Buffers,” describes the synchronization requirements for changes to MSR[IR] and
MSR[DR].

The addresses for accesses that occur in real addressing mode bypass all memory protection
checks as described in Section 7.4.4, “Block Memory Protection,” and Section 7.5.4, “Page
Memory Protection” and do not cause the recording of referenced and changed information
(described in Section 7.5.3, “Page History Recording”).

For data accesses that use real addressing mode, the memory access mode bits (WIMG) are
assumed to be 0b0011. That is, the cache is write-back and memory does not need to be
updated immediately (W = 0), caching is enabled (I = 0), data coherency is enforced with
memory, I/O, and other processors (caches) (M = 1, so data is global), and the memory is
guarded. For instruction accesses in real addressing mode, the memory access mode bits
(WIMG) are assumed to be either 0b0001 or 0b0011. That is, caching is enabled (I = 0) and
the memory is guarded. Additionally, coherency may or may not be enforced with memory,
I/O, and other processors (caches) (M = 0 or 1, so data may or may not be considered
global). For a complete description of the WIMG bits, refer to Section 5.2.1,
“Memory/Cache Access Attributes.”

NOTE: The attempted execution of theeciwxor ecowxinstructions while MSR[DR] =
0 causes boundedly-undefined results.

Whenever an exception occurs, the processor clears both the MSR[IR] and MSR[DR] bits.
Therefore, at least at the beginning of all exception handlers (including reset), the processor
operates in real addressing mode for instruction and data accesses. If address translation is
required for the exception handler code, the software must explicitly enable address
translation by accessing the MSR as described in Chapter 2, “PowerPC Register Set.”

NOTE: An attempt to access a physical address that is not physically present in the
system may cause a machine check exception (or even a checkstop condition),
depending on the response by the memory system for this case. Thus, care must
be taken when generating addresses in real addressing mode.
This can also occur when translation is enabled and the SDR1 register sets up the
translation such that nonexistent memory is accessed.
See Section 6.4.2, “Machine Check Exception (0x00200)” for more information
on machine check exceptions.

7.4 Block Address Translation
The block address translation (BAT) mechanism in the OEA provides a way to map ranges
of effective addresses larger than a single page into contiguous areas of physical memory.
Such areas can be used for data that is not subject to normal virtual memory handling
(paging), such as a memory-mapped display buffer or an extremely large array of numerical
(or any type) data.

7-20 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

The following sections describe the implementation of block address translation in
PowerPC processors, including the block protection mechanism, followed by a block
translation summary with a detailed flow diagram.

7.4.1 BAT Array Organization
The block address translation mechanism in PowerPC processors is implemented as a
software-controlled BAT array. The BAT array maintains the address translation
information for eight blocks of memory. The BAT array in PowerPC processors is
maintained by the system software and is implemented as a set of 16 special-purpose
registers (SPRs). Each block is defined by a pair of SPRs called upper and lower BAT
registers that contain the effective and physical addresses for the block.

The BAT registers can be read from or written to by themfspr andmtspr instructions;
access to the BAT registers is privileged. Section 7.4.3, “BAT Register Implementation of
BAT Array,” gives more information about the BAT registers.

NOTE: The BAT array entries are completely ignored for TLB invalidate operations
detected in hardware and in the execution of thetlbie or tlbia instruction.

Figure 7-5 shows the organization of the BAT array. Four pairs of BAT registers are
provided for translating instruction addresses and four pairs of BAT registers are used for
translating data addresses. These eight pairs of BAT registers comprise two four-entry
fully-associative BAT arrays (each BAT array entry corresponds to a pair of BAT registers).
The BAT array is fully-associative in that any address can reside in any BAT. In addition,
the effective address field of all four corresponding entries (instruction or data) is
simultaneously compared with the effective address of the access to check for a match

Chapter 7. Memory Management 7-21

7

.

Figure 7-5. BAT Array Organization

Each pair of BAT registers defines the starting address of a block in the effective address
space, the size of the block, and the start of the corresponding block in physical address
space. If an effective address is within the range defined by a pair of BAT registers, its
physical address is defined as the starting physical address of the block plus the lower-order
effective address bits.

Blocks are restricted to a finite set of sizes, from 128 Kbytes (217bytes) to 256 Mbytes (228

bytes). The starting address of a block in both effective address space and physical address
space is defined as a multiple of the block size.

It is an error for system software to program the BAT registers such that an effective address
is translated by more than one valid IBAT pair or more than one valid DBAT pair. If this
occurs, the results are undefined and may include a spurious violation of the memory
protection mechanism, a machine check exception, or a checkstop condition.

The equation for determining whether a BAT entry is valid for a particular access is as
follows:

BAT_entry_valid = (Vs & ¬MSR[PR]) | (Vp & MSR[PR])

BEPI,
Vs, Vp

BEPI,
Vs, Vp

Unmasked bits of EA0–EA114, MSR[PR]
Instruction Accesses

BAT Array Hit/Miss

Compare

Compare

Compare

Compare

IBAT0U
IBAT0L

IBAT3U
IBAT3L

SPR 528

SPR 535

Unmasked bits of EA0–EA114, MSR[PR]
Data Accesses

BAT Array Hit/Miss

Compare

Compare

Compare

Compare

DBAT0U
DBAT0L

DBAT3U
DBAT3L

SPR 536

SPR 543

7-22 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

If a BAT entry is not valid for a given access, it does not participate in address translation
for that access. Two BAT entries may not map an overlapping effective address range and
be valid at the same time.

Entries that have complementary settings of V[s] and V[p] may map overlapping effective
address blocks. Complementary settings would be as follows:

BAT entry A: Vs = 1, Vp = 0
BAT entry B: Vs = 0, Vp = 1

7.4.2 Recognition of Addresses in BAT Arrays
The BAT arrays are accessed in parallel with segmented address translation to determine
whether a particular effective address corresponds to a block defined by the BAT arrays. If
an effective address is within a valid BAT area, the segmented address translation is
canceled and the physical address for the memory access is determined as described in
Section 7.4.5, “Block Physical Address Generation.”

Block address translation is enabled only when address translation is enabled
(MSR[IR] = 1 and/or MSR[DR] = 1). Also, a matching BAT array entry always takes
precedence over any segment descriptor translation, independent of the setting of the SR[T]
bit, and the segment descriptor information is completely ignored.

Figure 7-6 shows the flow of the BAT array comparison used in block address translation.
When an instruction fetch operation is required, the effective address is compared with the
four instruction BAT array entries; similarly, the effective addresses of data accesses are
compared with the four data BAT array entries. The BAT arrays are fully-associative in that
any of the four instruction or data BAT array entries can contain a matching entry (for an
instruction or data access, respectively).

NOTE: Figure 7-6 assumes that the protection bits, BATL[PP], allow an access to occur.
If not, an exception is generated, as described in Section 7.4.4, “Block Memory
Protection.”

Chapter 7. Memory Management 7-23

7

Figure 7-6. BAT Array Hit/Miss Flow

Two BAT array entry fields are compared to determine if there is a BAT array hit—a block
effective page index (BEPI) field, which is compared with the high-order effective address
bits, and one of two valid bits (Vs or Vp), which is evaluated relative to the value of
MSR[PR].

NOTE: Figure 7-6 assumes a block size of 128 Kbytes (all bits of BEPI are used in the
comparison); the actual number of bits of the BEPI field that are used are masked
by the BL field (block length) as described in Section 7.4.3, “BAT Register
Implementation of BAT Array.”

Compare Address
with BAT Array

Instruction Access Data Access

Compare EA0–EA114
with DBAT0[BEPI]–DBAT3[BEPI]

Compare EA0–EA1114
with IBAT0[BEPI]–IBAT3[BEPI]

otherwise

Matching_BAT←xBATx

User Access
(MSR[PR] = 1)

Supervisor Access
(MSR[PR] = 0)

otherwise
Matching_BAT[Vs] = 1 otherwise

Matching_BAT[Vp] = 1

BAT Array Hit

BAT Array MissBAT Array Miss

BEPI (0–3) = EA0–EA3, 4–1441and
BEPI (4–14) = EA4–EA14, 4–1441& (¬ BL)

(See Figure 7-11)

7-24 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

Thus, the specific criteria for determining a BAT array hit are as follows:

• The upper-order 15 bits of the effective address, subject to a mask, must match the
BEPI field in one of the BAT array entries.

• The appropriate valid bit in the BAT array entry must be set to one as follows:

— MSR[PR] = 0 corresponds to supervisor mode; in this mode, Vs is checked.
— MSR[PR] = 1 corresponds to user mode; in this mode, Vp is checked.

The matching entry is then subject to the protection checking described in Section 7.4.4,
“Block Memory Protection,” before it is used as the source for the physical address.

NOTE: If a user mode program performs an access with an effective address that
matches the BEPI field of a BAT area defined as valid only for supervisor
accesses (Vp = 0 and Vs = 1) for example, the BAT mechanism does not generate
a protection violation and the BAT entry is simply ignored. Thus, a supervisor
program can use the block address translation mechanism to share a portion of
the effective address space with a user program (that uses page address
translation for this area).

If a memory area is to be mapped by the BAT mechanism for both instruction and data
accesses, the mapping must be set up in both an IBAT and DBAT entry; this is the case even
on implementations that do not have separate instruction and data caches.

NOTE: A block can be defined to overlay part of a segment such that the block portion
is nonpaged although the rest of the segment can be paged. This allows nonpaged
areas to be specified within a segment. Thus, if an area of memory is translated
by an instruction BAT entry and data accesses are not also required to that same
area of memory, PTEs are not required for that area of memory. Similarly, if an
area of memory is translated by a data BAT entry, and instruction accesses are
not also required to that same area of memory, PTEs are not required for that area
of memory.

7.4.3 BAT Register Implementation of BAT Array
Recall that the BAT array is comprised of four entries used for instruction accesses and four
entries used for data accesses. Each BAT array entry has 64 bits and consists of a pair of
BAT 32 bit registers—an upper and a lower BAT register for each entry. The BAT registers
are accessed with themtspr andmfspr instructions and are only accessible to supervisor-
level programs. See Appendix F, “Simplified Mnemonics,” for a list of simplified
mnemonics for use with the BAT registers.

NOTE: Simplified mnemonics are referred to as extended mnemonics in the architecture
specification.

Chapter 7. Memory Management 7-25

7

The format and bit definitions of the upper and lower BAT registers are shown in Figure 7-7
and Figure 7-8, respectively.

Figure 7-7. Format of Upper BAT Registers

Figure 7-8. Format of Lower BAT Registers

The BAT registers contain the effective-to-physical address mappings for blocks of
memory. This mapping information includes the effective address bits that are compared
with the effective address of the access, the memory/cache access mode bits (WIMG), and
the protection bits for the block.

In addition, the size of the block and the starting address of the block are defined by the
physical block number (BRPN) and block size mask (BL) fields.

NOTE: The W and G bits are defined for BAT registers that translate data accesses
(DBAT registers); attempting to write to the W and G bits in IBAT registers
causes boundedly-undefined results

BEPI 0 0 0 0 BL Vs Vp

Reserved

0 14 15 18 19 29 30 31

Reserved

0 14 15 24 25 28 29 30 31

BRPN 0 0 0 0 0 0 0 0 0 0 WIMG* 0 PP

*W and G bits are not defined for IBAT registers. Attempting to write to these bits causes boundedly-undefined results.

7-26 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

Table 7-8 describes the bits in the upper and lower BAT registers.

The BL field in the upper BAT register is a mask that encodes the size of the block.
Table 7-9 defines the bit encodings for the BL field of the upper BAT register.

Table 7-8. BAT Registers—Field and Bit Descriptions for 32-Bit Implementations

Upper/Lower
BAT

Bits Name Description

Upper BAT
Register

0–14 BEPI Block effective page index. This field is compared with high-order bits of
the logical address to determine if there is a hit in that BAT array entry.
(Note that the architecture specification refers to logical address as
effective address.)

15–18 — Reserved

19–29 BL Block length. BL is a mask that encodes the size of the block. Values for
this field are listed in Table 2-12.

30 Vs Supervisor mode valid bit. This bit interacts with MSR[PR] to determine if
there is a match with the logical address. For more information, see
Section 7.4.2, “Recognition of Addresses in BAT Arrays."

31 Vp User mode valid bit. This bit also interacts with MSR[PR] to determine if
there is a match with the logical address. For more information, see
Section 7.4.2, “Recognition of Addresses in BAT Arrays.”

Lower BAT
Register

0–14 BRPN This field is used in conjunction with the BL field to generate high-order
bits of the physical address of the block.

15–24 — Reserved

25–28 WIMG Memory/cache access mode bits
W Write-through
I Caching-inhibited
M Memory coherence
G Guarded
Attempting to write to the W and G bits in IBAT registers causes
boundedly-undefined results. For detailed information about the WIMG
bits, see Section 5.2.1, “Memory/Cache Access Attributes."

29 — Reserved

30–31 PP Protection bits for block. This field determines the protection for the block
as described in Section 7.4.4, “Block Memory Protection."

Table 7-9. Upper BAT Register Block Size Mask Encodings

Block Size BL Encoding

128 Kbytes 000 0000 0000

256 Kbytes 000 0000 0001

512 Kbytes 000 0000 0011

1 Mbyte 000 0000 0111

2 Mbytes 000 0000 1111

4 Mbytes 000 0001 1111

Chapter 7. Memory Management 7-27

7

Only the values shown in Table 7-9 are valid for BL. An effective address is determined to
be within a BAT area if the appropriate bits (determined by the BL field) of the effective
address match the value in the BEPI field of the upper BAT register, and if the appropriate
valid bit (Vs or Vp) is set.

NOTE: For an access to occur, the protection bits (PP bits) in the lower BAT register
must be set appropriately, as described in Section 7.4.4, “Block Memory
Protection.”

The BL field selects the bits of the effective address that are used in the comparison with
the BEPI field. The 11 bit BL field is aligned with the effective address bits EA[4-14]. For
every zero in the BL field the corresponding bit of the effective address is use in the
comparison. For every one in the BL field the corresponding bit of the EA is zeroed.
Effective address bits EA[0-3] are always used. The 15 bits selected are compared to the
BEPI for a match.

The value loaded into the BL field determines both the size of the block and the alignment
of the block in physical address space. The values loaded into the BEPI and BRPN fields
must have at least as many low-order zeros as there are ones in BL. Otherwise, the results
are undefined. Also, if the processor does not support 32 bitsof physical address, the system
software should write zeros to those unsupported bits in the BRPN field (as the
implementation treats them as reserved). Otherwise, a machine check exception can occur.

7.4.4 Block Memory Protection
When the selected bits of the effective address match the BEPI in the BAT array and the
valid bit is set for the current mode (Supervisor or User), the access is checked for validity
by the memory protection mechanism. If this protection mechanism prohibits the access, a
block protection violation exception condition (DSI or ISI exception) is generated.

The memory protection mechanism allows selectively granting read access, granting
read/write access, and prohibiting access to areas of memory based on a number of control
criteria. The block protection mechanism provides protection at the granularity defined by
the block size (128 Kbyte to 256 Mbyte).

8 Mbytes 000 0011 1111

16 Mbytes 000 0111 1111

32 Mbytes 000 1111 1111

64 Mbytes 001 1111 1111

128 Mbytes 011 1111 1111

256 Mbytes 111 1111 1111

Table 7-9. Upper BAT Register Block Size Mask Encodings (Continued)

Block Size BL Encoding

7-28 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

As the memory protection mechanism used by the block and page address translation is
different, refer to Section 7.5.4, “Page Memory Protection,” for specific information unique
to page address translation.

For block address translation, the memory protection mechanism is controlled by the PP
bits (which are located in the lower BAT register), which define the access options for the
block. Table 7-10 shows the types of accesses that are allowed for the possible PP bit
combinations.

Thus, any access attempted (read or write) when PP = 00 results in a protection violation
exception condition. When PP = x1, an attempt to perform a write access causes a
protection violation exception condition, and when PP = 10, all accesses are allowed. When
the memory protection mechanism prohibits a reference, one of the following occurs,
depending on the type of access that was attempted:

• For data accesses, a DSI exception is generated and bit 4 of DSISR is set.

• For instruction accesses, an ISI exception is generated and SRR1 is set.

See Chapter 6, “Exceptions,” for more information about these exceptions.

Table 7-10. Access Protection Control for Blocks

PP Accesses Allowed

00 No access

x1 Read only

10 Read/write

Chapter 7. Memory Management 7-29

7

Table 7-11 shows a summary of the conditions that cause exceptions for supervisor and
user read and write accesses within a BAT area. Each BAT array entry is programmed to be
either used or ignored for supervisor and user accesses via the BAT array entry valid bits,
and the PP bits enforce the read/write protection options.

NOTE: The valid bits (Vs and Vp) are used as part of the match criteria for a BAT array
entry and are not explicitly part of the protection mechanism.

NOTE: Because access to the BAT registers is privileged, only supervisor programs can
modify the protection and valid bits or any other bits in the BAT for the block.

Table 7-11. Access Protection Summary for BAT Array

Vs Vp
PP

Field
Block Type User Read User Write

Supervisor
Read

Supervisor
Write

0 0 xx No BAT array match Not used Not used Not used Not used

0 1 00 User—no access Exception Exception Not used Not used

0 1 x1 User-read-only y Exception Not used Not used

0 1 10 User read/write y y Not used Not used

1 0 00 Supervisor—no access Not used Not used Exception Exception

1 0 x1 Supervisor-read-only Not used Not used y Exception

1 0 10 Supervisor read/write Not used Not used y y

1 1 00 Both—no access Exception Exception Exception Exception

1 1 x1 Both-read-only y Exception y Exception

1 1 10 Both read/write y y y y

Note : The term ‘Not used’ implies that the access is not translated by the BAT array and is translated by the
page address translation mechanism described in Section 7.5, “Memory Segment Model,” instead.

7-30 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

Figure 7-9 expands on the actions taken by the processor in the case of a memory protection
violation.

NOTE: Thedcbt anddcbtst instructions do not cause exceptions; in the case of a
memory protection violation for the attempted execution of one of these
instructions, the translation is aborted and the instruction executes as a no-op (no
violation is reported).
Refer to Chapter 6, “Exceptions,” for a complete description of the SRR1 and
DSISR bit settings for the protection violation exceptions.

Figure 7-9. Memory Protection Violation Flow for Blocks

DSI Exception

Block Memory
Protection Violation

DSISR[4] ← 1

Abort Access
(execute as no-op)

dcbt/dcbtst
Instruction

otherwise

Instruction
Access

Data
Access

SRR1[4]← 1

ISI Exception

(From Figure 7-3)

Chapter 7. Memory Management 7-31

7

7.4.5 Block Physical Address Generation
Access to the physical memory within the block is made according to the memory/cache
access mode defined by the WIMG bits in the lower BAT register. These bits apply to the
entire block rather than to an individual page as described in Section 5.2.1,
“Memory/Cache Access Attributes.”

Figure 7-10. Block Physical Address Generation

Physical Block Number

Effective Address

Physical Address

4 Bit 11 Bit 17 Bit

4 Bit 11 Bit

4 Bit 11 Bit 17 Bit

OR

11 Bit 17 Bit

0 3 4 14 15 31

0 3 4 14 15 31

AND

Block Size Mask 0 1

7-32 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

7.4.6 Block Address Translation Summary
Figure 7-11 is an expansion of the ‘BAT Array Hit’ branch of Figure 7-3 and shows the
translation of address bits.

NOTE: Figure 7-11 does not show when many of the exceptions in Table 7-5 are
detected or taken as this is implementation-specific.

Figure 7-11. Block Address Translation Flow

7.5 Memory Segment Model
A large virtual memory address space (52-bit address) in the PowerPC OEA is divided into
256-Mbyte segments. This segmented memory model provides a way to map programs into
unique virtual address spaces which are farther subdivided into 4-Kbyte pages. Each 4-
Kbyte virtual page is allocated a 4-Kbyte physical memory location based on needs of the
program.

A page address translation may be superseded by a matching block address translation as
described in Section 7.4, “Block Address Translation.” If not, the page translation proceeds
in the following two steps:

1. from effective address to the virtual address (which never exists as a specific entity
but can be considered to be the concatenation of the virtual segment ID (VSID), the
page index and the byte offset within a page), and

2. from virtual address to physical address.

Continue Access to Memory
Subsystem with WIMG in Lower

BAT Register

otherwise Read Access with
PP = 00

BAT Array Hit

Memory Protection
Violation Flow

(See Figure 7-9)

Write Access with
PP = any of

 00
 x1

PA0–PA31 = BRPN (0–3) ||
BRPN (4–14) OR ((EA4–EA114) & (BL))
|| EA15–EA1

Chapter 7. Memory Management 7-33

7

The page address translation mechanism is described in the following sections, followed by
a summary of page address translation with a detailed flow diagram.

7.5.1 Address Translation via Segment Descriptors
If the effective address is not translated via the BAT function, the segment descriptors are
used. If the T bit is set the translation proceeds for the Direct-store segment. Otherwise, a
virtual address is generated which ultimately maps to a physical address. Segment
Descriptors also contain protection control bits and in the case of direct-store segments, bus
unit or controller information.

Segments in the OEA can be classified as one of the following two types:

• Memory segment—An effective address in these segments generates a virtual
address that is mapped to a physical address via the page table entry (PTE) facility.

• Direct-store segment—References made to direct-store segments do not use the
virtual paging mechanism of the processor. This facility allows direct
communication with I/O devices on the System Bus.

NOTE: The direct-store facility is optional and being phased out of the
architecture. See Section 7.7, “Direct-Store Segment Address
Translation,” for a complete description of the mapping of direct-store
segments for those processors that implement it.

The T bit in the segment descriptor selects between memory segments and direct-store
segments, as shown in Table 7-12.

7.5.1.1 Selection of Memory Segments
All accesses generated by the processor can be mapped to a segment descriptor; however,
if translation is disabled (MSR[IR] = 0 or MSR[DR] = 0 for an instruction or data access,
respectively), real addressing mode is performed as described in Section 7.3, “Real
Addressing Mode.” Otherwise, if T = 0 in the corresponding segment descriptor (and the
address is not translated by the BAT mechanism), the access maps to virtual memory space
and page address translation is performed.

After a memory segment is selected, the processor creates the virtual address for the
segment and searches for the PTE that dictates the physical page number to be used for the
access. Note that I/O devices can be easily mapped onto memory space and used as
memory-mapped I/O.

Table 7-12. Segment Descriptor Types

Segment Descriptor
 T Bit

Segment Type

0 Memory segment

1 Direct-store segment—optional, but being phased
out of the architecture. Its use is discouraged.

7-34 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

7.5.1.2 Selection of Direct-Store Segments
As described for memory segments, all accesses generated by the processor (with
translation enabled) map to a segment descriptor. If T = 1 for the selected segment
descriptor, the access maps to the direct-store interface space and the access proceeds as
described in Section 7.7, “Direct-Store Segment Address Translation.” Because the direct-
store interface is present only for compatibility with existing I/O devices that used this
interface and because the direct-store interface protocol is not optimized for performance,
its use is discouraged. Additionally, the direct-store facility is being phased out of the
architecture and future processors are not likely to support it. Thus, software should not
depend on its results and new software should not use it. A more common method for
accessing I/O is by mapping memory segments on I/O devices (memory mapped I/O).

7.5.2 Page Address Translation Overview
The translation of effective addresses to physical addresses is shown in Figure 7-12:

• Bits 0–3 of the effective address comprise the segment register number used to select
a segment descriptor, from which the virtual segment ID (VSID) is extracted.

• Bits 4–19 of the effective address define the page number (index) within the
segment; these bits are concatenated with the VSID from the segment descriptor to
form the virtual page number (VPN). The VPN is used to search for the PTE in the
TLB. If the VPN is not in the TBL a search is made of the page table in main
memory. The PTE then provides the physical page number (a.k.a. real page number
or RPN).

• Bits 20–31 of the effective address are the byte offset within the page; these are
concatenated with the real page number (RPN) field of a PTE to form the physical
(real) address used to access memory.

Chapter 7. Memory Management 7-35

7

Figure 7-12. Page Address Translation Overview

7.5.2.1 Segment Descriptor Definitions
The fields in the segment descriptors are interpreted differently depending on the value of
the T bit within the descriptor. When T = 1, the Segment descriptor defines a direct-store
segment, and the format is as described in Section 7.7.1, “Segment Descriptors for Direct-
Store segments.”

7.5.2.1.1 Segment Descriptor Format
The segment descriptors are 32 bits long and reside in one of 16 segment registers.
Figure 7-13 shows the format of a segment register used in page address translation (T = 0).

Figure 7-13. Segment Register Format for Page Address Translation.

52-Bit Virtual Address

32-Bit Effective Address

32-Bit Physical (real) Address

SR# API Byte Offset
(4 Bit) (6 Bit) (12 Bit)

Virtual Segment ID (VSID) Page Index Byte Offset
(24 Bit) (16 Bit) (12 Bit)

Physical Page Number (RPN) Byte Offset
(20 Bit) (12 Bit)

TLB/Page
Table Search

Page Index (16-bit)

RPN from the PTE

0 3 4 19 20 31

Segment
Registers

0 23 24 39 40 51

Virtual Page Number (VPN)

0 19 20 31

0 1 2 3 4 7 8 31

T Ks Kp N 0 0 0 0 VSID

Reserved

7-36 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

Table 7-13 provides the corresponding bit definitions of the segment register.

The Ks and Kp bits partially define the access protection for the pages within the
segment.The page protection provided in the PowerPC OEA is described in Section 7.5.4,
“Page Memory Protection.”

The virtual segment ID field is used as the high-order bits of the virtual page number (VPN)
as shown in Figure 7-12.

The segment registers are accessed with specific instructions that read and write them.
However, since the segment registers described here are merely a conceptual model, a
processor may implement separate segment register files each containing 16 registers for
instructions and for data. In this case, it is the responsibility of the system (either hardware
or software) to maintain the consistency between the multiple sets of segment register files.

The segment register instructions are summarized in Table 7-14. These instructions are
privileged in that they are executable only while operating in supervisor mode. See
Section 2.3.17, “Synchronization Requirements for Special Registers and for Lookaside
Buffers,” for information about the synchronization requirements when modifying the
segment registers. See Chapter 8, “Instruction set,” for more detail on the encodings of
these instructions.

Table 7-13. Segment Register Bit Definition for Page Address Translation

Bit Name Description

0 T T = 0 selects this format

1 Ks Supervisor-state protection key

2 Kp User-state protection key

3 N No-execute protection bit

4–7 — Reserved

8–31 VSID Virtual segment ID

Table 7-14. Segment Register Instructions

Instruction Description

mtsr SR,rS Move to Segment Register
SR[SR]← rS

mtsrin r S,rB Move to Segment Register Indirect
SR[rB[0–3]]←rS

mfsr r D,SR Move from Segment Register
rD←SR[SR]

mfsrin r D,rB Move from Segment Register Indirect
rD←SR[rB[0–3]]

Chapter 7. Memory Management 7-37

7

7.5.2.2 Page Table Entry (PTE) Definitions
Page table entries (PTEs) are generated and placed in the page table in memory by the
operating system using the hashing algorithm described in Section 7.6.1.3, “Page Table
Hashing Functions.” The PowerPC OEA defines each 64-bits.

• Word 0:

• The valid bit V is bit 0. A one in this bit indicates the PTE is valid.

• The virtual segment ID field is 24-bits and is found in bits 1-24.

• The hash bit H is found in bit 25.

• The API field is 6-bits and is found in bits 26-31. These bits are from the high order
6-bits of the page index. See Figure 7-12.

• Word 1:

• The RPN field is 20-bits and is found in bits 33-51. It contains the physical (real)
page number.

• The R and C bits are found in bits 55-56 of the PTE and maintain history information
for the page as described in Section 7.5.3, “Page History Recording.”

• The WIMG field is 4-bits and is found in bits 57-60 of the PTE and defines the
memory/cache control mode for accesses to the page.

• The PP bits are found in bits 62-63 of the PTE and defines the remaining access
protection constraints for the page. The page protection provided by PowerPC
processors is described in Section 7.5.4, “Page Memory Protection.”

The first 32 bits contain the valid bit V, the virtual segment ID (VSID), the hash bit H, and
the abbreviated page index (API). These 32-bits are used as match criteria when searching
through the PTE entries looking for a match to a virtual address.

Conceptually, the page table in memory must be searched to translate the address of every
reference. For performance reasons, however, some processors use TLBs to cache copies
of recently-used PTEs so that the table search time is eliminated for most accesses. In this
case, the TLB is searched for the address translation first. If a copy of the PTE is found,
then no page table search is performed. As TLBs are noncoherent caches of PTEs, software
that changes the page table in any way must perform the appropriate TLB invalidate
operations to keep the TLBs coherent with respect to the page table in memory.

7-38 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

7.5.2.2.1 PTE Format
Figure 7-14 shows the format of the two words that comprise a PTE.

Figure 7-14. Page Table Entry Format

Table 7-15 lists the corresponding bit definitions for each word in a PTE as defined above.

7.5.3 Page History Recording
Referenced (R) and changed (C) bits reside in each PTE to keep history information about
the page. The operating system then uses this information to determine which areas of
memory to write back to disk when new pages must be allocated in main memory.
Referenced and changed recording is performed only for accesses made with page address
translation and not for translations made with the BAT mechanism or for accesses that
correspond to direct-store (T = 1) segments. Furthermore, R and C bits are maintained only
for accesses made while address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1).

Table 7-15. PTE Bit Definitions

Word Bit Name Description

0 0 V Entry valid (V = 1) or invalid (V = 0)

1–24 VSID Virtual segment ID

25 H Hash function identifier

26–31 API Abbreviated page index

1 0–19 RPN Physical page number

20–22 — Reserved

23 R Referenced bit

24 C Changed bit

25–28 WIMG Memory/cache control bits

29 — Reserved

30–31 PP Page protection bits

Reserved

0 19 20 22 23 24 25 28 29 30 31

V VSID H API

0 1 24 25 26 31

RPN 000 R C WIMG 0 PP

Chapter 7. Memory Management 7-39

7

In general, the referenced and changed bits are updated to reflect the status of the page
based on the access, as shown in Table 7-16.

The processor uses the R and C bits to determine at a later time which pages in memory can
be replaced with pages on disk. Because user programs and their data can be much larger
than the space available in memory, only a small fraction of the total address space of a
program might be resident in main memory in the form of 4k pages. On a page fault the
system needs to remove a page from memory. Pages with no R or C bit set will be removed
first. A new page can simply be read in over unused pages. The PTE in memory must be
updated to reflect the removal on one page and the loading of another. The set of pages with
only the R bit set become the next candidate for removal. Finally, if only pages with both
R and C bit set remain in memory, then these pages are swapped. When the C bit is set it
indicates that a data item in the page has been modified, these pages must be written to disk
before the new page from disk can be read into it’s space.

The R bit for a page may be set by the execution of thedcbt or dcbtst instruction to that
page. However, neither of these instructions cause the C bit to be set.

7.5.3.1 Referenced Bit
The referenced bit for each real page is located in the PTE. Every time a page is referenced
(by an instruction fetch, or any other read access) the referenced bit is set in the page table.
The referenced bit may be set immediately, or the setting may be delayed until the memory
access is determined to be successful. Because the reference to a page is what causes a PTE
to be loaded into the TLB, some processors may assume the R bit in the TLB is always set.
The processor never automatically clears the referenced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At
times, the referenced bit may be set although the access was not logically required by the
program or even if the access was prevented by memory protection. Examples of this
include the following:

• Fetching of instructions not subsequently executed
• Accesses generated by anlswx or stswx instruction with a zero length
• Accesses generated by astwcx. instruction when no store is performed
• Accesses that cause exceptions and are not completed

Table 7-16. Table Search Operations to Update History Bits

R and C bits Processor Action

00 Page Has not been referenced

01 Combination doesn’t occur

10 Page has been referenced but not modified

11 Page has been modified

7-40 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

7.5.3.2 Changed Bit
The changed bit for each virtual page is located both in the PTE in the page table and in the
copy of the PTE loaded into the TLB (if a TLB is implemented). Whenever a data store
instruction is executed successfully, if the TLB search (for page address translation) results
in a hit, the changed bit in the matching TLB entry is checked. If it is already set, no
additional action is required. If the TLB changed bit is 0, it is set and a table search
operation is performed to set the C bit in the corresponding PTE in the page table.

Processors cause the changed bit (in both the PTE in the page tables and in the TLB if
implemented) to be set only when a store operation is allowed by the page memory
protection mechanism and the store is guaranteed to be in the execution path, unless an
exception, other than those caused by one of the following occurs:

• System-caused interrupts (system reset, machine check, external, and decrementer
interrupts)

• Floating-point enabled exception type program exceptions when the processor is in
an imprecise mode

• Floating-point assist exceptions for instructions that cause no other kind of precise
exception

Furthermore, the following conditions may cause the C bit to be set:

• The execution of an stwcx. instruction is allowed by the memory protection
mechanism but a store operation is not performed.

• The execution of anstswx instruction is allowed by the memory protection
mechanism but a store operation is not performed because the specified length is
zero.

• A dcba or dcbi instruction is executed.

No other cases cause the C bit to be set.

7.5.3.3 Scenarios for Referenced and Changed Bit Recording
This section provides a summary of the model (defined by the OEA) used by PowerPC
processors that maintain the referenced and changed bits automatically in hardware, in the
setting of the R and C bits. In some scenarios, the bits are guaranteed to be set by the
processor; in some scenarios, the architecture allows that the bits may be set (not absolutely
required); and in some scenarios, the bits are guaranteed to not be set.

NOTE: When the hardware updates the R and C bits in memory, the accesses are
performed as a physical memory access, as if the WIMG bit settings were
0b0010 (that is, as unguarded cacheable operations in which coherency is
required).

In implementations that do not maintain the R and C bits in hardware, software assistance
is required. For these processors, the information in this section still applies, except that the

Chapter 7. Memory Management 7-41

7

software performing the updates is constrained to the rules described (that is, must set bits
shown as guaranteed to be set and must not set bits shown as guaranteed to not be set)

NOTE: This software should be contained in the area of memory reserved for
implementation-specific use and should be invisible to the operating system.

Table 7-17 defines a prioritized list of the R and C bit settings for all scenarios. The entries
in the table are prioritized from top to bottom, such that a matching scenario occurring
closer to the top of the table takes precedence over a matching scenario closer to the bottom
of the table. For example, if anstwcx. instruction causes a protection violation and there is
no reservation, the C bit is not altered, as shown for the protection violation case.

In the table, load operations include those generated by load instructions, by theeciwx
instruction, and by the cache management instructions that are treated as loads with respect
to address translation. Similarly, store operations include those operations generated by
store instructions, by theecowxinstruction, and by the cache management instructions that
are treated as stores with respect to address translation.

Table 7-17. Model for Guaranteed R and C Bit Settings

Priority Scenario
Causes Setting

of R Bit
Causes Setting

of C Bit

1 No-execute protection violation No No

2 Page protection violation Maybe No

3 Out-of-order instruction fetch or load operation Maybe No

4 Out-of-order store operation for instructions that will
cause no other kind of precise exception (in the
absence of system-caused, imprecise, or floating-point
assist exceptions)

Maybe1 Maybe1

5 All other out-of-order store operations Maybe1 No

6 Zero-length load (lswx) Maybe No

7 Zero-length store (stswx) Maybe1 Maybe1

8 Store conditional (stwcx.) that does not store Maybe1 Maybe1

9 In-order instruction fetch Yes2 No

10 Load instruction or eciwx Yes No

11 Store instruction, ecowx , dcbz , or dcba 3 instruction Yes Yes

12 icbi , dcbt , dcbtst , dcbst , or dcbf instruction Maybe No

13 dcbi instruction Maybe1 Maybe1

Notes :
1 If C is set, R is guaranteed to also be set.
2 This includes the case in which the instruction was fetched out of order and R was not set.
3 For a dcba instruction that does not modify the target block, it is possible that neither bit is set.

7-42 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

7.5.3.4 Synchronization of Memory Accesses and Referenced and
Changed Bit Updates

Although the processor updates the referenced and changed bits in the page tables
automatically, these updates are not guaranteed to be immediately visible to the program
after the load, store, or instruction fetch operation that caused the update. If processor A
executes a load or store or fetches an instruction, the following conditions are met with
respect to performing the access and performing any R and C bit updates:

• If processor A subsequently executes asyncinstruction, both the updates to the bits
in the page table and the load or store operation are guaranteed to be performed with
respect to all processors and mechanisms before thesync instruction completes on
processor A.

• Additionally, if processor B executes atlbie instruction that

— signals the invalidation to the hardware,

— invalidates the TLB entry for the access in processor A, and

— is detected by processor A after processor A has begun the access,
and processor B executes atlbsync instruction after it executes thetlbie, both the
updates to the bits and the original access are guaranteed to be performed with
respect to all processors and mechanisms before thetlbsync instruction completes
on processor A.

7.5.4 Page Memory Protection
In addition to the no-execute option that can be programmed at the segment descriptor level
to prevent instructions from being fetched from a given segment (shown in Figure 7-4),
there are a number of other memory protection options that can be programmed at the page
level. The page memory protection mechanism allows selectively granting read access,
granting read/write access, and prohibiting access to areas of memory based on a number
of control criteria.

The memory protection used by the block and page address translation mechanisms is
different in that the page address translation protection defines a key bit that, in conjunction
with the PP bits, determines whether supervisor and user programs can access a page. For
specific information about block address translation, refer to Section 7.4.4, “Block
Memory Protection.”

For page address translation, the memory protection mechanism is controlled by the
following:

• MSR[PR], which defines the mode of the access as follows:

— MSR[PR] = 0 corresponds to supervisor mode
— MSR[PR] = 1 corresponds to user mode

• Ks and Kp, the supervisor and user key bits, which define the key for the page

• The PP bits, which define the access options for the page

Chapter 7. Memory Management 7-43

7

The key bits (Ks and Kp) and the PP bits are located as follows for page address translation:

• Ks and Kp are located in the segment descriptor.

• The PP bits are located in the PTE.

The key bits, the PP bits, and the MSR[PR] bit are used as follows:

• When an access is generated, one of the key bits is selected to be the key as follows:

— For supervisor accesses (MSR[PR] = 0), the Ks bit is used and Kp is ignored
— For user accesses (MSR[PR] = 1), the Kp bit is used and Ks is ignored

That is, key = (Kp & MSR[PR]) | (Ks & ¬MSR[PR])

• The selected key is used with the PP bits to determine if instruction fetching, load
access, or store access is allowed.

Table 7-18 shows the types of accesses that are allowed for the general case (all possible
Ks, Kp, and PP bit combinations), assuming that the N bit in the segment descriptor is
cleared (the no-execute option is not selected).

Thus, the conditions that cause a protection violation (not including the no-execute
protection option for instruction fetches) are depicted in Table 7-22 and as a flow diagram
in Figure 7-17.

Any access attempted (read or write) when the key = 1 and PP = 00, causes a protection
violation exception condition. When key = 1 and PP = 01, an attempt to perform a write
access causes a protection violation exception condition. When PP = 10, all accesses are
allowed, and when PP = 11, write accesses always cause an exception. The processor takes
either the ISI or the DSI exception (for an instruction or data access, respectively) when
there is an attempt to violate the memory protection.

Table 7-18. Access Protection Control with Key

Key1 PP2 Page Type

0 00 Read/write

0 01 Read/write

0 10 Read/write

0 11 Read only

1 00 No access

1 01 Read only

1 10 Read/write

1 11 Read only

Notes :
1 Ks or Kp selected by state of MSR[PR]
2 PP protection option bits in PTE

7-44 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

Any combination of the Ks, Kp, and PP bits is allowed. One example is if the Ks and Kp
bits are programmed so that the value of the key bit for Table 7-19 directly matches the
MSR[PR] bit for the access. In this case, the encoding of Ks = 0 and Kp = 1 is used for the
PTE, and the PP bits then enforce the protection options shown in Table 7-20.

However, if the setting Ks = 1 isused, supervisor accesses are treated as user reads and
writes with respect to Table 7-20. Likewise, if the setting Kp = 0 is used, user accesses to
the page are treated as supervisor accesses in relation to Table 7-20. Therefore, by
modifying one of the key bits (in the segment descriptor), the way the processor interprets
accesses (supervisor or user) in a particular segment can easily be changed. Note, however,
that only supervisor programs are allowed to modify the key bits for the segment descriptor.
Access to the segment registers is privileged.

Table 7-19. Exception Conditions for Key and PP Combinations

Key PP
Prohibited
Accesses

0 0x None

1 00 Read/write

1 01 Write

x 10 None

x 11 Write

Table 7-20. Access Protection Encoding of PP Bits for Ks = 0 and Kp = 1

PP
Field

Option
User Read
(Key = 1)

User Write
(Key = 1)

Supervisor
Read

(Key = 0)

Supervisor
Write

(Key = 0)

00 Supervisor-only Violation Violation y y

01 Supervisor-write-only y Violation y y

10 Both user/supervisor y y y y

11 Both read-only y Violation y Violation

Chapter 7. Memory Management 7-45

7

When the memory protection mechanism prohibits a reference, the flow of events is similar
to that for a memory protection violation occurring with the block protection mechanism.
As shown in Figure 7-15, one of the following occurs depending on the type of access that
was attempted:

• For data accesses, a DSI exception is generated and DSISR[4] is set. If the access is
a store, DSISR[6] is also set.

• For instruction accesses,

— an ISI exception is generated and SRR1[4] is set, or

— an ISI exception is generated and SRR1[3] is set if the segment is designated as
no-execute.

The only difference between the flow shown in Figure 7-15 and that of the block memory
protection violation is the ISI exception that can be caused by an attempt to fetch an
instruction from a segment that has been designated as no-execute (N bit set in the segment
descriptor). See Chapter 6, “Exceptions,” for more information about these exceptions.

Figure 7-15. Memory Protection Violation Flow for Pages

If the page protection mechanism prohibits a store operation, the changed bit is not set (in
either the TLB or in the page tables in memory); however, a prohibited store access may

DSI Exception

Page Memory
Protection Violation

DSISR[4] ← 1

Abort Access

dcbt/dcbtst
Instruction

otherwise

Instruction
Access

Data
Access

SRR1[4] ← 1

ISI Exception

otherwise

N Bit Set in
Segment Descriptor

SRR1[3] ← 1

7-46 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

cause a PTE to be loaded into the TLB and consequently cause the referenced bit to be set
in a PTE (both in the TLB and in the page table in memory).

7.5.5 Page Address Translation Summary
Figure 7-16 provides the detailed flow for the page address translation mechanism which
includes the checking of the N bit in the segment descriptor and then expands on the ‘TLB
Hit’ branch of Figure 7-4.

The detailed flow for the ‘TLB Miss’ branch of Figure 7-4 is described in Section 7.6.2,
“Page Table Updates.”

The checking of memory protection violation conditions for page address translation is
shown in Figure 7-17.

The ‘Invalidate TLB Entry’ box shown in Figure 7-16 is marked as implementation-
specific as this level of detail for TLBs (and the existence of TLBs) is not dictated by the
architecture.

NOTE: Figure 7-16 does not show the detection of all exception conditions shown in
Table 7-4 and Table 7-5; the flow for many of these exceptions is
implementation-specific.

Chapter 7. Memory Management 7-47

7

Figure 7-16. Page Address Translation Flow—TLB Hit

(See Figure 7-25)

(See Figure 7-17)

TLB Hit
Case

Effective Address
Generated

Compare Virtual Address
with TLB Entries

Continue Access to Memory
Subsystem with WIMG bits

from PTE

Page Table
Search Operation

PA0–PA31←RPN || A30–A31Invalidate TLB entry

Generate 52-Bit
 Virtual Address from
Segment Descriptor

Page Address
Translation

Check Page Memory
 Protection Violation Conditions

Page Memory
Protection Violation

Access ProhibitedAccess Permitted

otherwise
Store Access with

PTE [C] = 0

otherwise

(See Figure 7-15)

I-Fetch with N Bit Set in
Segment Descriptor

 (No-Execute)

Implementation-specificNote :

7-48 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7
Figure 7-17. Page Memory Protection Violation Conditions for Page Address

Translation

7.6 Hashed Page Tables
If a copy of the PTE corresponding to the VPN for an access is not resident in a TLB
(corresponding to a miss in the TLB, provided a TLB is implemented), the processor must
search for the PTE in the page tables set up in main memory by the operating system.

The only variables the operating system has available when defining the page table is the
size of the table and its location in main memory. The latter has no influence on system
performance. The former (size) will influence the number of PTEs in each group and thus
determine the length of the serial search within a group before a match is found.

The rule of thumb is to allocate a table of a size such that only one or two PTEs reside in a
group. The hash value is defined by the architecture to be the XOR of the SID with the page
index EA[4-19] and all PowerPC processor’s hardware use this algorithm. In real time
while systems are running the only other method to influence the distribution of PTEs in a
page table is the assignment of SIDs to program segments. Some operating systems
actually allocate SIDs from pre-calculated tables and assign values to programs that
optimize the randomness of hash products. This in turn generates a flatter distribution for
PTEs in the page table.

The page table search operation is performed by hardware or software. In either case real
addressing mode is used as if MSR[DR]=0 and the M bit is set.

Select Key:
If MSR[PR] = 0, key = Ks
If MSR[PR] = 1, key = Kp

Check Page Memory
Protection Violation

Conditions

Access Permitted

otherwise

Read Access with
key || PP =

100

Write Access with
key || PP = any of:

011
100
101
111

Access Prohibited (See Figure 7-15)

Chapter 7. Memory Management 7-49

7

This section describes the format of the page tables and the algorithm used to access them.
In addition, the constraints imposed on the software in updating the page tables (and other
MMU resources) are described.

7.6.1 Page Table Definition
The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, its
starting address is a multiple of its size, and the table must reside in memory with the
WIMG attributes of 0b0010.

The page table contains a number of page table entry groups (PTEGs). A PTEG contains
eight PTEs of eight bytes each; therefore, each PTEG is 64 bytes long. PTEG addresses are
entry points for table search operations. Figure 7-18 shows two PTEG addresses
(PTEGaddr1 and PTEGaddr2) where a given PTE may reside.

Figure 7-18. Page Table Definitions

A given PTE can reside in one of two possible PTEGS—one is the primary PTEG and the
other is the secondary PTEG. Additionally, a given PTE can reside in any of the PTE
locations within an addressed PTEG. Thus, a given PTE may reside in one of 16 possible
locations within the page table. If a given PTE is not in either the primary or secondary
PTEG, a page table miss occurs, this is defined as a page fault condition.

A table search operation is defined as the search for a PTE within a primary or secondary
PTEG. When a table search operation commences, a primary hashing function is performed

8 bytes

PTE0 PTE1 PTE7 PTEG0

PTE0 PTE1 PTE7

PTE0 PTE1 PTE7

PTEGn

PTEGaddr1

PTEGaddr2

Page Table

7-50 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

on the virtual address. The output of the hashing function is then concatenated with bits
stored in the SDR1 register by the operating system to create the physical address of the
primary PTEG. The PTEs in the PTEG are then checked, one by one, to see if there is a hit
within the PTEG. If the PTE is not located, a secondary hashing function is performed, a
new physical address is generated for the PTEG, and the PTE is searched for again, using
the secondary PTEG address.

Note, however, that although a given PTE may reside in one of 16 possible locations, an
address that is a primary PTEG address for some accesses also functions as a secondary
PTEG address for a second set of accesses (as defined by the secondary hashing function).
Therefore, these 16 possible locations are really shared by two different sets of effective
addresses. Section 7.6.1.6, “Page Table Structure Examples,” illustrates how PTEs map
into the 16 possible locations as primary and secondary PTEs.

7.6.1.1 SDR1 Register Definitions
The SDR1 register contains the control information for the page table structure in that it
defines the high-order bits for the physical base address of the page table and it defines the
size of the table.

NOTE: There are certain synchronization requirements for writing to SDR1 which are
described in Section 2.3.17, “Synchronization Requirements for Special
Registers and for Lookaside Buffers.” The format of the SDR1 register shown in
the following sections.

Figure 7-19 shows the SDR1 register layout and its bit settings are shown in Table 7-21.

Figure 7-19. SDR1 Register Format

The HTABORG field in SDR1 contains the high-order 16 bits of the 32-bit physical address
of the page table. Therefore, the beginning of the page table lies on a 216 byte (64 Kbyte)
boundary at a minimum. the processor does not support 32 bits of physical address,
software should write zeros to those unsupported bits in the HTABORG field (as the
implementation treats them as reserved). Otherwise, a machine check exception can occur.

Table 7-21. SDR1 Register Bit Settings

Bits Name Description

0–15 HTABORG Physical base address of page table

16–22 — Reserved

23–31 HTABMASK Mask for page table address

0 0 0 0 0 0 0 HTABMASK

Reserved

0 15 16 22 23 31

HTABORG

Chapter 7. Memory Management 7-51

7

A page table can be any size 2
n

bytes where 16≤ n ≤ 25. The HTABMASK field in SDR1
contains a mask value that determines how many bits from the output of the hashing
function are used as the page table index. This mask must be of the form 0b00...011...1 (a
string of 0 bits followed by a string of 1 bits). As the table size increases, more bits are used
from the output of the hashing function to index into the table. The 1 bits in HTABMASK
determine how many additional bits (beyond the minimum of 10) from the hash are used in
the index; the HTABORG field must have the same number of lower-order bits equal to 0
as the HTABMASK field has lower-order bits equal to 1.

Example:

Suppose that the page table is 16,384 (214) 128-byte PTEGs, for a total size of 221 bytes
(2 Mbytes). A 14-bit index is required. Eleven bits are provided from the hash to start with,
so 3 additional bits from the hash must be selected. Thus the value in HTABMASK must
be 7 (3 binary 1’s) and the value in HTABORG must have its low-order 3 bits (SDR1[13-
15]) equal to 0. This means that the page table must begin on a 2<3 + 11 + 7>= 2 21 = 2-
Mbyte boundary.

7.6.1.2 Page Table Size
The ratio between the number of entries in the page table and the page table capacity
directly affects performance because it influences the hit probability and search time in the
PTEG in the page table. If the table is too small, too many PTEs may be resident in each
PTEG. This increases the serial search time within a group. In some cases all 16 entries
could be utilized. This would cause unnecessary page thrashing. The minimum size for a
page table is 64 Kbytes (210PTEGs of 64 bytes each). The reason for this is that the 10 low-
order bits of the page index are not stored in the PTE. However, it is recommended that the
total number of PTEGs in the page table be at least half the number of physical page frames
to be mapped. This yields an average of 2 PTEs in a PTEG or a 25% utilization of the page
table. While avoidance of hash collisions cannot be guaranteed for any size page table,
making the page table larger than the recommended minimum size reduces the frequency
of such collisions by making the primary PTEGs more sparsely populated, and further
reducing the need to use the secondary PTEGs. Ideally, the best performance is realized
where there is one PTEG for each physical page and there is a completely flat distribution
of the hashing function. Then the hash pointer yields a hit every time and no serial search
of the PTEG is necessary. A table of this size would have a 12.5% utilization of PTEs in the
page table.

Table 7-22 shows some example sizes for total main memory. The recommended minimum
page table size for these example memory sizes are then outlined, along with their
corresponding HTABORG and HTABMASK settings in SDR1.

7-52 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

NOTE: Systems with less than 8 Mbytes of main memory may be designed with some
processors, but the minimum amount of memory that can be used for the page
tables in these cases is 64 Kbytes.

As an example, if the physical memory size is 229 bytes (512 Mbyte), then there are
229 – 212 (4 Kbyte page size) = 217 (128 Kbyte) total page frames. If this number of page
frames is divided by 2, the resultant minimum recommended page table size is 216 PTEGs,
or 222 bytes (4 Mbytes) of memory for the page tables.

7.6.1.3 Page Table Hashing Functions
The MMU uses two different hashing functions, a primary and a secondary, in the creation
of the physical addresses used in a page table search operation. These hashing functions
distribute the PTEs within the page table, in that there are two possible PTEGs where a
given PTE can reside. Additionally, there are eight possible PTE locations within a PTEG
where a given PTE can reside. If a PTE is not found using the primary hashing function,
the secondary hashing function is performed, and the secondary PTEG is searched.

NOTE: These two functions must also be used by the operating system to set up the page
tables in memory appropriately.

Typically, the hashing functions provide a high probability that a required PTE is resident
in the page table, without requiring the definition of all possible PTEs in main memory.
However, if a PTE is not found in the secondary PTEG, a page fault occurs and an exception
is taken. Thus, the required PTE can then be placed into either the primary or secondary
PTEG by the system software, and on the next TLB miss to this page (in those processors

Table 7-22. Minimum Recommended Page Table Sizes

Total Main Memory

 Recommended Minimum
Settings for Recommended

Minimum

Memory for Page
Tables

Number of
Mapped

Pages (PTEs)

Number of
PTEGs

HTABORG
(Maskable
Bits 7–15)

HTABMASK

8 Mbytes (223) 64 Kbytes (216) 213 210 x xxxx xxxx 0 0000 0000

16 Mbytes (224) 128 Kbytes (217) 214 211 x xxxx xxx0 0 0000 0001

32 Mbytes (225) 256 Kbytes (218) 215 212 x xxxx xx00 0 0000 0011

64 Mbytes (226) 512 Kbytes (219) 216 213 x xxxx x000 0 0000 0111

128 Mbytes (227) 1 Mbyte (220) 217 214 x xxxx 0000 0 0000 1111

256 Mbytes (228) 2 Mbytes (221) 218 215 x xxx0 0000 0 0001 1111

512 Mbytes (229) 4 Mbytes (222) 219 216 x xx00 0000 0 0011 1111

1 Gbytes (230) 8 Mbytes (223) 220 217 x x000 0000 0 0111 1111

2 Gbytes (231) 16 Mbytes (224) 221 218 x 0000 0000 0 1111 1111

4 Gbytes (232) 32 Mbytes (225) 222 219 0 0000 0000 1 1111 1111

Chapter 7. Memory Management 7-53

7

that implement a TLB), the PTE will be found in the page tables (and loaded into an on-
chip TLB).

The address of a PTEG is derived from the HTABORG field of the SDR1 register, and the
output of the corresponding hashing function (primary hashing function for primary PTEG
and secondary hashing function for a secondary PTEG). The value in the determines how
many of the higher-order hash value bits are masked and how many are used in the
generation of the physical address of the PTEG.

Figure 7-20 depicts the hashing functions defined by the PowerPC OEA. The inputs to the
primary hashing function are the lower-order 19 bits of the VSID field of the selected
segment register (bits 5–23 of the 52-bit virtual address), and the page index field of the
effective address (bits 24–39 of the virtual address) concatenated with three zero higher-
order bits. The XOR of these two values generates the output of the primary hashing
function (hash value 1).

When the secondary hashing function is required, the output of the primary hashing
function is one’s complemented, to provide hash value 2

Figure 7-20. Hashing Functions for Page Tables

Lower-Order 19 Bits of VSID (from Segment Register)

VA5 VA23

VA24 VA39

Primary Hash:

XOR

Output of Hashing Function 1

0 8 9 18

=

Secondary Hash:

Hash Value 1

0 18

Output of Hashing Function 2

0 8 9 18

Hash Value 1

Hash Value 2

One’s Complement Function

0 0 0 Page Index (from Effective Address(4-19))

7-54 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

7.6.1.4 Page Table Addresses
The following sections illustrate hash address generation and table structures for the page
table and the SDR1 register that locates and defines the size of the page table.

Two of the elements that define the virtual address (the VSID field of the segment descriptor
and the page index field of the effective address) are used as inputs into a hashing function.
Depending on whether the primary or secondary PTEG is to be accessed, the processor uses
either the primary or secondary hashing function as described in Section 7.6.1.3, “Page
Table Hashing Functions.”

NOTE: Unless all accesses to be performed by the processor can be translated by the
BAT mechanism when address translation is enabled (MSR[DR] or
MSR[IR] = 1), the SDR1 must point to a valid page table; otherwise, a machine
check exception can occur.

Additionally, care should be given that page table location in memory not conflict with
other reserved areas in memory. Such as the exception vector programs or tables, memory
mapped I/O areas, or other implementation-specific areas (refer to Section 7.2.1.1,
“Predefined Physical Memory Locations”). The base address of the page table is defined by
the 16 high-order bits of SDR1. (i.e. HTABORG).

When a TLB miss occurs, a PTEG address is generated as follows: The high-order 7 bits
are taken directly from the corresponding bits of SDR1. The low-order 6 bits are set to zero.
A hash value (hopefully a random number with a flat distribution) is generated by an XOR
of VA[5-23] and 3 zeros concatenated to VA[24-39] yielding a 19 bit value. Depending
upon the page table size at least 10 and at most 19 bits are passed forward. The number of
bits selected is controlled by the HTABMASK bits of the SDR1 register. This mask is a 9
bit value and is ANDed with the 9 high-order bits of the hash value. The results of this
boolean operation is passed forward and ORed with the low-order 9 bits of the HTABORG
(i.e. SRD1[7-15]). The output of these two boolean operations become the nine address bits
PTEG[7-15] of the PTEG address. Address bits PTEG[16-25] are taken directly from the
10 low-order bits of the hash function.

Figure 7-21 provides a graphical description of the generation of the PTEG address.

Chapter 7. Memory Management 7-55

7

Figure 7-21. Generation of Addresses for Page Tables

Virtual Segment ID API Byte Offset
(24 Bit) (6 Bit) (12 Bit)

Virtual Page Number (VPN)

PAGE TABLE

(3 Bit)

0 4 5 23 24 29 30 39 40 51

SDR1

xxxx xx 00 00 011 . .
.1

0 6 7 15 16 22 23 31 0 8 9 18

32-Bit Physical Address of Page Table Entry

PTE0

64 Bytes

52-Bit Virtual Address

PTE7
8 Bytes

32-Bit Physical Address

VSID API
(24 Bit) (6 Bit)

V H

Physical Page Number (RPN)
(20 Bit)

0 19 23 25 29 31

WIMG

AND

OR

(7 Bit) (9 Bit) (10 Bit)

RPN Byte Offset
(20 Bit) (12 Bit)

(16 Bit)

Hash Function(XOR)

Hash Value
(19 Bit)

PTEG0

PTEGn

Page Index (16 Bit)

Mask

0 6 7 15 16 25 26 31

PTEG Select

PP

PTE
0 1 24 25 26 31

9 Bits 10 Bits

0 0 0 0 0 0 0

000 0

0 0 0

0 0 0 0 0 0
(6 Bit)

Base
Address

CR

7-56 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

7.6.1.5 Page Table Structure Summary
In the process of searching for a PTE, the processor interprets the values read from memory
as described in Section 7.5.2.2, “Page Table Entry (PTE) Definitions.” The VSID and the
abbreviated page index (API) fields of the virtual address of the access are compared to
those same fields of the PTEs in memory. In addition, the valid (V) bit and the hashing
function (H) bit are also checked. For a hit to occur, the V bit of the PTE in memory must
be set. If the fields match and the entry is valid, the PTE is considered a hit if the H bit is
set as follows:

• If this is the primary PTEG, H = 0
• If this is the secondary PTEG, H = 1

The physical address of the PTE(s) to be checked is derived as shown in Figure 7-22 and
Figure 7-23, and the generated address is the address of a group of eight PTEs (a PTEG).
During a table search operation, the processor compares up to 16 PTEs: PTE0–PTE7 of the
primary PTEG (defined by the primary hashing function) and PTE0–PTE7 of the secondary
PTEG (defined by the secondary hashing function).

If the VSID and API fields do not match or V and H are not set appropriately for any of
these PTEs, a page fault occurs and an exception is taken.The page in question is considered
as nonresident (page fault) and the operating system must load the page into main memory
and update the page table accordingly. If a valid PTE is located in the page table, the page
is considered resident and the TLB can be loaded.

The architecture does not specify the order in which the PTEs are checked.

NOTE: For maximum performance however, PTEs should be allocated by the operating
system first beginning with the PTE0 location within the primary PTEG, then
PTE1, and so on. If more than eight PTEs are required within the address space
that defines a PTEG address, the secondary PTEG can be used (again, allocation
of PTE0 of the secondary PTEG first, and so on is recommended). Additionally,
it may be desirable to place the PTEs that will require most frequent access at the
beginning of a PTEG and reserve the PTEs in the secondary PTEG for the least
frequently accessed PTEs.

The architecture also allows for multiple matching entries to be found within a table search
operation. Multiple matching PTEs are allowed if they meet the match criteria described
above, as well as have identical RPN, WIMG, and PP values, allowing for differences in
the R and C bits. In this case, one of the matching PTEs is used and the R and C bits are
updated according to this PTE. In the case that multiple PTEs are found that meet the match
criteria but differ in the RPN, WIMG or PP fields, the translation is undefined and the
resultant R and C bits in the matching entries are also undefined.

NOTE: Multiple matching entries can also differ in the setting of the H bit, but the H bit
must be set according to whether the PTE was located in the primary or
secondary PTEG, as described above.

Chapter 7. Memory Management 7-57

7

7.6.1.6 Page Table Structure Example
Figure 7-22 shows the structure of an example page table. The base address of the page
table is defined by SDR1[HTABORG] concatenated with 16 zero bits. In this example, the
address is identified by bits 0–13 in SDR1[HTABORG]; note that bits 14 and 15 of
HTABORG must be zero because the lower-order two bits of HTABMASK are ones. The
addresses for individual PTEGs within this page table are then defined by bits 14–25 as an
offset from bits 0–13 of this base address. Thus, the size of the page table is defined as 4096
PTEGs.

Figure 7-22. Example Page Table Structure

PTE0 PTE1 PTE7 PTEG0

PTE0 PTE1 PTE7

PTE0 PTE1 PTE7

PTEG4095

PTEGaddr1

PTEGaddr2

Page Table

Example:

Given: SDR1 1010 0110 0000 0000 0000 0000 0000 0011

0 15 23 31

Base Address

$A600 0000

PTEGaddr1 = 1010 0110 0000 00mm aaaa aaaa aa00 0000

0 14 25 31

PTEGaddr2 = 1010 0110 0000 00nn bbbb bbbb bb00 0000

0 14 25 31

HTABORG HTABMASK

7-58 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

Two example PTEG addresses are shown in the Figure 7-22 as PTEGaddr1 and
PTEGaddr2. Bits 14–25 of each PTEG address in this example page table are derived from
the output of the hashing function (bits 26–31 are zero to start with PTE0 of the PTEG). In
this example, the ‘b’ bits in PTEGaddr2 are the one’s complement of the ‘a’ bits in
PTEGaddr1. The ‘n’ bits are also the one’s complement of the ‘m’ bits, but these two bits
are generated from bits 7–8 of the output of the hashing function, logically ORed with bits
14–15 of the HTABORG field (which must be zero). If bits 14–25 of PTEGaddr1 were
derived by using the primary hashing function, then PTEGaddr2 corresponds to the
secondary PTEG.

Note, however, that bits 14–25 in PTEGaddr2 can also be derived from a combination of
effective address bits, segment register bits, and the primary hashing function. In this case,
then PTEGaddr1 corresponds to the secondary PTEG. Thus, while a PTEG may be
considered a primary PTEG for some effective addresses (and segment register bits), it may
also correspond to the secondary PTEG for a different effective address (and segment
register value).

It is the value of the H bit in each of the individual PTEs that identifies a particular PTE as
either primary or secondary (there may be PTEs that correspond to a primary PTEG and
PTEs that correspond to a secondary PTEG, all within the same physical PTEG address
space). Thus, only the PTEs that have H = 0 are checked for a hit during a primary PTEG
search. Likewise, only PTEs with H = 1 are checked in the case of a secondary PTEG
search.

7.6.1.7 PTEG Address Mapping Examples
This section contains an example of an effective address and how its address translation (the
PTE) maps into the primary PTEG in physical memory. The example illustrates how the
processor generates PTEG addresses for a table search operation; this is also the algorithm
that must be used by the operating system when placing page table entries into the page
table.

Figure 7-23 shows an example of PTEG address generation. In the example, the value in
SDR1 defines a page table at address 0x0F98_0000 that contains 8192 PTEGs. The
example effective address selects segment register 0 (SR0) using the high order four bits.
The contents of SR0 are then used along with bits 4–31 of the effective address to create
the 52-bit virtual address.

To generate the address of the primary PTEG, bits 5–23, and bits 24–39 of the virtual
address are then used as inputs into the primary hashing function (XOR) to generate hash
value 1. The low-order 13 bits of hash value 1 are then concatenated with the high-order 13
bits of HTABORG and with six low-order 0 bits, defining the address of the primary PTEG
(0x0F9F_F980).

Chapter 7. Memory Management 7-59

7

Figure 7-23. Example Primary PTEG Address Generation

Figure 7-24 shows the generation of the secondary PTEG address for this example. If the
secondary PTEG is required, the secondary hash function is performed and the high-order
9 bits of secondary hash (one’s complement of primary hash results) are ANDed with the
HTABMASK and then ORed with the low-order 9 bits of HTABORG (bits 13–15 of
HTABORG must be zero), and concatenated with six low-order 0 bits. These bits are
concatenated with HTABORG[0-6] to form the address of the secondary PTEG
(0x0F98_0640).

Example:

Given: SDR1 0000 1111 1001 1000 0000 0000 0000 0111

0 15 23 31
HTABORG HTABMASK

0000 0000 1111 1111 1010 0000 0001 1011

0 4 19 20 31

EA =

SR0

Segment Register Select

0010 0000 1100 1010 0111 0000 0001 1100

0xC A 7 0 1 C

8 31

1100 1010 0111 0000 0001 1100 0000 1111 1111 1010 0000 0001 1011

5 23 24 39

Virtual Address:

Byte Offset

Page IndexVSID

Primary Hash: 010 0111 0000 0001 1100

XOR

000 0000 1111 1111 1010
Hash Value 1 010 0111 1111 1110 0110

9-bits 10-bits

0000 1111 1001 1111 1111 1001 1000 0000

x’ 0 F 9 F F 9 8 0’

Primary PTEG Address: Start at PTE0

HTABORG

HTABMASK 9-bits
0 0000 0111

0000 1111 1001 1000

0 or

and

6 7 15

“The AND and OR operation effectively move
these three bits into PTEG address”

7-60 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

As described in Figure 7-22, the 10 low-order bits of the page index field are always used
in the generation of a PTEG address (through the hashing function). This is why only the
abbreviated page index (API) is defined for a PTE (the entire page index field does not need
to be checked). For a given effective address, the low-order 10 bits of the page index (at
least) contribute to the PTEG address (both primary and secondary) where the
corresponding PTE may reside in memory. Therefore, if the high-order 6 bits (the API field)
of the page index match with the API field of a PTE within the specified PTEG, the PTE
mapping is guaranteed to be the unique PTE required.

Figure 7-24. Example Secondary PTEG Address Generation

NOTE: A given PTEG address does not map back to a unique effective address. Not only
can a given PTEG be considered both a primary and a secondary PTEG (as
described in Section 7.6.1.6, “Page Table Structure Examples”), but in this
example, bits 24–26 of the page index field of the virtual address are not used to
generate the PTEG address. Therefore, any of the eight combinations of these
bits will map to the same primary PTEG address. (However, these bits are part
of the API and are therefore compared for each PTE within the PTEG to
determine if there is a hit.) Furthermore, an effective address can select a
different segment register with a different value such that the output of the

Hash Value 2: 101 1000 0000 0001 1001

Secondary PTEG Address:

0000 1111 1001 1000 0000 0110 0100 0000

0x 0 F 9 8 0 6 4 0

9 Bits 10 Bits

1) First compare 8 PTEs
at 0x0F9F_F980

2) Then compare 8 PTEs
at 0x0F98_0640,
if necessary

HTABORG

0x0F98_0000

0x0F98_0640

0x0F9F_F980

PTEG0

PTEG25

PTEG8166

PTEG8191

010 0111 1111 1110 0110

One’s Complement

Secondary Hash:

010 0111 1111 1110 0110Hash Value 1:

Start at PTE0

PTE0 PTE7

PTE0 PTE7

13 16 25

Chapter 7. Memory Management 7-61

7

primary (or secondary) hashing function happens to equal the hash values shown
in the example. Thus, these effective addresses would also map to the same
PTEG addresses shown.

7.6.2 Page Table Search Process
An outline of the page table search process is as follows:

1. The 32-bit physical addresses of the primary and secondary PTEGs are generated as
described in the Section 7.6.1.7, “PTEG Address Mapping Examples.”

2. As many as 16 PTEs (from the primary and secondary PTEGs) are read from
memory. (The architecture does not specify the order of these reads, allowing
multiple reads to occur in parallel.)
PTE reads occur with an implied WIM memory/cache mode control bit setting of
0b001; therefore, they are considered cacheable.

3. The PTEs in the selected PTEGs are tested for a match with the virtual page number
(VPN) of the access. (The VPN is the VSID concatenated with the page index field
of the effective address.)
For a match to occur, the following must be true:

— PTE [H] = 0 for primary PTEG; PTE[H] = 1 for secondary PTEG
— PTE [V] = 1
— PTE [VSID] = VA [0–23]
— PTE [API] = VA [24–29]

4. If a match is not found within the eight PTEs of the primary PTEG and the eight
PTEs of the secondary PTEG, an exception is generated as described in step 8.
If a match (or multiple matches) is found, the table search process continues.

5. If multiple matches are found, all of the following must be true:

— PTE [RPN] is equal for all matching entries
— PTE [WIMG] is equal for all matching entries
— PTE [PP] is equal for all matching entries

6. If one of the fields in step 5 does not match, the translation is undefined, and R and
C bit of matching entries are undefined. Otherwise, the R and C bits are updated
based on one of the matching entries.

7. A copy of the PTE is written into the on-chip TLB (if implemented) and the R bit is
updated in the PTE in memory (if necessary). If there is no memory protection
violation, the C bit is also updated in memory (if necessary) and the table search is
complete.

8. If a match is not found within the primary or secondary PTEG, the search fails, and
a page fault exception condition occurs (either an ISI or DSI exception).

Reads from memory for page table search operations are performed (that is, as unguarded
cacheable operations in which coherency is required).

7-62 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

7.6.2.1 Flow for Page Table Search Operation
Figure 7-25 provides a detailed flow diagram of a page table search operation. Note that the
references to TLBs are shown as optional because TLBs are not required; if they do exist,
the specifics of how they are maintained are implementation-specific. Also, Figure 7-25
shows only a few cases of R-bit and C-bit updates. For a complete list of the R- and C-bit
updates dictated by the architecture, refer to Table 7-17.

Figure 7-25. Page Table Search Flow

otherwise

otherwise

Update PTE[R]
(if required)

Generate Primary and
Secondary PTEG Addresses

Page Table Search

Adjust PA to read
more PTE(s)

Fetch PTE(s)
from Physical Address(es)

PTE [VSID, API, V] = Seg Desc [VSID], EA[API], 1
PTE [H] = 0 (Primary PTEG) or
PTE [H] = 1 (Secondary PTEG)

Translation
Undefined

Write PTE
into TLB

Check Memory Protection
Violation Conditions

otherwise

R, C bits for
matching PTEs
also undefined

DSI ExceptionISI Exception

SRR1[1] ← 1 DSISR[1] ← 1

Data AccessInstruction Access

Access
Permitted

Access
Prohibited

Page Table
Search Complete

otherwise Store operation
with PTE[C] = 0

Page Memory
Protection Violation

TLB[PTE[C]] ← 1

Page Table
Search Complete

PTE[C] ← 1
(update PTE[C] in memory)

PTE(RPN, WIMG, PP)
equal for all matching PTEs

All 16 PTEs checked

(See Figure 7-15)

(See Figure 7-17)

Page Fault

Implementation-specific

Chapter 7. Memory Management 7-63

7

7.6.3 Page Table Updates
This section describes the requirements on the software when updating page tables in
memory via some pseudocode examples. Multiprocessor systems must follow the rules
described in this section so that all processors operate with a consistent set of page tables.
Even single processor systems must follow certain rules, because software changes must be
synchronized with the other instructions in execution and with automatic updates that may
be made by the hardware (referenced and changed bit updates).

Updates to the tables include the following operations:

• Adding a PTE
• Modifying a PTE, including modifying the R and C bits of a PTE
• Deleting a PTE

PTEs must be locked on multiprocessor systems. Access to PTEs must be appropriately
synchronized by software locking of (that is, guaranteeing exclusive access to) PTEs or
PTEGs if more than one processor can modify the table at that time. In the examples below,
software locks should be performed to provide exclusive access to the PTE being updated.
However, the architecture does not dictate the specific protocol to be used for locking (for
example, a single lock, a lock per PTEG, or a lock per PTE can be used). See Appendix E,
“Synchronization Programming Examples,” for more information about the use of the
reservation instructions (such as thelwarx andstwcx. instructions) to perform software
locking.

When TLBs are implemented they are defined as noncoherent caches of the page tables.
TLB entries must be invalidated explicitly with the TLB invalidate entry instruction (tlbie)
whenever the corresponding PTE is modified. In a multiprocessor system, thetlbie
instruction must be controlled by software locking, so that thetlbie is issued on only one
processor at a time.

The PowerPC OEA defines thetlbsync instruction that ensures that TLB invalidate
operations executed by this processor have caused all appropriate actions in other
processors. In a system that contains multiple processors, thetlbsync functionality must be
used in order to ensure proper synchronization with the other PowerPC processors.

NOTE: A sync instruction must also follow thetlbsync to ensure that thetlbsync has
completed execution on this processor.

On single processor systems, PTEs need not be locked and theeieio instructions (in
between thetlbie andtlbsync instructions) and thetlbsync instructions themselves are not
required. Thesync instructions shown are required even for single processor systems (to
ensure that all previous changes to the page tables and all precedingtlbie instructions have
completed).

Any processor, including the processor modifying the page table, may access the page table
at any time in an attempt to reload a TLB entry. An inconsistent PTE must never

7-64 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

accidentally become visible (if V = 1); thus, there must be synchronization between
modifications to the valid bit and any other modifications (to avoid corrupted data).

In the pseudocode examples that follow, changes made to a PTEshown as a single line in
the example is assumed to be performed with an atomic store instruction. Appropriate
modifications must be made to these examples if this assumption is not satisfied.

Updates of R and C bits by the processor are not synchronized with the accesses that cause
the updates. When modifying the low-order half of a PTE, software must take care to avoid
overwriting a processor update of these bits and to avoid having the value written by a store
instruction overwritten by a processor update. The processor does not alter any other fields
of the PTE.

Explicitly altering certain MSR bits (using themtmsr instruction), or explicitly altering
PTEs, or certain system registers, may have the side effect of changing the effective or
physical addresses from which the current instruction stream is being fetched. This kind of
side effect is defined as an implicit branch. Therefore, PTEs must not be changed in a
manner that causes an implicit branch. Section 2.3.17, “Synchronization Requirements for
Special Registers and for Lookaside Buffers,” lists the possible implicit branch conditions
that can occur when system registers and MSR bits are changed.

For a complete list of the synchronization requirements for executing the MMU
instructions, see Section 2.3.17, “Synchronization Requirements for Special Registers and
for Lookaside Buffers.”

The following examples show the required sequence of operations. However, other
instructions may be interleaved within the sequences shown.

7.6.3.1 Adding a Page Table Entry
Adding a page table entry requires only a lock on the PTE in a multiprocessor system. The
first bytes in the PTE are then written (this example assumes the old valid bit was cleared),
the eieio instruction orders the update, and then the second update can be made. Async
instruction ensures that the updates have been made to memory.

lock(PTE)
PTE[RPN,R,C,WIMG,PP]← new values
eieio /* order 1st PTE update before 2nd
PTE[VSID,H,API,V] ← new values (V = 1)
sync /* ensure updates completed
unlock(PTE)

Chapter 7. Memory Management 7-65

7

7.6.3.2 Modifying a Page Table Entry
The following sections describe several scenarios for modifying a PTE.

7.6.3.2.1 General Case
Consider the general case where a currently-valid PTE must be changed.
To do this, the PTE:

• Must be locked
• Marked invalid
• Updated
• Invalidated from the TLB
• Marked valid again, and
• Unlocked.

The sync instruction must be used at appropriate times to wait for modifications to
complete.
NOTE: Thetlbsync and thesyncinstruction that follows it are only required if software

consistency must be maintained with other PowerPC processors in a
multiprocessor system (and the software is to be used in a multiprocessor
environment).

The following pseudo-code shows the steps for a general case:
lock(PTE)
PTE[V] ← 0 /* (other fields don’t matter)
sync /* ensure update completed
PTE[RPN,R,C,WIMG,PP]← new values
tlbie(old_EA) /*invalidate old translation
eieio /* ordertlbie beforetlbsync and order 2nd PTE update before 3rd
PTE[VSID,H,API, V] ← new values (V = 1)
tlbsync /* ensuretlbie completed on all processors
sync /* ensuretlbsync and last update completed
unlock(PTE)
7.6.3.2.2 Clearing the Referenced (R) Bit
When the PTE is modified only to clear the R bit to 0, a much simpler algorithm suffices
because the R bit need not be maintained exactly. The pseudo-code for this case:
lock(PTE)
oldR ←PTE[R] /*get old R
if oldR = 1, then

PTE[R] ← 0 /* store byte (R = 0, other bits unchanged)
tlbie(PTE) /* invalidate entry
eieio /* ordertlbie beforetlbsync
tlbsync /* ensuretlbie completed on all processors
sync /* ensuretlbsync and update completed

unlock(PTE)

7-66 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

Since only the R and C bits are modified by the processor, and since they reside in different
bytes, the R bit can be cleared by reading the current contents of the byte in the PTE
containing R (bits 16–23 of the second word), ANDing the value with 0xFE, and storing
the byte back into the PTE.

7.6.3.2.3 Modifying the Virtual Address
If the virtual address is being changed to a different address within the same hash class
(primary or secondary), the following flow suffices:

lock(PTE)
PTE[VSID,API,H,V] ← new values (V = 1)

sync /* ensure update completed
tlbie(old_EA) /* invalidate old translation
eieio /* order tlbie before tlbsync
tlbsync /* ensuretlbie completed on all processors
sync /* ensure tlbsync completed

unlock(PTE)

In this pseudocode flow, thetlbsync and thesync instruction that follows it are only
required if consistency must be maintained with other PowerPC processors in a
multiprocessor system (and the software is to be used in a multiprocessor environment).

In this example, if the new address is not a cache synonym (alias) of the old address, care
must be taken to also flush (or invalidate) from an on-chip cache any cache synonyms for
the page. Thus, a temporary virtual address that is a cache synonym with the page whose
PTE is being modified can be assigned and then used for the cache flushing (or
invalidation).

To modify the WIMG or PP bits without overwriting an R or C bit update being performed
by the processor, a sequence similar to the one shown above can be used, except that the
second line is replaced by a loop containing anlwarx /stwcx. instruction pair that emulates
an atomic compare and swap of the low-order word of the PTE.

7.6.3.3 Deleting a Page Table Entry

In this example, the entry is locked, marked invalid, invalidated in the TLB, and unlocked.
Again, note that thetlbsync and thesync instruction that follows it are only required if
consistency must be maintained with other PowerPC processors in a multiprocessor system
(and the software is to be used in a multiprocessor environment).

lock(PTE)
PTE[V] ← 0 /* (other fields don’t matter)
sync /* ensure update completed
tlbie(old_EA) /* invalidate old translation
eieio /* order tlbie before tlbsync
tlbsync /* ensuretlbie completed on all processors
sync /* ensure tlbsync completed
unlock(PTE)

Chapter 7. Memory Management 7-67

7

7.6.4 Segment Register Updates
Synchronization requirements for using the move to segment register instructions are
described in Section 2.3.1.7, “Synchronization Requirements for Special Registers and for
Lookaside Buffers.”

7.7 Direct-Store Segment Address Translation
As described for memory segments, all accesses generated by the processor (with
translation enabled) that do not map to a BAT area, map to a segment descriptor. If T = 1
for the selected segment descriptor, the access maps to the direct-store interface, invoking
a specific bus protocol for accessing I/O devices.

Direct-store segments are provided for POWER compatibility. As the direct-store interface
is present only for compatibility with existing I/O devices that used this interface and the
direct-store interface protocol is not optimized for performance, its use is discouraged.
Additionally, the direct-store facility is being phased out of the architecture. This
functionality is considered optional (to allow for those earlier devices that implemented it).
However, future devices are not likely to support it. Thus, software should not depend on
its results and new software should not use it. Applications that require low-latency
load/store access to external address space should use memory-mapped I/O, rather than the
direct-store interface.

7.7.1 Segment Descriptors for Direct-Store Segments
The format of the fields in the segment descriptors depends on the value of the T bit. The
segment descriptors reside in one of 16 segment registers.

Figure 7-26 shows the register format for the segment registers when the T bit is set.

Figure 7-26. Segment Register Format for Direct-Store Segments

Table 7-23 shows the bit definitions for the segment registers when the T bit is set.

Table 7-23. Segment Register Bit Definitions for Direct-Store Segments

Bit Name Description

0 T T = 1 selects this format.

1 Ks Supervisor-state protection key

2 Kp User-state protection key

3–11 BUID Bus unit ID

12–31 CNTLR_SPEC Device-specific data for I/O controller

T Ks Kp BUID CNTLR_SPEC

0 1 2 3 11 12 31

7-68 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

7.7.2 Direct-Store Segment Accesses
When the address translation process determines that the segment descriptor has T = 1,
direct-store segment address translation is selected; no reference is made to the page tables
and neither the referenced or changed bits are updated. These accesses are performed as if
the WIMG bits were 0b0101; that is, caching is inhibited, the accesses bypass the cache,
hardware-enforced coherency is not required, and the accesses are considered guarded.

The specific protocol invoked to perform these accesses involves the transfer of address and
data information; however, the PowerPC OEA does not define the exact hardware protocol
used for direct-store accesses. Some instructions may cause multiple address/data
transactions to occur on the bus. In this case, the address for each transaction is handled
individually with respect to the MMU.

The following describes the data that is typically sent to the memory controller by
processors that implement the direct-store function:

• One of the Kx bits (Ks or Kp) is selected to be the key as follows:

— For supervisor accesses (MSR[PR] = 0), the Ks bit is used and Kp is ignored.

— For user accesses (MSR[PR] = 1), the Kp bit is used and Ks is ignored.

• An implementation-dependent portion of the segment descriptor.

• An implementation-dependent portion of the effective address.

7.7.3 Direct-Store Segment Protection
Page-level memory protection as described in Section 7.5.4, “Page Memory Protection,” is
not provided for direct-store segments. The appropriate key bit (Ks or Kp) from the
segment descriptor is sent to the memory controller, and the memory controller implements
any protection required. Frequently, no such mechanism is provided; the fact that a direct-
store segment is mapped into the address space of a process may be regarded as sufficient
authority to access the segment.

7.7.4 Instructions Not Supported in Direct-Store Segments
The following instructions are not supported at all and cause either a DSI exception or
boundedly-undefined results when issued with an effective address that selects a segment
descriptor that has T = 1:

• lwarx
• stwcx.
• eciwx
• ecowx

Chapter 7. Memory Management 7-69

7

7.7.5 Instructions with No Effect in Direct-Store Segments
The following instructions are executed as no-ops when issued with an effective address
that selects a segment where T = 1:

• dcba
• dcbt
• dcbtst
• dcbf
• dcbi
• dcbst
• dcbz

• icbi

7.7.6 Direct-Store Segment Translation Summary Flow
Figure 7-26 shows the flow used by the MMU when direct-store segment address
translation is selected. Figure 7-26 expands the Direct-Store Segment Translation stub
found in Figure 7-4 for both instruction and data accesses. In the case of a floating-point
load or store operation to a direct-store segment, it is implementation-specific whether the
alignment exception occurs. In the case of aneciwx, ecowx, lwarx , or stwcx. instruction,
the implementation either sets the DSISR as shown and causes the DSI exception, or causes
boundedly-undefined results.

7-70 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7

Figure 7-27. Direct-Store Segment Translation Flow

Perform Direct-Store
Interface Access

Data AccessInstruction Access

Direct-Store
Segment Translation

T = 1

otherwise

Floating-Point
Load or Store

Alignment Exception

otherwise

Cache Instruction (dcbt ,
dcbtst , dcbf , dcbi , dcbst ,

dcbz , or icbi)

No-Op

otherwise

DSI Exception or Boundedly
Undefined Results

ISI Exception

DSISR[5] ← 1

eciwx, ecowx, lwarx ,
ldarx , stwcx. , or
stdcx. Instruction

SRR1[3] ← 1

Note: Dashed boxes indicate
Implementation-specific functions

Chapter 8. Instruction Set 8-1Chapter 8. Instruction Set 8-1Chapter 8. Instruction Set 8-1

8

Chapter 8. Instruction Set
80

This chapter lists the PowerPC instruction set in alphabetical order by mnemonic. Each
entry includes the instruction formats and a quick reference ‘legend’ that provides such
information as the level(s) of the PowerPC architecture in which the instruction may be
found—user instruction set architecture (UISA), virtual environment architecture (VEA),
and operating environment architecture (OEA); and the privilege level of the
instruction—user- or supervisor-level (an instruction is assumed to be user-level unless the
legend specifies that it is supervisor-level); and the instruction formats.

The format diagrams show, horizontally, all valid combinations of instruction fields; for a
graphical representation of these instruction formats, see Appendix A, “PowerPC
Instructions Set Listings.” A description of the instruction fields and pseudocode
conventions are also provided.

For more information on the PowerPC instruction set, refer to Chapter 4, “Addressing
Modes and Instruction Set Summary.”

80
90

NOTE: The architecture specification refers to user-level and supervisor-level as
problem state and privileged state, respectively.

8.1 Instruction Formats
Instructions are four bytes long and word-aligned, so when instruction addresses are
presented to the processor (as in branch instructions) the two low-order bits are ignored.
Similarly, whenever the processor develops an instruction address, its two low-order bits
are zero.

Bits 0–5 always specify the primary opcode. Many instructions also have an extended
opcode. The remaining bits of the instruction contain one or more fields for the different
instruction formats.

Some instruction fields are reserved or must contain a predefined value as shown in the
individual instruction layouts. If a reserved field does not have all bits cleared, or if a field
that must contain a particular value does not contain that value, the instruction form is
invalid and the results are as described in Chapter 4, “Addressing Modes and Instruction set
Summary.”

Within the instruction format diagram the instruction operation code and extended
operation code (if extended form) are specified in decimal. These fields have been
converted to hexadecimal and are shown on line two for each instruction definition.

U

U
V
O

8-2 PowerPC Microprocessor 32-bit Family: The Programming Environments8-2 PowerPC Microprocessor 32-bit Family: The Programming Environments8-2 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

8.1.1 Split-Field Notation
Some instruction fields occupy more than one contiguous sequence of bits or occupy a
contiguous sequence of bits used in permuted order. Such a field is called a split field. Split
fields that represent the concatenation of the sequences from left to right are shown in
lowercase letters. These split fields— spr, and tbr—are described in Table 8-1.

Split fields that represent the concatenation of the sequences in some order, which need not
be left to right (as described for each affected instruction), are shown in uppercase letters.
These split fields - MB, ME, and SH- are described in Table 8-2.

8.1.2 Instruction Fields
Table 8-2 describes the instruction fields used in the various instruction formats.

Table 8-1. Split-Field Notation and Conventions

Field Description

spr (11–20) This field is used to specify a special-purpose register for the mtspr and mfspr instructions. The
encoding is described in Section 4.4.2.2, “Move to/from Special-Purpose Register Instructions
(OEA)”.

tbr (11–20) This field is used to specify either the time base lower (TBL) or time base upper (TBU).

Table 8-2. Instruction Syntax Conventions

Field Description

 AA (30) Absolute address bit.
0 The immediate field represents an address relative to the current instruction address (CIA). (For

more information on the CIA, see Table 8-3.) The effective (logical) address of the branch is
either the sum of the LI field sign-extended to 32 bits and the address of the branch instruction
or the sum of the BD field sign-extended to 32 bits and the address of the branch instruction.

1 The immediate field represents an absolute address. The effective address (EA) of the branch is
the LI field sign-extended to 32 bits or the BD field sign-extended to 32 bits.

Note: The LI and BD fields are sign-extended to 32 bits.

BD (16–29) Immediate field specifying a 14-bit signed two's complement branch displacement that is
concatenated on the right with 0b00 and sign-extended to 32 bits.

BI (11–15) This field is used to specify a bit in the CR to be used as the condition of a branch conditional
instruction.

BO (6–10) This field is used to specify options for the branch conditional instructions. The encoding is
described in Section 4.2.4.2, “Conditional Branch Control”.

crb A (11–15) This field is used to specify a bit in the CR to be used as a source.

crb B (16–20) This field is used to specify a bit in the CR to be used as a source.

crb D (6–10) This field is used to specify a bit in the CR, or in the FPSCR, as the destination of the result of an
instruction.

crf D (6–8) This field is used to specify one of the CR fields, or one of the FPSCR fields, as a destination.

crf S (11–13) This field is used to specify one of the CR fields, or one of the FPSCR fields, as a source.

Chapter 8. Instruction Set 8-3Chapter 8. Instruction Set 8-3Chapter 8. Instruction Set 8-3

8

CRM (12–19) This field mask is used to identify the CR fields that are to be updated by the mtcrf instruction.

d (16–31) Immediate field specifying a signed two's complement integer that is sign-extended to 32 bits.

FM (7–14) This field mask is used to identify the FPSCR fields that are to be updated by the mtfsf instruction.

frA (11–15) This field is used to specify an FPR as a source.

frB (16–20) This field is used to specify an FPR as a source.

frC (21–25) This field is used to specify an FPR as a source.

frD (6–10) This field is used to specify an FPR as the destination.

frS (6–10) This field is used to specify an FPR as a source.

IMM (16–19) Immediate field used as the data to be placed into a field in the FPSCR.

LI (6–29) Immediate field specifying a 24-bit signed two's complement integer that is concatenated on the
right with 0b00 and sign-extended to 32 bits.

LK (31) Link bit.
0 Does not update the link register (LR).
1 Updates the LR. If the instruction is a branch instruction, the address of the instruction following

the branch instruction is placed into the LR.

MB (21–25) and
ME (26–30)

These fields are used in rotate instructions to specify a 32-bit mask consisting of 1 bits from bit MB
through bit ME inclusive, and 0 bits elsewhere, as described in Section 4.2.1.4, ”Integer Rotate and
Shift Instructions,”.

NB (16–20) This field is used to specify the number of bytes to move in an immediate string load or store.

OE (21) This field is used for extended arithmetic to enable setting OV and SO in the XER.

OPCD (0–5) Primary opcode field

rA (11–15) This field is used to specify a GPR to be used as a source or destination.

rB (16–20) This field is used to specify a GPR to be used as a source.

Rc (31) Record bit.
0 Does not update the condition register (CR).
1 Updates the CR to reflect the result of the operation.

For integer instructions, CR bits 0–2 are set to reflect the result as a signed quantity and CR bit
3 receives a copy of the summary overflow bit, XER[SO]. The result as an unsigned quantity or
a bit string can be deduced from the EQ bit. For floating-point instructions, CR bits 4–7 are set
to reflect floating-point exception, floating-point enabled exception, floating-point invalid
operation exception, and floating-point overflow exception.

(Note: Exceptions are referred to as interrupts in the architecture specification.)

rD (6–10) This field is used to specify a GPR to be used as a destination.

rS (6–10) This field is used to specify a GPR to be used as a source.

SH (16–20) This field is used to specify a shift amount.

SIMM (16–31) This immediate field is used to specify a 16-bit signed integer.

SR (12–15) This field is used to specify one of the 16 segment registers.

Table 8-2. Instruction Syntax Conventions (Continued)

Field Description

8-4 PowerPC Microprocessor 32-bit Family: The Programming Environments8-4 PowerPC Microprocessor 32-bit Family: The Programming Environments8-4 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

8.1.3 Notation and Conventions
The operation of some instructions is described by a semiformal language (pseudocode).
See Table 8-3 for a list of pseudocode notation and conventions used throughout this

chapter.

TO (6–10) This field is used to specify the conditions on which to trap. The encoding is described in Section
4.2.4.6, “Trap Instructions.”

UIMM (16–31) This immediate field is used to specify a 16-bit unsigned integer.

XO (21–30,
22–30, 26–30)

Extended opcode field.

Table 8-3. Notation and Conventions

Notation/Convention Meaning

← Assignment

←iea Assignment of an instruction effective address. .

¬ NOT logical operator

∗ Multiplication

÷ Division (yielding quotient)

+ Two’s-complement addition

– Two’s-complement subtraction, unary minus

=,≠ Equals and Not Equals relations

<,≤,≥, >, Signed comparison relations

. (period) Update. When used as a character of an instruction mnemonic, a period (.) means that the
instruction updates the condition register field.

c Carry. When used as a character of an instruction mnemonic, a ‘c’ indicates a carry out in
XER[CA].

e Extended Precision.
When used as the last character of an instruction mnemonic, an ‘e’ indicates the use of
XER[CA] as an operand in the instruction and records a carry out in XER[CA].

o Overflow. When used as a character of an instruction mnemonic, an ‘o’ indicates the record
of an overflow in XER[OV] and CR0[SO] for integer instructions or CR1[SO] for floating-point
instructions.

<U, >U Unsigned comparison relations

? Unordered comparison relation

&, | AND, OR logical operators

|| Used to describe the concatenation of two values (that is, 010 || 111 is the same as 010111)

⊕, ≡ Exclusive-OR, Equivalence logical operators (for example, (a ≡ b) = (a ⊕ ¬ b))

Table 8-2. Instruction Syntax Conventions (Continued)

Field Description

Chapter 8. Instruction Set 8-5Chapter 8. Instruction Set 8-5Chapter 8. Instruction Set 8-5

8

0bnnnn A number expressed in binary format.

0xnnnn or
x’nnnn nnnn’

A number expressed in hexadecimal format.

(n)x The replication of x, n times (that is, x concatenated to itself n – 1 times).
(n)0 and (n)1 are special cases. A description of the special cases follows:

• (n)0 means a field of n bits with each bit equal to 0. Thus (5)0 is equivalent to
 0b00000.

• (n)1 means a field of n bits with each bit equal to 1. Thus (5)1 is equivalent to
0b11111.

(rA|0) The contents of rA if the rA field has the value 1–31, or the value 0 if the rA field is 0.

(rX) The contents of rX

x[n] n is a bit or field within x, where x is a register

xn x is raised to the nth power

ABS(x) Absolute value of x

CEIL(x) Least integer x

Characterization Reference to the setting of status bits in a standard way that is explained in the text.

CIA Current instruction address.
The 32-bit address of the instruction being described by a sequence of pseudocode. Used by
relative branches to set the next instruction address (NIA) and by branch instructions with LK
= 1 to set the link register. Does not correspond to any architected register.

Clear Clear the leftmost or rightmost n bits of a register to 0. This operation is used for rotate and
shift instructions.

Clear left and shift left Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can
be used to scale a known non-negative array index by the width of an element. These
operations are used for rotate and shift instructions.

Cleared Bits are set to 0.

Do Do loop.
• Indenting shows range.
• “To” and/or “by” clauses specify incrementing an iteration variable.
• “While” clauses give termination conditions.

DOUBLE(x) Result of converting x from floating-point single-precision format to floating-point double-
precision format.

Extract Select a field of n bits starting at bit position b in the source register, right or left justify this
field in the target register, and clear all other bits of the target register to zero. This operation
is used for rotate and shift instructions.

EXTS(x) Result of extending x on the left with sign bits

GPR(x) General-purpose register x

if...then...else... Conditional execution, indenting shows range, else is optional.

Table 8-3. Notation and Conventions (Continued)

Notation/Convention Meaning

8-6 PowerPC Microprocessor 32-bit Family: The Programming Environments8-6 PowerPC Microprocessor 32-bit Family: The Programming Environments8-6 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

Insert Select a field of n bits in the source register, insert this field starting at bit position b of the
target register, and leave other bits of the target register unchanged. (No simplified
mnemonic is provided for insertion of a field when operating on double words; such an
insertion requires more than one instruction.) This operation is used for rotate and shift
instructions. (Note: Simplified mnemonics are referred to as extended mnemonics in the
architecture specification.)

Leave Leave innermost do loop, or the do loop described in leave statement.

MASK(x, y) Mask having ones in positions x through y (wrapping if x > y) and zeros elsewhere.

MEM(x, y) Contents of y bytes of memory starting at address x.

NIA Next instruction address, which is the 32-bit address of the next instruction to be executed
(the branch destination) after a successful branch. In pseudocode, a successful branch is
indicated by assigning a value to NIA. For instructions which do not branch, the next
instruction address is CIA + 4. Does not correspond to any architected register.

OEA PowerPC operating environment architecture

Rotate Rotate the contents of a register right or left n bits without masking. This operation is used for
rotate and shift instructions.

Reserved An unused field, must be left with zeros.

ROTL(x, y) Result of rotating the value x left y positions, where x is 32 bits long

Set Bits are set to 1.

Shift Shift the contents of a register right or left n bits, clearing vacated bits (logical shift). This
operation is used for rotate and shift instructions.

SINGLE(x) Result of converting x from floating-point double-precision format to floating-point single-
precision format.

SPR(x) Special-purpose register x

TRAP Invoke the system trap handler.

Undefined An undefined value. The value may vary from one implementation to another, and from one
execution to another on the same implementation.

UISA PowerPC user instruction set architecture

VEA PowerPC virtual environment architecture

Table 8-3. Notation and Conventions (Continued)

Notation/Convention Meaning

Chapter 8. Instruction Set 8-7Chapter 8. Instruction Set 8-7Chapter 8. Instruction Set 8-7

8

Table 8-4 describes instruction field notation conventions used throughout this chapter.

Precedence rules for pseudocode operators are summarized in Table 8-5.

Operators higher in Table 8-5 are applied before those lower in the table. Operators at the
same level in the table associate from left to right, from right to left, or not at all, as shown.
For example, “–” (unary minus) associates from left to right, soa – b – c = (a – b) – c.

Table 8-4. Instruction Field Conventions

The Architecture
Specification

Equivalent to:

BA, BB, BT crb A, crb B, crb D (respectively)

BF, BFA crf D, crf S (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)

Table 8-5. Precedence Rules

Operators Associativity

x[n], function evaluation Left to right

(n)x or replication,
x(n) or exponentiation

Right to left

unary –, ¬ Right to left

∗, Left to right

+, – Left to right

|| Left to right

=, , <, , >, , <U, >U, ? Left to right

&, ⊕, ≡ Left to right

| Left to right

– (range) None

←, ←iea None

8-8 PowerPC Microprocessor 32-bit Family: The Programming Environments8-8 PowerPC Microprocessor 32-bit Family: The Programming Environments8-8 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

Parentheses are used to override the evaluation order implied by Table 8-5, or to increase
clarity; parenthesized expressions are evaluated before serving as operands.

8.1.4 Computation Modes
The PowerPC architecture is defined for 32-bit implementations, in which all registers
except the FPRs are 32 bits long, and effective addresses are 32 bits long. The FPR registers
are 64 bits long. For more information on computation modes see Section 4.1.1,
“Computation Modes.”

8.2 PowerPC Instruction Set
The remainder of this chapter lists and describes the instruction set for the PowerPC
architecture. The instructions are listed in alphabetical order by mnemonic. Figure 8-1
shows the format for each instruction description page.

Figure 8-1. Instruction Description

NOTE: The execution unit that executes the instruction may not be the same for all
PowerPC processors.

addx addx
Add (x’7C00 0214’)

add rD,rA,rB (OE = 0 Rc = 0)

add. rD,rA,rB (OE = 0 Rc = 1)

addo rD,rA,rB (OE = 1 Rc = 0)

addo. rD,rA,rB (OE = 1 Rc = 1)

r D ← (r A) + (r B)

The sum (rA) + (rB) is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(If Rc = 1)

• XER:

Affected: SO, OV(If OE = 1)

B OE 266 Rc
0 5 6 10 11 15 16 20 21 22 30 31

31 D A

Instruction name
name (Instruction operation codes in
hexadecimal)

Instruction syntax

Instruction encoding

Pseudocode description
of instruction operation
Text description of
instruction operation
Registers altered by instruction

Quick reference legend
PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

Chapter 8. Instruction Set 8-9Chapter 8. Instruction Set 8-9Chapter 8. Instruction Set 8-9

8

addx addx
Add (x’7C00 0214’)

add rD,rA,rB (OE = 0 Rc = 0)
add. rD,rA,rB (OE = 0 Rc = 1)
addo rD,rA,rB (OE = 1 Rc = 0)
addo. rD,rA,rB (OE = 1 Rc = 1)

r D ← (r A) + (r B)

The sum (rA) + (rB) is placed intorD.

Theadd instruction is preferred for addition because it sets few status bits.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
next bullet item.

• XER:

Affected: SO, OV (If OE = 1)

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register.”

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 266 Rc

8-10 PowerPC Microprocessor 32-bit Family: The Programming Environments8-10 PowerPC Microprocessor 32-bit Family: The Programming Environments8-10 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

addc x addc x
Add Carrying (x’7C00 0014’)

addc rD,rA,rB (OE = 0 Rc = 0)
addc. rD,rA,rB (OE = 0 Rc = 1)
addco rD,rA,rB (OE = 1 Rc = 0)
addco. rD,rA,rB (OE = 1 Rc = 1)

r D ← (r A) + (r B)

The sum (rA) + (rB) is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
next bullet item).

• XER:

Affected: CA

Affected: SO, OV (If OE = 1)

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register.”

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 10 Rc

Chapter 8. Instruction Set 8-11Chapter 8. Instruction Set 8-11Chapter 8. Instruction Set 8-11

8

addex addex
Add Extended (x’7C00 0114’)

adde rD,rA,rB (OE = 0 Rc = 0)
adde. rD,rA,rB (OE = 0 Rc = 1)
addeo rD,rA,rB (OE = 1 Rc = 0)
addeo. rD,rA,rB (OE = 1 Rc = 1)

r D ← (r A) + (r B) + XER[CA]

The sum (rA) + (rB) + XER[CA] is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
next bullet item).

• XER:

Affected: CA

Affected: SO, OV (If OE = 1)

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register.”

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 138 Rc

8-12 PowerPC Microprocessor 32-bit Family: The Programming Environments8-12 PowerPC Microprocessor 32-bit Family: The Programming Environments8-12 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

addi addi
Add Immediate (x’3800 0000’)

addi rD,rA,SIMM

if r A = 0
then r D ← EXTS(SIMM)
else r D ← (r A) + EXTS(SIMM)

The sum (rA|0) + sign extended SIMM is placed intorD.

Theaddi instruction is preferred for addition because it sets few status bits.

NOTE: addi uses the value 0, not the contents of GPR0, ifrA = 0.

Other registers altered:

• None

Simplified mnemonics:

li r D,value equivalent to addi rD,0,value
la rD,disp(rA) equivalent to addi rD,rA,disp
subi rD,rA,value equivalent to addi rD,rA,–value

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

14 D A SIMM

Chapter 8. Instruction Set 8-13Chapter 8. Instruction Set 8-13Chapter 8. Instruction Set 8-13

8

addic addic
Add Immediate Carrying (x’3000 0000’)

addic rD,rA,SIMM

r D ← (r A) + EXTS(SIMM)

The sum (rA) + sign extended SIMM is placed intorD.

Other registers altered:

• XER:

Affected: CA

NOTE: The setting of the affected bits in the XER reflects overflow of the 32-bit
result. For more information see Section 2.1.5, “XER Register”.

Simplified mnemonics:

subic rD,rA,value equivalent to addic rD,rA,–value

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

12 D A SIMM

8-14 PowerPC Microprocessor 32-bit Family: The Programming Environments8-14 PowerPC Microprocessor 32-bit Family: The Programming Environments8-14 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

addic. addic.
Add Immediate Carrying and Record (x’3400 0000’)

addic. rD,rA,SIMM

r D ← (r A) + EXTS(SIMM)

The sum (rA) + the sign extended SIMM is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
next bullet item).

• XER:

Affected: CA

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register”.

Simplified mnemonics:

subic. rD,rA,value equivalent to addic. rD,rA,–value

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

13 D A SIMM

Chapter 8. Instruction Set 8-15Chapter 8. Instruction Set 8-15Chapter 8. Instruction Set 8-15

8

addis addis
Add Immediate Shifted (x’3C00 0000’)

addis rD,rA,SIMM

if r A = 0
then r D ← (SIMM || (16)0)
else r D ← (r A) + (SIMM || (16)0)

The sum (rA|0) + (SIMM || 0x0000) is placed intorD.

Theaddis instruction is preferred for addition because it sets few status bits.

NOTE: addis uses the value 0, not the contents of GPR0, ifrA = 0.

Other registers altered:

• None

Simplified mnemonics:

lis rD,value equivalent to addis rD,0,value
subis rD,rA,value equivalent to addis rD,rA,–value

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

15 D A SIMM

8-16 PowerPC Microprocessor 32-bit Family: The Programming Environments8-16 PowerPC Microprocessor 32-bit Family: The Programming Environments8-16 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

addme x addme x
Add to Minus One Extended (x’7C00 01D4’)

addme rD,rA (OE = 0 Rc = 0)
addme. rD,rA (OE = 0 Rc = 1)
addmeo rD,rA (OE = 1 Rc = 0)
addmeo. rD,rA (OE = 1 Rc = 1)

r D ← (r A) + XER[CA] – 1

The sum (rA) + XER[CA] + 0xFFFF_FFFF is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
next bullet item).

• XER:

Affected: CA

Affected: SO, OV (If OE = 1)

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register”.

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

Reserved

31 D A 0 0 0 0 0 OE 234 Rc

Chapter 8. Instruction Set 8-17Chapter 8. Instruction Set 8-17Chapter 8. Instruction Set 8-17

8

addzex addzex
Add to Zero Extended (x’7C00 0194’)

addze rD,rA (OE = 0 Rc = 0)
addze. rD,rA (OE = 0 Rc = 1)
addzeo rD,rA (OE = 1 Rc = 0)
addzeo. rD,rA (OE = 1 Rc = 1)

r D ← (r A) + XER[CA]

The sum (rA) + XER[CA] is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
next).

• XER:

Affected: CA

Affected: SO, OV (If OE = 1)

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register”.

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

Reserved

31 D A 0 0 0 0 0 OE 202 Rc

8-18 PowerPC Microprocessor 32-bit Family: The Programming Environments8-18 PowerPC Microprocessor 32-bit Family: The Programming Environments8-18 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

andx andx
AND (x’7C00 0038’)

and rA,rS,rB (Rc = 0)
and. rA,rS,rB (Rc = 1)

r A ← (r S) & (r B)

The contents ofrS are ANDed with the contents ofrB and the result is placed intorA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 28 Rc

Chapter 8. Instruction Set 8-19Chapter 8. Instruction Set 8-19Chapter 8. Instruction Set 8-19

8

andc x andc x
AND with Complement (x’7C00 0078’)

andc rA,rS,rB (Rc = 0)
andc. rA,rS,rB (Rc = 1)

r A ← (r S) & ¬ (r B)

The contents ofrS are ANDed with the one’s complement of the contents ofrB and the
result is placed intorA.

Other registers altered:

• Condition Register (CR0 field):Affected: LT, GT, EQ, SO(If Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 60 Rc

8-20 PowerPC Microprocessor 32-bit Family: The Programming Environments8-20 PowerPC Microprocessor 32-bit Family: The Programming Environments8-20 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

andi. andi.
AND Immediate (x’7000 0000’)

andi. rA,rS,UIMM

r A ← (r S) & ((16)0 || UIMM)

The contents ofrS are ANDed with 0x000 || UIMM and the result is placed intorA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

28 S A UIMM

Chapter 8. Instruction Set 8-21Chapter 8. Instruction Set 8-21Chapter 8. Instruction Set 8-21

8

andis. andis.
AND Immediate Shifted (x’7400 0000’)

andis. rA,rS,UIMM

r A ← (r S) & (UIMM || (16)0)

The contents ofrS are ANDed with UIMM || 0x0000 and the result is placed intorA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

29 S A UIMM

8-22 PowerPC Microprocessor 32-bit Family: The Programming Environments8-22 PowerPC Microprocessor 32-bit Family: The Programming Environments8-22 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

bx bx
Branch (x’4800 0000’)

b target_addr (AA = 0 LK = 0)
ba target_addr (AA = 1 LK = 0)
bl target_addr (AA = 0 LK = 1)
bla target_addr (AA = 1 LK = 1)

if AA = 1
then NIA ←iea EXTS(LI || 0b00)
else NIA ←iea CIA + EXTS(LI || 0b00)

if LK = 1
then LR ←iea CIA + 4

target_addr specifies the branch target address.

If AA = 1, then the branch target address is the value LI || 0b00 sign-extended.

If AA = 0, then the branch target address is the sum of LI || 0b00 sign-extended plus the
address of this instruction.

If LK = 1, then the effective address of the instruction following the branch instruction is
placed into the link register.

Other registers altered:

Affected: Link Register (LR) (If LK = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA I

0 5 6 29 30 31

18 LI AA LK

Chapter 8. Instruction Set 8-23Chapter 8. Instruction Set 8-23Chapter 8. Instruction Set 8-23

8

bcx bcx
Branch Conditional (x’4000 0000’)

bc BO,BI,target_addr (AA = 0 LK = 0)
bca BO,BI,target_addr (AA = 1 LK = 0)
bcl BO,BI,target_addr (AA = 0 LK = 1)
bcla BO,BI,target_addr (AA = 1 LK = 1)

if ¬ BO[2]
then CTR ← CTR – 1

ctr_ok ← BO[2] | ((CTR ≠ 0) ⊕ BO[3])
cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok

then
if AA = 1

then NIA ←iea EXTS(BD || 0b00)
else NIA ←iea CIA + EXTS(BD || 0b00)

if LK = 1
then LR ←iea CIA + 4

The BI field specifies the bit in the condition register (CR) to be used as the condition of
the branch. The BO field is encoded as described in Table 8-6. Additional information
about BO field encoding is provided in Section 4.2.4.2, “Conditional Branch Control”.

Table 8-6. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

In this table, z indicates a bit that is ignored.
Note: The z bits should be cleared, as they may be assigned a meaning in some future version of the
PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by some
PowerPC implementations to improve performance.

0 5 6 10 11 15 16 29 30 31

16 BO BI BD AA LK

8-24 PowerPC Microprocessor 32-bit Family: The Programming Environments8-24 PowerPC Microprocessor 32-bit Family: The Programming Environments8-24 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

target_addr specifies the branch target address.

If AA = 0, the branch target address is the sum of BD || 0b00 sign-extended and the address
of this instruction.

If AA = 1, the branch target address is the value BD || 0b00 sign-extended.

If LK = 1, the effective address of the instruction following the branch instruction is placed
into the link register.

Other registers altered:

Affected: Count Register (CTR) (If BO[2] = 0)

Affected: Link Register (LR) (If LK = 1)

Simplified mnemonics:

blt target equivalent to bc 12,0,target
bne cr2,target equivalent to bc 4,10,target
bdnz target equivalent to bc 16,0,target

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

Chapter 8. Instruction Set 8-25Chapter 8. Instruction Set 8-25Chapter 8. Instruction Set 8-25

8

bcctr x bcctr x
Branch Conditional to Count Register (x’4C00 0420’)

bcctr BO,BI (LK = 0)
bcctrl BO,BI (LK = 1)

cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if cond_ok

then NIA ←iea CTR[0–29] || 0b00
if LK

then LR ←iea CIA + 4

The BI field specifies the bit in the condition register to be used as the condition of the
branch. The BO field is encoded as described in Table 8-7. Additional information about
BO field encoding is provided in Section 4.2.4.2, “Conditional Branch Control”.

Table 8-7. BO Operand Encodings

The branch target address is CTR[0–29] || 0b00.

If LK = 1, the effective address of the instruction following the branch instruction is placed
into the link register.

BO Description

0000y Decrement the CTR, then branch if the decremented CTR 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

In this table, z indicates a bit that is ignored.
Note: The z bits should be cleared, as they may be assigned a meaning in some future version of the
PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by some
PowerPC implementations to improve performance.

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 BO BI 0 0 0 0 0 528 LK

8-26 PowerPC Microprocessor 32-bit Family: The Programming Environments8-26 PowerPC Microprocessor 32-bit Family: The Programming Environments8-26 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

If the “decrement and test CTR” option is specified (BO[2] = 0), the instruction form is
invalid.

Other registers altered:

Affected: Link Register (LR) (If LK = 1)

Simplified mnemonics:

bltctr equivalent to bcctr 12,0
bnectr cr2 equivalent to bcctr 4,10

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XL

Chapter 8. Instruction Set 8-27Chapter 8. Instruction Set 8-27Chapter 8. Instruction Set 8-27

8

bclr x bclr x
Branch Conditional to Link Register (x’4C00 0020’)

bclr BO,BI (LK = 0)
bclrl BO,BI (LK = 1)

if ¬ BO[2]
then CTR ← CTR – 1

ctr_ok ← BO[2] | ((CTR ≠ 0) ⊕ BO[3])
cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok

then NIA ←iea LR[0–29] || 0b00
if LK

then LR ←iea CIA + 4

The BI field specifies the bit in the condition register to be used as the condition of the
branch. The BO field is encoded as described in Table 8-8. Additional information about
BO field encoding is provided in Section 4.2.4.2, “Conditional Branch Control”.

Table 8-8. BO Operand Encodings

The branch target address is LR[0–29] || 0b00.

BO Description

0000y Decrement the CTR, then branch if the decremented CTR 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

If the BO field specifies that the CTR is to be decremented, the entire 32-bit CTR is decremented.

In this table, z indicates a bit that is ignored.
Note : The z bits should be cleared, as they may be assigned a meaning in some future version of the
PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by
some PowerPC implementations to improve performance.

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 BO BI 0 0 0 0 0 16 LK

8-28 PowerPC Microprocessor 32-bit Family: The Programming Environments8-28 PowerPC Microprocessor 32-bit Family: The Programming Environments8-28 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

If LK = 1, then the effective address of the instruction following the branch instruction is
placed into the link register.

Other registers altered:

Affected: Count Register (CTR) (If BO[2] = 0)

Affected: Link Register (LR) (If LK = 1)

Simplified mnemonics:

bltlr equivalent to bclr 12,0
bnelr cr2 equivalent to bclr 4,10
bdnzlr equivalent to bclr 16,0

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XL

Chapter 8. Instruction Set 8-29Chapter 8. Instruction Set 8-29Chapter 8. Instruction Set 8-29

8

cmp cmp
Compare (x’7C00 0000’)

cmp crfD,L,rA,rB

a ← (r A)
b ← (r B)
if a < b

then c ← 0b100
else if a > b

then c ← 0b010
else c ← 0b001

CR[(4 ∗ crf D)–(4 ∗ crf D + 3)] ← c || XER[SO]

The contents ofrA are compared with the contents ofrB, treating the operands as signed
integers. The result of the comparison is placed into CR fieldcrfD.

NOTE: If L = 1, the instruction form is invalid.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpd rA,rB equivalent to cmp 0,1,rA,rB
cmpw cr3,rA,rB equivalent to cmp 3,0,rA,rB

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 0 0 0 0 0 0 0 0 0 0 031 crfD 0 L A

8-30 PowerPC Microprocessor 32-bit Family: The Programming Environments8-30 PowerPC Microprocessor 32-bit Family: The Programming Environments8-30 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

cmpi cmpi
Compare Immediate (x’2C00 0000’)

cmpi crfD,L,rA,SIMM

a ← (r A)
if a < EXTS(SIMM)

then c ← 0b100
else if a > EXTS(SIMM)

then c ← 0b010
else c ← 0b001

CR[(4 ∗ crf D)–(4 ∗ crf D + 3)] ← c || XER[SO]

The contents ofrA are compared with the sign-extended value of the SIMM field, treating
the operands as signed integers. The result of the comparison is placed into CR fieldcrfD.

NOTE: If L = 1, the instruction form is invalid.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpdi rA,value equivalent to cmpi 0,1,rA,value
cmpwi cr3,rA,value equivalent to cmpi 3,0,rA,value

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 8 9 10 11 15 16 31

Reserved

SIMM11 crfD 0 L A

Chapter 8. Instruction Set 8-31Chapter 8. Instruction Set 8-31Chapter 8. Instruction Set 8-31

8

cmpl cmpl
Compare Logical (x’7C00 0040’)

cmpl crfD,L,rA,rB

a ← (r A)
b ← (r B)
if a <U b

then c ← 0b100
else if a >U b

then c ← 0b010
else c ← 0b001

CR[(4 ∗ crf D)–(4 ∗ crf D + 3)] ← c || XER[SO]

The contents ofrA are compared with the contents ofrB, treating the operands as unsigned
integers. The result of the comparison is placed into CR fieldcrfD.

NOTE: If L = 1, the instruction form is invalid.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpld rA,rB equivalent to cmpl 0,1,rA,rB
cmplw cr3,rA,rB equivalent to cmpl 3,0,rA,rB

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 8 9 10 11 15 16 20 21 31

Reserved

31 crfD 0 L A B 32 0

8-32 PowerPC Microprocessor 32-bit Family: The Programming Environments8-32 PowerPC Microprocessor 32-bit Family: The Programming Environments8-32 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

cmpli cmpli
Compare Logical Immediate (x’2800 0000’)

cmpli crf D,L,rA,UIMM

a ← (r A)
if a <U ((16)0 || UIMM)

then c ← 0b100
else if a >U ((16)0 || UIMM)

then c ← 0b010
else c ← 0b001

CR[(4 ∗ crf D)-(4 ∗ crf D + 3)] ← c || XER[SO]

The contents ofrA are compared with 0x0000 || UIMM, treating the operands as unsigned
integers. The result of the comparison is placed into CR fieldcrfD.

NOTE: If L = 1, the instruction form is invalid.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpldi r A,value equivalent to cmpli 0,1,rA,value
cmplwi cr3,rA,value equivalent to cmpli 3,0,rA,value

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 8 9 10 11 15 16 31

Reserved

UIMM10 crfD 0 L A

Chapter 8. Instruction Set 8-33Chapter 8. Instruction Set 8-33Chapter 8. Instruction Set 8-33

8

cntlzw x cntlzw x
Count Leading Zeros Word (x’7C00 0034’)

cntlzw rA,rS (Rc = 0)
cntlzw. rA,rS (Rc = 1)

n ← 0
do while n < 32

if r S[n] = 1
then leave

n ← n + 1
r A ← n

A count of the number of consecutive zero bits starting at bit 0 ofrS is placed intorA. This
number ranges from 0 to 32, inclusive.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

NOTE: If Rc = 1, then LT is cleared in the CR0 field.

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A 0 0 0 0 0 26 Rc

8-34 PowerPC Microprocessor 32-bit Family: The Programming Environments8-34 PowerPC Microprocessor 32-bit Family: The Programming Environments8-34 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

crand crand
Condition Register AND (x’4C00 0202’)

crand crbD,crbA,crbB

CR[crb D] ← CR[crb A] & CR[crb B]

The bit in the condition register specified bycrbA is ANDed with the bit in the condition
register specified bycrbB. The result is placed into the condition register bit specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operandcrbD

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 257 0

Chapter 8. Instruction Set 8-35Chapter 8. Instruction Set 8-35Chapter 8. Instruction Set 8-35

8

crandc crandc
Condition Register AND with Complement (x’4C00 0102’)

crandc crbD,crbA,crbB

CR[crb D] ← CR[crb A] & ¬ CR[crb B]

The bit in the condition register specified bycrbA is ANDed with the complement of the
bit in the condition register specified bycrbB and the result is placed into the condition
register bit specified bycrbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operandcrbD

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 129 0

8-36 PowerPC Microprocessor 32-bit Family: The Programming Environments8-36 PowerPC Microprocessor 32-bit Family: The Programming Environments8-36 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

creqv creqv
Condition Register Equivalent (x’4C00 0242’)

creqv crbD,crbA,crbB

CR[crb D] ← CR[crb A] ≡ CR[crb B]

The bit in the condition register specified bycrbA is XORed with the bit in the condition
register specified bycrbB and the complemented result is placed into the condition register
bit specified bycrbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operandcrbD

Simplified mnemonics:

crse crbD equivalent to creqv crbD,crbD,crbD

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 289 0

Chapter 8. Instruction Set 8-37Chapter 8. Instruction Set 8-37Chapter 8. Instruction Set 8-37

8

crnand crnand
Condition Register NAND (x’4C00 01C2’)

crnand crbD,crbA,crbB

CR[crb D] ← ¬ (CR[crb A] & CR[crb B])

The bit in the condition register specified bycrbA is ANDed with the bit in the condition
register specified bycrbB and the complemented result is placed into the condition register
bit specified bycrbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operandcrbD

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 225 0

8-38 PowerPC Microprocessor 32-bit Family: The Programming Environments8-38 PowerPC Microprocessor 32-bit Family: The Programming Environments8-38 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

crnor crnor
Condition Register NOR (x’4C00 0042’)

crnor crb D,crbA,crbB

CR[crb D] ← ¬ (CR[crb A] | CR[crb B])

The bit in the condition register specified bycrbA is ORed with the bit in the condition
register specified bycrbB and the complemented result is placed into the condition register
bit specified bycrbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operandcrbD

Simplified mnemonics:

crnot crbD,crbA equivalent to crnor crb D,crbA,crbA

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 33 0

Chapter 8. Instruction Set 8-39Chapter 8. Instruction Set 8-39Chapter 8. Instruction Set 8-39

8

cror cror
Condition Register OR (x’4C00 0382’)

cror crb D,crbA,crbB

CR[crb D] ← CR[crb A] | CR[crb B]

The bit in the condition register specified bycrbA is ORed with the bit in the condition
register specified bycrbB. The result is placed into the condition register bit specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operandcrbD

Simplified mnemonics:

crmove crbD,crbA equivalent to cror crb D,crbA,crbA

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 449 0

8-40 PowerPC Microprocessor 32-bit Family: The Programming Environments8-40 PowerPC Microprocessor 32-bit Family: The Programming Environments8-40 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

crorc crorc
Condition Register OR with Complement (x’4C00 0342’)

crorc crbD,crbA,crbB

CR[crb D] ← CR[crb A] | ¬ CR[crb B]

The bit in the condition register specified bycrbA is ORed with the complement of the
condition register bit specified bycrbB and the result is placed into the condition register
bit specified bycrbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operandcrbD

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 417 0

Chapter 8. Instruction Set 8-41Chapter 8. Instruction Set 8-41Chapter 8. Instruction Set 8-41

8

crxor crxor
Condition Register XOR (x’4C00 0182’)

crxor crb D,crbA,crbB

CR[crb D] ← CR[crb A] ⊕ CR[crb B]

The bit in the condition register specified bycrbA is XORed with the bit in the condition
register specified bycrbB and the result is placed into the condition register specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified bycrbD

Simplified mnemonics:

crclr crb D equivalent to crxor crb D,crbD,crbD

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 193 0

8-42 PowerPC Microprocessor 32-bit Family: The Programming Environments8-42 PowerPC Microprocessor 32-bit Family: The Programming Environments8-42 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

dcba dcba
Data Cache Block Allocate (x’7C00 05EC’)

dcba rA,rB

EA is the sum (rA|0) + (rB).

Thedcba instruction allocates the block in the data cache addressed by EA, by marking it
valid without reading the contents of the block from memory; the data in the cache block
is considered to be undefined after this instruction completes. This instruction is a hint that
the program will probably soon store into a portion of the block, but the content of the rest
of the block are not meaningful to the program (eliminating the needed to read the block
from main memory), and can provide for improved performance in these code sequences.

Thedcba instruction executes as follows:

• If the cache block containing the byte addressed by EA is in the data cache, the
contents of all bytes are made undefined but the cache block is still considered valid.

NOTE: Programming errors can occur if the data in this cache block is
subsequently read or used inadvertently.

• If the cache block containing the byte addressed by EA isnot in the data cache and
the corresponding memory page or block is caching-allowed, the cache block is
allocated (and made valid) in the data cache without fetching the block from main
memory, and the value of all bytes is undefined.

• If the addressed byte corresponds to a cache-inhibited page or block this instruction
is treated as a no-op. (i.e. if the I bit is set),

• If the cache block containing the byte addressed by EA is in coherency-required
memory, and the cache block exists in the data cache(s) of any other processor(s), it
is kept coherent in those caches (i.e. the processor preforms the appropriate bus
transactions to enforce this).

This instruction is treated as a store to the addressed byte with respect to address translation
and memory protection, referenced and changed recording and the ordering enforced by
eieio or by the combination of caching-inhibited and guarded attributes for a page (or
block). However, the DSI exception is not invoked for a translation or protection violation,
and the referenced and changed bits need not be updated when the page or block is cache-
inhibited (causing the instruction to be treated as a no-op).

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 758 031 0 0 0 0 0 A

Chapter 8. Instruction Set 8-43Chapter 8. Instruction Set 8-43Chapter 8. Instruction Set 8-43

8

NOTE: This instruction is optional in the PowerPC architecture.

Other registers altered:

• None

In the PowerPC OEA, thedcba instruction is additionally defined to clear all bytes of a
newly established block to zero in the case that the block did not already exist in the cache.

Additionally, as thedcba instruction may establish a block in the data cache without
verifying that the associated physical address is valid, a delayed machine check exception
is possible. See Chapter 6, “Exceptions,” for a discussion about this type of machine check
exception.

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

VEA √ X

8-44 PowerPC Microprocessor 32-bit Family: The Programming Environments8-44 PowerPC Microprocessor 32-bit Family: The Programming Environments8-44 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

dcbf dcbf
Data Cache Block Flush (x’7C00 00AC’)

dcbf rA,rB

EA is the sum (rA|0) + (rB).

The action taken depends on the memory mode associated with the block containing the
byte addressed by EA and on the state of that block. If the system is a multiprocessor
implementation and the block is marked coherency-required, the processor will, if
necessary, send an address-only broadcast to other processors. The broadcast of thedcbf
instruction causes another processor to copy the block to memory, if it has dirty data, and
then invalidate the block from the cache. The list below describes the action taken for the
two states of the memory coherency attribute (M bit).

• Coherency required (requires the use of address broadcast)

— Unmodified block—Invalidates copies of the block in the data caches of all
processor.

— Modified block—Copies the block to memory and invalidates it. (In what ever
processor it resides, there should be only one modified block)

— Absent block —If a modified copy of the block is in the data cache of another
processor, causes that processor to copied to memory and invalidated it in it’s
data cache. If unmodified copies are in the data caches of other processors,
causes those copies to be invalidated in those data caches.

• Coherency not required (no address broadcast required)

— Unmodified block—Invalidates the block in the processor’s data cache.
— Modified block—Copies the block to memory. Invalidates the block in the

processor’s data cache.
— Absent block—No action is taken.

The function of this instruction is independent of the write-through, write-back and
caching-inhibited/allowed modes of the block containing the byte addressed by EA. This
instruction is treated as a load from the addressed byte with respect to address translation
and memory protection. It is also treated as a load for referenced and changed bit recording
except that referenced and changed bit recording may not occur.

Other registers altered: None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 86 031 0 0 0 0 0 A

Chapter 8. Instruction Set 8-45Chapter 8. Instruction Set 8-45Chapter 8. Instruction Set 8-45

8

dcbi dcbi
Data Cache Block Invalidate (x’7C00 03AC’)

dcbi rA,rB

EA is the sum (rA|0) + (rB).

The action taken is dependent on the memory mode associated with the block containing
the byte addressed by EA and on the state of that block. The list below describes the action
taken if the block containing the byte addressed by EA is or is not in the cache.

• Coherency required (requires the use of address broadcast)

— Unmodified block—Invalidates copies of the block in the data caches of all
processor.

— Modified block—Invalidates the copy of the block in the data cache in the
processor(s) where it is found. (Discards any modified contents)

— Absent block —If a modified copy of the block is in the data cache of another
processor, causes that processor to invalidated it in it’s data cache. If unmodified
copies are in the data caches of other processors, causes those copies to be
invalidated in those data caches.

• Coherency not required (no address broadcast required)

— Unmodified block—Invalidates the block in the processor’s data cache.
— Modified block— Invalidates the block in the processor’s data cache. (Discards

any modified contents)
— Absent block—No action is taken.

When data address translation is enabled, MSR[DR] = 1, and the virtual address has no
translation, a DSI exception occurs.

The function of this instruction is independent of the write-through and caching-
inhibited/allowed modes of the block containing the byte addressed by EA. This instruction
operates as a store to the addressed byte with respect to address translation and protection.
The referenced and changed bits are modified appropriately.

This is a supervisor-level instruction.

Other registers altered: None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

VEA yes X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 470 031 0 0 0 0 0 A

8-46 PowerPC Microprocessor 32-bit Family: The Programming Environments8-46 PowerPC Microprocessor 32-bit Family: The Programming Environments8-46 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

dcbst dcbst
Data Cache Block Store (x’7C00 006C’)

dcbst rA,rB

EA is the sum (rA|0) + (rB).

Thedcbst instruction executes as follows:

• Coherency required (requires the use of address broadcast)

— Unmodified block—No action in this processor. Signals other processors to copy
to memory any modified cache block.

— Modified block—The cache block is written to memory. (only one processor
should have a copy of a modified block)

— Absent block —No action in this processor. If a modified copy of the block is in
the data cache of another processor, the cache line is written to memory.

• Coherency not required (no address broadcast required)

— Unmodified block—No action is taken.
— Modified block— The cache block is written to memory.
— Absent block—No action is taken.

NOTE: For modified cache blocks written to memory the architecture does not
stipulate whether or not to clear the modified state of the cache block. It is
left up to the processor designer to determine the final state of the cache
block. Either modified or valid is logically correct.

The function of this instruction is independent of the write-through and caching-
inhibited/allowed modes of the block containing the byte addressed by EA.

The processor treats this instruction as a load from the addressed byte with respect to
address translation and memory protection. It is also treated as a load for referenced and
changed bit recording except that referenced and changed bit recording may not occur.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 54 031 0 0 0 0 0 A

Chapter 8. Instruction Set 8-47Chapter 8. Instruction Set 8-47Chapter 8. Instruction Set 8-47

8

dcbt dcbt
Data Cache Block Touch (x’7C00 022C’)

dcbt rA,rB

EA is the sum (rA|0) + (rB).

This instruction is a hint that performance will possibly be improved if the block containing
the byte addressed by EA is fetched into the data cache, because the program will probably
soon load from the addressed byte. If the block is caching-inhibited, the hint is ignored and
the instruction is treated as a no-op. Executingdcbt does not cause the system alignment
error handler to be invoked.

This instruction is treated as a load from the addressed byte with respect to address
translation, memory protection, and reference and change recording except that referenced
and changed bit recording may not occur. Additionally, no exception occurs in the case of
a translation fault or protection violation.

The program uses thedcbt instruction to request a cache block fetch before it is actually
needed by the program. The program can later execute load instructions to put data into
registers. However, the processor is not obliged to load the addressed block into the data
cache.

NOTE: This instruction is defined architecturally to perform the same functions as the
dcbtst instruction. Both are defined in order to allow implementations to
differentiate the bus actions when fetching into the cache for the case of a load
and for a store.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 278 031 0 0 0 0 0 A

8-48 PowerPC Microprocessor 32-bit Family: The Programming Environments8-48 PowerPC Microprocessor 32-bit Family: The Programming Environments8-48 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

dcbtst dcbtst
Data Cache Block Touch for Store (x’7C00 01EC’)

dcbtst rA,rB

EA is the sum (rA|0) + (rB).

This instruction is a hint that performance will possibly be improved if the block containing
the byte addressed by EA is fetched into the data cache, because the program will probably
soon store from the addressed byte. If the block is caching-inhibited, the hint is ignored and
the instruction is treated as a no-op. Executingdcbtst does not cause the system alignment
error handler to be invoked.

This instruction is treated as a load from the addressed byte with respect to address
translation, memory protection, and reference and change recording except that referenced
and changed bit recording may not occur. Additionally, no exception occurs in the case of
a translation fault or protection violation.

The program usesdcbtst to request a cache block fetch to potentially improve performance
for a subsequent store to that EA, as that store would then be to a cached location. However,
the processor is not obliged to load the addressed block into the data cache.

NOTE: This instruction is defined architecturally to perform the same functions as the
dcbt instruction. Both are defined in order to allow implementations to
differentiate the bus actions when fetching into the cache for the case of a load
and for a store.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 246 031 0 0 0 0 0 A

Chapter 8. Instruction Set 8-49Chapter 8. Instruction Set 8-49Chapter 8. Instruction Set 8-49

8

dcbz dcbz
Data Cache Block Clear to Zero (x’7C00 07EC’)

dcbz rA,rB

EA is the sum (rA|0) + (rB).

This instruction is treated as a store to the addressed byte with respect to address
translation, memory protection, referenced and changed recording. It is also treated as a
store with respect to the ordering enforced byeieio and the ordering enforced by the
combination of caching-inhibited and guarded attributes for a page (or block).

Thedcbz instruction executes as follows:

• If the cache block containing the byte addressed by EA is in the data cache, all bytes
are cleared and the cache line is marked “M”.

• If the cache block containing the byte addressed by EA is not in the data cache and
the corresponding memory page or block is caching-allowed, the cache block is
allocated (and made valid) in the data cache without fetching the block from main
memory, and all bytes are cleared.

• If the page containing the byte addressed by EA is in caching-inhibited or write-
through mode, either all bytes of main memory that correspond to the addressed
cache block are cleared or the alignment exception handler is invoked. The
exception handler can then clear all bytes in main memory that correspond to the
addressed cache block.

• If the cache block containing the byte addressed by EA is in coherency-required
mode, and the cache block exists in the data cache(s) of any other processor(s), it is
kept coherent in those caches (i.e. the processor performs the appropriate bus
transactions to enforce this).

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 1014 031 0 0 0 0 0 A

8-50 PowerPC Microprocessor 32-bit Family: The Programming Environments8-50 PowerPC Microprocessor 32-bit Family: The Programming Environments8-50 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

divw x divw x
Divide Word (x’7C00 03D6’)

divw r D,rA,rB (OE = 0 Rc = 0)
divw. rD,rA,rB (OE = 0 Rc = 1)
divwo rD,rA,rB (OE = 1 Rc = 0)
divwo. rD,rA,rB (OE = 1 Rc = 1)

dividend ← (r A)
divisor ← (r B)
r D ← dividend ÷ divisor

The dividend is the contents ofrA. The divisor is the contents ofrB. The remainder is not
supplied as a result. Both the operands and the quotient are interpreted as signed integers.
The quotient is the unique signed integer that satisfies the equation—dividend = (quotient
* divisor) + r where 0 r < |divisor| (if the dividend is non-negative), and –|divisor| < r 0 (if
the dividend is negative).

If an attempt is made to perform either of the divisions—0x8000_0000÷ −1 or
<anything>÷ 0, then the contents ofrD are undefined, as are the contents of the LT, GT,
and EQ bits of the CR0 field (if Rc = 1). In this case, if OE = 1 then OV is set.

The 32-bit signed remainder of dividing the contents ofrA by the contents ofrB can be
computed as follows, except in the case that the contents ofrA = –231 and the contents of
rB = –1.

divw r D,rA,rB # rD = quotient
mullw r D,rD,rB # rD = quotient * divisor
subf rD,rD,rA # rD = remainder

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

• XER:

Affected: SO, OV (If OE = 1)

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register.”

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 491 Rc

Chapter 8. Instruction Set 8-51Chapter 8. Instruction Set 8-51Chapter 8. Instruction Set 8-51

8

divwu x divwu x
Divide Word Unsigned (x’7C00 0396’)

divwu r D,rA,rB (OE = 0 Rc = 0)
divwu. rD,rA,rB (OE = 0 Rc = 1)
divwuo rD,rA,rB (OE = 1 Rc = 0)
divwuo. rD,rA,rB (OE = 1 Rc = 1)

dividend ← (r A)
divisor ← (r B)
r D← dividend ÷ divisor

The dividend is the contents ofrA. The divisor is the contents ofrB. The remainder is not
supplied as a result.

Both operands and the quotient are interpreted as unsigned integers, except that if Rc = 1
the first three bits of CR0 field are set by signed comparison of the result to zero. The
quotient is the unique unsigned integer that satisfies the equation—dividend = (quotient *
divisor) + r (where 0 r < divisor). If an attempt is made to perform the
division—<anything> 0—then the contents ofrD are undefined as are the contents of the
LT, GT, and EQ bits of the CR0 field (if Rc = 1). In this case, if OE = 1 then OV is set.

The 32-bit unsigned remainder of dividing the contents ofrA by the contents ofrB can be
computed as follows:

divwu r D,rA,rB # rD = quotient
mullw r D,rD,rB # rD = quotient * divisor
subf rD,rD,rA # rD = remainder

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (If Rc = 1)

• XER:
Affected: SO, OV (if OE = 1)

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register.”

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 459 Rc

8-52 PowerPC Microprocessor 32-bit Family: The Programming Environments8-52 PowerPC Microprocessor 32-bit Family: The Programming Environments8-52 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

eciwx eciwx
External Control In Word Indexed (x’7C00 026C’)

eciwx rD,rA,rB

The eciwx instruction and the EAR register can be very efficient when mapping special
devices such as graphics devices that use addresses as pointers.

if r A = 0
then b ← 0
else b ← (r A)

EA ← b + (r B)
paddr ← address translation of EA
send load word request for paddr to device identified by EAR[RID]
r D ← word from device

EA is the sum (rA|0) + (rB).

A load word request for the physical address (referred to as real address in the architecture
specification) corresponding to EA is sent to the device identified by EAR[RID], bypassing
the cache. The word returned by the device is placed inrD.

EAR[E] must be 1. If it is not, a DSI exception is generated.

EA must be a multiple of four. If it is not, one of the following occurs:

• A system alignment exception is generated.
• A DSI exception is generated (possible only if EAR[E] = 0).
• The results are boundedly undefined.

The eciwx instruction is supported for EAs that reference memory segments in which
SR[T] = 1 and for EAs mapped by the DBAT registers. If the EA references a direct-store
segment (SR[T] = 1), either a DSI exception occurs or the results are boundedly undefined.

NOTE: The direct-store facility is being phased out of the architecture and will not likely
be supported in future devices. Thus, software should not depend on its effects.

If this instruction is executed when MSR[DR] = 0 (real addressing mode), the results are
boundedly undefined.

This instruction is treated as a load from the addressed byte with respect to address
translation, memory protection, referenced and changed bit recording, and the ordering
performed byeieio.

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D A B 310 0

Chapter 8. Instruction Set 8-53Chapter 8. Instruction Set 8-53Chapter 8. Instruction Set 8-53

8

NOTE: This instruction is optional in the PowerPC architecture.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

VEA √ X

8-54 PowerPC Microprocessor 32-bit Family: The Programming Environments8-54 PowerPC Microprocessor 32-bit Family: The Programming Environments8-54 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

ecowx ecowx
External Control Out Word Indexed (x’7C00 036C’)

ecowx rS,rA,rB

The ecowx instruction and the EAR register can be very efficient when mapping special
devices such as graphics devices that use addresses as pointers.

if r A = 0
then b ← 0
else b ← (r A)

EA ← b + (r B)
paddr ← address translation of EA
send store word request for paddr to device identified by EAR[RID]
send r S to device

EA is the sum (rA|0) + (rB).

A store word request for the physical address corresponding to EA and the contents ofrS
are sent to the device identified by EAR[RID], bypassing the cache.

EAR[E] must be 1, if it is not, a DSI exception is generated.

EA must be a multiple of four. If it is not, one of the following occurs:

• A system alignment exception is generated.
• A DSI exception is generated (possible only if EAR[E] = 0).
• The results are boundedly undefined.

Theecowxinstruction is supported for effective addresses that reference memory segments
in which SR[T] = 0, and for EAs mapped by the DBAT registers. If the EA references a
direct-store segment (SR[T] = 1), either a DSI exception occurs or the results are boundedly
undefined.

NOTE: The direct-store facility is being phased out of the architecture and will not likely
be supported in future devices. Thus, software should not depend on its effects.

If this instruction is executed when MSR[DR] = 0 (real addressing mode), the results are
boundedly undefined.

This instruction is treated as a store from the addressed byte with respect to address
translation, memory protection, and referenced and changed bit recording, and the ordering
performed byeieio.

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A B 438 0

Chapter 8. Instruction Set 8-55Chapter 8. Instruction Set 8-55Chapter 8. Instruction Set 8-55

8

NOTE: Software synchronization is required in order to ensure that the data access is
performed in program order with respect to data accesses caused by other store
or ecowxinstructions, even though the addressed byte is assumed to be caching-
inhibited and guarded.

NOTE: This instruction is optional in the PowerPC architecture.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

VEA √ X

8-56 PowerPC Microprocessor 32-bit Family: The Programming Environments8-56 PowerPC Microprocessor 32-bit Family: The Programming Environments8-56 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

eieio eieio
Enforce In-Order Execution of I/O (x’7C00 06AC’)

The eieio instruction provides an ordering function for the effects of load and store
instructions executed by a processor. These loads and stores are divided into two sets, which
are ordered separately. The memory accesses caused by adcbz or adcba instruction are
ordered like a store. The two sets follow:

1. Loads and stores to memory that is both caching-inhibited and guarded, and stores
to memory that is write-through required.

Theeieioinstruction controls the order in which the accesses are performed in main
memory. It ensures that all applicable memory accesses caused by instructions
preceding theeieioinstruction have completed with respect to main memory before
any applicable memory accesses caused by instructions following theeieio
instruction access main memory. It acts like a barrier that flows through the memory
queues and to main memory, preventing the reordering of memory accesses across
the barrier. No ordering is performed fordcbz if the instruction causes the system
alignment error handler to be invoked.

All accesses in this set are ordered as a single set—that is, there is not one order for
loads and stores to caching-inhibited and guarded memory and another order for
stores to write-through required memory.

2. Stores to memory that have all of the following attributes—caching-allowed, write-
through not required, and memory-coherency required.

Theeieio instruction controls the order in which the accesses are performed with
respect to coherent memory. It ensures that all applicable stores caused by
instructions preceding theeieioinstruction have completed with respect to coherent
memory before any applicable stores caused by instructions following theeieio
instruction complete with respect to coherent memory.

With the exception ofdcbz anddcba, eieiodoes not affect the order of cache operations
(whether caused explicitly by execution of a cache management instruction, or implicitly
by the cache coherency mechanism). For more information, refer to Chapter 5, “Cache
Model and Memory Coherency.” Theeieioinstruction does not affect the order of accesses
in one set with respect to accesses in the other set.

The eieio instruction may complete before memory accesses caused by instructions
preceding theeieio instruction have been performed with respect to main memory or
coherent memory as appropriate.

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

Chapter 8. Instruction Set 8-57Chapter 8. Instruction Set 8-57Chapter 8. Instruction Set 8-57

8

Theeieio instruction is intended for use in managing shared data structures, in accessing
memory-mapped I/O, and in preventing load/store combining operations in main memory.
For the first use, the shared data structure and the lock that protects it must be altered only
by stores that are in the same set (1 or 2; see previous discussion). For the second use,eieio
can be thought of as placing a barrier into the stream of memory accesses issued by a
processor, such that any given memory access appears to be on the same side of the barrier
to both the processor and the I/O device.

Because the processor performs store operations in order to memory that is designated as
both caching-inhibited and guarded (refer to Section 5.1.1, “Memory Access Ordering”),
the eieio instruction is needed for such memory only when loads must be ordered with
respect to stores or with respect to other loads.

NOTE: Theeieio instruction does not connect hardware considerations to it such as
multiprocessor implementations that send aneieio address-only broadcast
(useful in some designs).
For example, if a design has an external buffer that re-orders loads and stores for
better bus efficiency, the eieio broadcast signals to that buffer that previous
loads/stores (marked caching-inhibited, guarded, or write-through required)
must complete before any following loads/stores (marked caching-inhibited,
guarded, or write-through required).

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

VEA X

8-58 PowerPC Microprocessor 32-bit Family: The Programming Environments8-58 PowerPC Microprocessor 32-bit Family: The Programming Environments8-58 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

eqvx eqvx
Equivalent (x’7C00 0238’)

eqv rA,rS,rB (Rc = 0)
eqv. rA,rS,rB (Rc = 1)

r A ← (r S) ≡ (r B)

The contents ofrS are XORed with the contents ofrB and the complemented result is
placed intorA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 21 22 30 31

31 S A B 284 Rc

Chapter 8. Instruction Set 8-59Chapter 8. Instruction Set 8-59Chapter 8. Instruction Set 8-59

8

extsb x extsb x
Extend Sign Byte (x’7C00 0774’)

extsb rA,rS (Rc = 0)
extsb. rA,rS (Rc = 1)

S ← r S[24]
r A[24-31] ← r S[24-31]
r A[0–23] ← (24)S

The contents of the low-order eight bits ofrS are placed into the low-order eight bits ofrA.
Bit 24of rS is placed into the remaining bits ofrA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A 0 0 0 0 0 954 Rc

8-60 PowerPC Microprocessor 32-bit Family: The Programming Environments8-60 PowerPC Microprocessor 32-bit Family: The Programming Environments8-60 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

extsh x extsh x
Extend Sign Half Word (x’7C00 0734’)

extsh rA,rS (Rc = 0)
extsh. rA,rS (Rc = 1)

S ← r S[16]
r A[16-31] ← r S[16-31]
r A[0–15] ← (16)S

The contents of the low-order 16 bits ofrS are placed into the low-order 16 bits ofrA. Bit
16 of rS is placed into the remaining bits ofrA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A 0 0 0 0 0 922 Rc

Chapter 8. Instruction Set 8-61Chapter 8. Instruction Set 8-61Chapter 8. Instruction Set 8-61

8

fabs x fabs x
Floating Absolute Value (x’FC00 0210’)

fabs frD,frB (Rc = 0)
fabs. frD,frB (Rc = 1)

The contents offr B with bit 0 cleared are placed intofr D.

NOTE: Thefabs instruction treats NaNs just like any other kind of value. That is, the
sign bit of a NaN may be altered byfabs.
This instruction does not alter the FPSCR.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (If Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

B 264 Rc

0 5 6 10 11 15 16 20 21 30 31

Reserved

63 D 0 0 0 0 0

8-62 PowerPC Microprocessor 32-bit Family: The Programming Environments8-62 PowerPC Microprocessor 32-bit Family: The Programming Environments8-62 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

fadd x fadd x
Floating Add (Double-Precision) (x’FC00 002A’)

fadd fr D,frA,frB (Rc = 0)
fadd. frD,frA,frB (Rc = 1)

The following operation is performed:

fr D ← (fr A) + (fr B)

The floating-point operand infr A is added to the floating-point operand infr B. If the most-
significant bit of the resultant significand is not a one, the result is normalized. The result
is rounded to double-precision under control of the floating-point rounding control field RN
of the FPSCR and placed intofr D.

Floating-point addition is based on exponent comparison and addition of the two
significands. The exponents of the two operands are compared, and the significand
accompanying the smaller exponent is shifted right, with its exponent increased by one for
each bit shifted, until the two exponents are equal. The two significands are then added or
subtracted as appropriate, depending on the signs of the operands. All 53 bits in the
significand as well as all three guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum's significand is shifted right one bit position and the exponent is
increased by one. FPSCR[FPRF] is set to the class and sign of the result, except for invalid
operation exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (If Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX,VXSNAN, VXISI

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

63 D A B 0 0 0 0 0 21 Rc

Chapter 8. Instruction Set 8-63Chapter 8. Instruction Set 8-63Chapter 8. Instruction Set 8-63

8

fadds x fadds x
Floating Add Single (x’EC00 002A’)

fadds frD,frA,frB (Rc = 0)
fadds. frD,frA,frB (Rc = 1)

The following operation is performed:

fr D ← (fr A) + (fr B)

The floating-point operand infr A is added to the floating-point operand infr B. If the most-
significant bit of the resultant significand is not a one, the result is normalized. The result
is rounded to the single-precision under control of the floating-point rounding control field
RN of the FPSCR and placed intofr D.

Floating-point addition is based on exponent comparison and addition of the two
significands. The exponents of the two operands are compared, and the significand
accompanying the smaller exponent is shifted right, with its exponent increased by one for
each bit shifted, until the two exponents are equal. The two significands are then added or
subtracted as appropriate, depending on the signs of the operands. All 53 bits in the
significand as well as all three guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum's significand is shifted right one bit position and the exponent is
increased by one. FPSCR[FPRF] is set to the class and sign of the result, except for invalid
operation exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (If Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX,VXSNAN, VXIS

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

59 D A B 0 0 0 0 0 21 Rc

8-64 PowerPC Microprocessor 32-bit Family: The Programming Environments8-64 PowerPC Microprocessor 32-bit Family: The Programming Environments8-64 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

fcmpo fcmpo
Floating Compare Ordered (x’FC00 0040’)

fcmpo crfD,frA,frB

if ((fr A) is a NaN or (fr B) is a NaN)
then c ← 0b0001
else if (fr A)< (fr B)

then c ← 0b1000
else if (fr A)> (fr B)

then c ← 0b0100
else c ← 0b0010

FPCC ← c
CR[(4 * crf D)–(4 * crf D + 3)] ← c

if ((fr A) is an SNaN or (fr B) is an SNaN)
then VXSNAN ← 1

if VE = 0
then VXVC ← 1
else if ((fr A) is a QNaN or (fr B) is a QNaN)

then VXVC ← 1

The floating-point operand infr A is compared to the floating-point operand infr B. The
result of the compare is placed into CR fieldcrfD and the FPCC.

If one of the operands is a NaN, either quiet or signaling, then CR fieldcrfD and the FPCC
are set to reflect unordered. If one of the operands is a signaling NaN, then VXSNAN is set,
and if invalid operation is disabled (VE = 0) then VXVC is set. Otherwise, if one of the
operands is a QNaN, then VXVC is set.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, UN

• Floating-Point Status and Control Register:

Affected: FPCC, FX, VXSNAN, VXVC

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 32 063 crfD 0 0 A

Chapter 8. Instruction Set 8-65Chapter 8. Instruction Set 8-65Chapter 8. Instruction Set 8-65

8

fcmpu fcmpu
Floating Compare Unordered (x’FC00 0000’)

fcmpu crfD,frA,frB

if ((fr A) is a NaN or (fr B) is a NaN)
then c← 0b0001
else if (fr A) < (fr B)

then c← 0b1000
else if (fr A) > (fr B)

then c← 0b0100
else c← 0b0010

FPCC← c
CR[(4 * crfD)-(4 * crfD + 3)] ← c

if ((fr A) is an SNaN or (fr B) is an SNaN)
then VXSNAN← 1

The floating-point operand in registerfr A is compared to the floating-point operand in
register frB. The result of the compare is placed into CR fieldcrfD and the FPCC.

If one of the operands is a NaN, either quiet or signaling, then CR fieldcrfD and the FPCC
are set to reflect unordered. If one of the operands is a signaling NaN, then VXSNAN is set.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, UN

• Floating-Point Status and Control Register:
Affected: FPCC, FX, VXSNAN

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 0 0 0 0 0 0 0 0 0 0 063 crfD 0 0 A

8-66 PowerPC Microprocessor 32-bit Family: The Programming Environments8-66 PowerPC Microprocessor 32-bit Family: The Programming Environments8-66 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

fctiw x fctiw x
Floating Convert to Integer Word (x’FC00 001C’)

fctiw fr D,frB (Rc = 0)
fctiw. fr D,frB (Rc = 1)

The floating-point operand in registerfr B is converted to a 32-bit signed integer, using the
rounding mode specified by FPSCR[RN], and placed in bits 32–63 offr D. Bits 0–31 offr D
are undefined.

If the operand infr B are greater than 231 – 1, bits 32–63 of fr D are set to 0x7FFF_FFFF.

If the operand in frB are less than –231, bits 32–63 of frD are set to 0x8000_0000.

The conversion is described fully in Section D.4.2, “Floating-Point Convert to Integer
Model.”

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF] is undefined.
FPSCR[FR] is set if the result is incremented when rounded. FPSCR[FI] is set if the result
is inexact.

(Programmers note: Astfiwz instruction should be used to store the 32 bit resultant integer
because bits 0–31 offr D are undefined. A store double-precision instruction, e.g.,stfdx,
will store the 64 bit result but 4 superfluous bytes are stored (bitsfr D[0-31]). This may
cause wasted bus traffic.)

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (If Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 14 Rc63 D 0 0 0 0 0

Chapter 8. Instruction Set 8-67Chapter 8. Instruction Set 8-67Chapter 8. Instruction Set 8-67

8

fctiwz x fctiwz x
Floating Convert to Integer Word with Round toward Zero (x’FC00 001E’)

fctiwz fr D,frB (Rc = 0)
fctiwz. fr D,frB (Rc = 1)

The floating-point operand in registerfr B is converted to a 32-bit signed integer, using the
rounding mode round toward zero, and placed in bits 32–63 offr D. Bits 0–31 offr D are
undefined.

If the operand in frB is greater than 231 – 1, bits 32–63 of frD are set to 0x7FFF_FFFF.

If the operand in frB is less than –231, bits 32–63 of fr D are set to 0x 8000_0000.

The conversion is described fully in Section D.4.2, “Floating-Point Convert to Integer
Model.”

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF] is undefined.
FPSCR[FR] is set if the result is incremented when rounded. FPSCR[FI] is set if the result
is inexact.

(Programmers note: Astfiwx instruction should be used to store the 32 bit resultant integer
because bits 0–31 offr D are undefined. A store double-precision instruction, e.g.,stfdx,
will store the 64 bit result but 4 superfluous bytes are stored (bitsfr D[0-31]). This may
cause wasted bus traffic.)

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (If Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 15 Rc63 D 0 0 0 0 0

8-68 PowerPC Microprocessor 32-bit Family: The Programming Environments8-68 PowerPC Microprocessor 32-bit Family: The Programming Environments8-68 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

fdiv x fdiv x
Floating Divide (Double-Precision),(x’FC00 0024’)

fdiv fr D,frA,frB (Rc = 0)
fdiv. fr D,frA,frB (Rc = 1)

The floating-point operand in registerfr A is divided by the floating-point operand in
register frB. The remainder is not supplied as a result.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to double-precision under control of the floating-point rounding
control field RN of the FPSCR and placed intofr D.

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1 and zero divide exceptions when FPSCR[ZE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (If Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, ZX, XX, VXSNAN, VXIDI, VXZDZ

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 18 Rc63 D A

Chapter 8. Instruction set 8-69Chapter 8. Instruction set 8-69Chapter 8. Instruction set 8-69

8

fdivs x fdivs x
Floating Divide Single (x’EC00 0024’)

fdivs fr D,frA,frB (Rc = 0)
fdivs. frD,frA,frB (Rc = 1)

The floating-point operand in registerfr A is divided by the floating-point operand in
register frB. The remainder is not supplied as a result.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR and placed intofr D.

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1 and zero divide exceptions when FPSCR[ZE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, ZX, XX, VXSNAN, VXIDI, VXZDZ

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 18 Rc59 D A

8-70 PowerPC Microprocessor 32-bit Family: The Programming Environments8-70 PowerPC Microprocessor 32-bit Family: The Programming Environments8-70 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

fmadd x fmadd x
Floating Multiply-Add (Double-Precision),(x’FC00 003A’)

fmadd fr D,frA,frC,frB (Rc = 0)
fmadd. frD,frA,frC,frB (Rc = 1)

The following operation is performed:

fr D ← ((fr a) * (fr C)) + (fr B)

The floating-point operand in registerfr A is multiplied by the floating-point operand in
registerfr C. The floating-point operand in registerfr B is added to this intermediate result.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to double-precision under control of the floating-point rounding
control field RN of the FPSCR and placed intofr D.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 29 Rc63 D A

Chapter 8. Instruction set 8-71Chapter 8. Instruction set 8-71Chapter 8. Instruction set 8-71

8

fmadds x fmadds x
Floating Multiply-Add Single (x’EC00 003A’)

fmadds frD,frA,frC,frB (Rc = 0)
fmadds. frD,frA,frC,frB (Rc = 1)

The following operations are performed:

fr D ← ((fr A) * (fr C)) + (fr B)

The floating-point operand in registerfr A is multiplied by the floating-point operand in
registerfr C. The floating-point operand in registerfr B is added to this intermediate result.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR and placed intofr D.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 29 Rc59 D A

8-72 PowerPC Microprocessor 32-bit Family: The Programming Environments8-72 PowerPC Microprocessor 32-bit Family: The Programming Environments8-72 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

fmr x fmr x
Floating Move Register(Double-Precision),(x’FC00 0090’)

fmr fr D,frB (Rc = 0)
fmr. fr D,frB (Rc = 1)

The following operation is performed:

fr D ← (fr B)

The content of register frB is placed intofr D.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 72 Rc63 D 0 0 0 0 0

Chapter 8. Instruction set 8-73Chapter 8. Instruction set 8-73Chapter 8. Instruction set 8-73

8

fmsub x fmsub x
Floating Multiply-Subtract (Double-Precision),(x’FC00 0038’)

fmsub frD,frA,frC,frB (Rc = 0)
fmsub. frD,frA,frC,frB (Rc = 1)

The following operation is performed:

fr D ← [(fr A)* (fr C)] – (fr B)

The floating-point operand in registerfr A is multiplied by the floating-point operand in
registerfr C. The floating-point operand in registerfr B is subtracted from this intermediate
result.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to double-precision under control of the floating-point rounding
control field RN of the FPSCR and placed intofr D.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 28 Rc63 D A

8-74 PowerPC Microprocessor 32-bit Family: The Programming Environments8-74 PowerPC Microprocessor 32-bit Family: The Programming Environments8-74 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

fmsubs x fmsubs x
Floating Multiply-Subtract Single (x’EC00 0038’)

fmsubs frD,frA,frC,frB (Rc = 0)
fmsubs. frD,frA,frC,frB (Rc = 1)

The following operations are performed:

fr D ← [(fr A) * (fr C)] – (fr B)

The floating-point operand in registerfr A is multiplied by the floating-point operand in
registerfr C. The floating-point operand in registerfr B is subtracted from this intermediate
result.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR and placed intofr D.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

\

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 28 Rc59 D A

Chapter 8. Instruction set 8-75Chapter 8. Instruction set 8-75Chapter 8. Instruction set 8-75

8

fmul x fmul x
Floating Multiply (Double-Precision),(x’FC00 0032’)

fmul fr D,frA,frC (Rc = 0)
fmul. fr D,frA,frC (Rc = 1)

The following operation is performed:

fr D ← (fr A) * (fr C)

The floating-point operand in registerfr A is multiplied by the floating-point operand in
register frC.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to double-precision under control of the floating-point rounding
control field RN of the FPSCR and placed intofr D.

Floating-point multiplication is based on exponent addition and multiplication of the
significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXIMZ

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0 0 0 0 0 C 25 Rc63 D A

8-76 PowerPC Microprocessor 32-bit Family: The Programming Environments8-76 PowerPC Microprocessor 32-bit Family: The Programming Environments8-76 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

fmuls x fmuls x
Floating Multiply Single (x’EC00 0032’)

fmuls fr D,frA,frC (Rc = 0)
fmuls. frD,frA,frC (Rc = 1)

The following operation is performed:

fr D ← (fr A) * (fr C)

The floating-point operand in registerfr A is multiplied by the floating-point operand in
register frC.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR and placed intofr D.

Floating-point multiplication is based on exponent addition and multiplication of the
significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXIMZ

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0 0 0 0 0 C 25 Rc59 D A

Chapter 8. Instruction set 8-77Chapter 8. Instruction set 8-77Chapter 8. Instruction set 8-77

8

fnabs x fnabs x
Floating Negative Absolute Value (x’FC00 0110’)

fnabs frD,frB (Rc = 0)
fnabs. frD,frB (Rc = 1)

The following operation is performed:

fr D ← 1 || fr B[1-63]

The contents of register fr B with bit 0 set are placed intofr D.

NOTE: Thefnabs instruction treats NaNs just like any other kind of value. That is, the
sign bit of a NaN may be altered byfnabs. This instruction does not alter the
FPSCR.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 136 Rc63 D 0 0 0 0 0

8-78 PowerPC Microprocessor 32-bit Family: The Programming Environments8-78 PowerPC Microprocessor 32-bit Family: The Programming Environments8-78 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

fneg x fneg x
Floating Negate (x’FC00 0050’)

fneg frD,frB (Rc = 0)
fneg. frD,frB (Rc = 1)

The following operation is performed:

fr D ← ¬ fr B[0] || fr B[1-63]

The contents of register fr B with bit 0 inverted are placed intofr D.

NOTE: Thefneg instruction treats NaNs just like any other kind of value. That is, the
sign bit of a NaN may be altered byfneg. This instruction does not alter the
FPSCR.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 40 Rc63 D 0 0 0 0 0

Chapter 8. Instruction set 8-79Chapter 8. Instruction set 8-79Chapter 8. Instruction set 8-79

8

fnmadd x fnmadd x
Floating Negative Multiply-Add (Double-Precision),(x’FC00 003E’)

fnmadd fr D,frA,frC,frB (Rc = 0)
fnmadd. frD,frA,frC,frB (Rc = 1)

The following operations are performed:

fr D ← – ([(fr A) * (fr C)] + (fr B))

The floating-point operand in registerfr A is multiplied by the floating-point operand in
registerfr C. The floating-point operand in registerfr B is added to this intermediate result.
If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to double-precision under control of the floating-point rounding
control field RN of the FPSCR, then negated and placed intofr D.

This instruction produces the same result as would be obtained by using the Floating
Multiply-Add (fmaddx) instruction and then negating the result, with the following
exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception have
a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 31 Rc63 D A

8-80 PowerPC Microprocessor 32-bit Family: The Programming Environments8-80 PowerPC Microprocessor 32-bit Family: The Programming Environments8-80 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

fnmadds x fnmadds x
Floating Negative Multiply-Add Single (x’EC00 003E’)

fnmadds frD,frA,frC,frB (Rc = 0)
fnmadds. frD,frA,frC,frB (Rc = 1)

The following operations are performed:

fr D ← – ([(fr A) * (fr C)] + (fr B))

The floating-point operand in registerfr A is multiplied by the floating-point operand in
registerfr C. The floating-point operand in registerfr B is added to this intermediate result.
If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR, then negated and placed intofr D.

This instruction produces the same result as would be obtained by using the Floating
Multiply-Add Single (fmaddsx) instruction and then negating the result, with the following
exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception have
a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 31 Rc59 D A

Chapter 8. Instruction set 8-81Chapter 8. Instruction set 8-81Chapter 8. Instruction set 8-81

8

fnmsub x fnmsub x
Floating Negative Multiply-Subtract (Double-Precision),(x’FC00 003C’)

fnmsub frD,frA,frC,frB (Rc = 0)
fnmsub. frD,frA,frC,frB (Rc = 1)

]

The following operations are performed:

fr D ← – ([(fr A) * (fr C)] – (fr B))

The floating-point operand in registerfr A is multiplied by the floating-point operand in
registerfr C. The floating-point operand in registerfr B is subtracted from this intermediate
result.

If the most-significant bit of the resultant significand is not one, the result is normalized.
The result is rounded to double-precision under control of the floating-point rounding
control field RN of the FPSCR, then negated and placed intofr D.

This instruction produces the same result obtained by negating the result of a Floating
Multiply-Subtract (fmsubx) instruction with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception have
a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field)

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 30 Rc63 D A

8-82 PowerPC Microprocessor 32-bit Family: The Programming Environments8-82 PowerPC Microprocessor 32-bit Family: The Programming Environments8-82 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

fnmsubs x fnmsubs x
Floating Negative Multiply-Subtract Single (x’EC00 003C’)

fnmsubs frD,frA,frC,frB (Rc = 0)
fnmsubs. frD,frA,frC,frB (Rc = 1)

)

The following operations are performed:

fr D ← – ([(fr A) * (fr C)] – (fr B))

The floating-point operand in registerfr A is multiplied by the floating-point operand in
registerfr C. The floating-point operand in registerfr B is subtracted from this intermediate
result.

If the most-significant bit of the resultant significand is not one, the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR, then negated and placed intofr D.

This instruction produces the same result obtained by negating the result of a Floating
Multiply-Subtract Single (fmsubsx) instruction with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception have
a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field)

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 30 Rc59 D A

Chapter 8. Instruction set 8-83Chapter 8. Instruction set 8-83Chapter 8. Instruction set 8-83

8

fres x fres x
Floating Reciprocal Estimate Single (x’EC00 0030’)

fres frD,frB (Rc = 0)
fres. frD,frB (Rc = 1)

The following operation is performed:

fr D ← estimate[1/(fr B)]

A single-precision estimate of the reciprocal of the floating-point operand in registerfr B is
placed into registerfr D. The estimate placed into registerfr D is correct to a precision of
one part in 4096 of the reciprocal offr B. That is,

where x is the initial value infr B.

NOTE: The value placed into registerfr D may vary between implementations, and
between different executions on the same implementation.

Operation with various special values of the operand is summarized below:

Operand Result Exception

– –0 None

–0 – * ZX

+0 + * ZX

+ +0 None

SNaN QNaN** VXSNAN

QNaN QNaN None

Notes: * No result if FPSCR[ZE] = 1

** No result if FPSCR[VE] = 1

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1 and zero divide exceptions when FPSCR[ZE] = 1.

B 0 0 0 0 0 24 Rc

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

59 D 0 0 0 0 0

ABS

estimate
1
x
--- 

 –

1
x
--- 

 

 
 
 
 
 

1
4096()

----------------≤

8-84 PowerPC Microprocessor 32-bit Family: The Programming Environments8-84 PowerPC Microprocessor 32-bit Family: The Programming Environments8-84 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

NOTE: The PowerPC architecture makes no provision for a double-precision version of
thefresx instruction. This is because graphics applications are expected to need
only the single-precision version, and no other important performance-critical
applications are expected to require a double-precision version of thefresx
instruction.

NOTE: This instruction is optional in the PowerPC architecture.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR (undefined), FI (undefined), FX, OX, UX, ZX, VXSNAN

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA √ A

Chapter 8. Instruction set 8-85Chapter 8. Instruction set 8-85Chapter 8. Instruction set 8-85

8

frsp x frsp x
Floating Round to Single (x’FC00 0018’)

frsp fr D,frB (Rc = 0)
frsp. fr D,frB (Rc = 1)

The following operation is performed:

fr D ← Round_single(fr B)

If it is already in single-precision range, the floating-point operand in registerfr B is placed
into fr D. Otherwise, the floating-point operand in registerfr B is rounded to single-
precision using the rounding mode specified by FPSCR[RN] and placed intofr D.

The rounding is described fully in Section D.4.1, “Floating-Point Round to Single-
Precision Model.”

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 12 Rc63 D 0 0 0 0 0

8-86 PowerPC Microprocessor 32-bit Family: The Programming Environments8-86 PowerPC Microprocessor 32-bit Family: The Programming Environments8-86 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

frsqrte x frsqrte x
Floating Reciprocal Square Root Estimate (x’FC00 0034’)

frsqrte fr D,frB (Rc = 0)
frsqrte. fr D,frB (Rc = 1)

A double-precision estimate of the reciprocal of the square root of the floating-point
operand in registerfr B is placed into registerfr D. The estimate placed into registerfr D is
correct to a precision of one part in 4096 of the reciprocal of the square root offr B. That is,

where x is the initial value infr B.

NOTE: The value placed into registerfr D may vary between implementations, and
between different executions on the same implementation.

Operation with various special values of the operand is summarized below:

Operand Result Exception

– QNaN** VXSQRT

<0 QNaN** VXSQRT

–0 – * ZX

+0 + * ZX

+ +0 None

SNaN QNaN** VXSNAN

QNaN QNaN None

Notes: * No result if FPSCR[ZE] = 1

** No result if FPSCR[VE] = 1

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1 and zero divide exceptions when FPSCR[ZE] = 1.

NOTE: No single-precision version of thefrsqrte instruction is provided; however, both
fr B andfr D are representable in single-precision format.

NOTE: This instruction is optional in the PowerPC architecture.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

ABS

estimate
1

x
------- 

 –

1

x
------- 

 

 
 
 
 
 

1
4096
------------≤fr D ←

Chapter 8. Instruction set 8-87Chapter 8. Instruction set 8-87Chapter 8. Instruction set 8-87

8

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR (undefined), FI (undefined), FX, ZX, VXSNAN, VXSQRT

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA √ A

8-88 PowerPC Microprocessor 32-bit Family: The Programming Environments8-88 PowerPC Microprocessor 32-bit Family: The Programming Environments8-88 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

fsel x fsel x
Floating Select (x’FC00 002E’)

fsel frD,frA,frC,frB (Rc = 0)
fsel. frD,frA,frC,frB (Rc = 1)

if (fr A) ≥ 0.0
then fr D ← (fr C)
else fr D← (fr B)

The floating-point operand in registerfr A is compared to the value zero. If the operand is
greater than or equal to zero, registerfr D is set to the contents of registerfr C. If the operand
is less than zero or is a NaN, registerfr D is set to the contents of registerfr B. The
comparison ignores the sign of zero (that is, regards +0 as equal to –0).

Care must be taken in usingfsel if IEEE compatibility is required, or if the values being
tested can be NaNs or infinities.

For examples of uses of this instruction, see Section D.3, “Floating-Point Conversions,”
and Section D.5, “Floating-Point Selection.”

NOTE: This instruction is optional in the PowerPC architecture.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA √ A

B C 23 Rc

0 5 6 10 11 15 16 20 21 25 26 30 31

63 D A

Chapter 8. Instruction set 8-89Chapter 8. Instruction set 8-89Chapter 8. Instruction set 8-89

8

fsqrt x fsqrt x
Floating Square Root(Double-Precision),(x’FC00 002C’)

fsqrt fr D,frB (Rc = 0)
fsqrt. fr D,frB (Rc = 1)

The following operation is performed:

fr D ← Square_root(fr B)

The square root of the floating-point operand in registerfr B is placed into registerfr D.

If the most-significant bit of the resultant significand is not one, the result is normalized.
The result is rounded to double-precision under control of the floating-point rounding
control field RN of the FPSCR and placed intofr D.

Operation with various special values of the operand is summarized below:

Operand Result Exception

– QNaN* VXSQRT

<0 QNaN* VXSQRT

–0 –0 None

+ + None

SNaN QNaN* VXSNAN

QNaN QNaN None

Notes: * No result if FPSCR[VE] = 1

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

NOTE: This instruction is optional in the PowerPC architecture.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, ZX, VXSNAN, VXSQR

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA √ A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

8-90 PowerPC Microprocessor 32-bit Family: The Programming Environments8-90 PowerPC Microprocessor 32-bit Family: The Programming Environments8-90 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

fsqrts x fsqrts x
Floating Square Root(Single-Precision),(x’EC00 002C’)

fsqrts fr D,frB (Rc = 0)
fsqrts. frD,frB (Rc = 1)

The following operation is performed:

fr D ← Square_root(fr B)

The square root of the floating-point operand in registerfr B is placed into registerfr D.

If the most-significant bit of the resultant significand is not one, the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR and placed intofr D.

Operation with various special values of the operand is summarized below:

Operand Result Exception

– QNaN* VXSQRT

<0 QNaN* VXSQRT

–0 –0 None

+ + None

SNaN QNaN* VXSNAN

QNaN QNaN None

Notes: * No result if FPSCR[VE] = 1

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

NOTE: This instruction is optional in the PowerPC architecture.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, ZX, VXSNAN, VXSQRT

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA √ A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

Chapter 8. Instruction set 8-91Chapter 8. Instruction set 8-91Chapter 8. Instruction set 8-91

8

fsub x fsub x
Floating Subtract (Double-Precision),(x’FC00 0028’)

fsub frD,frA,frB (Rc = 0)
fsub. frD,frA,frB (Rc = 1)

The following operation is performed:

fr D ← (fr A) – (fr B)

The floating-point operand in registerfr B is subtracted from the floating-point operand in
registerfr A. If the most-significant bit of the resultant significand is not a one, the result is
normalized. The result is rounded to double-precision under control of the floating-point
rounding control field RN of the FPSCR and placed intofr D.

The execution of thefsub instruction is identical to that offadd, except that the contents of
fr B participate in the operation with its sign bit (bit 0) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 20 Rc63 D A

8-92 PowerPC Microprocessor 32-bit Family: The Programming Environments8-92 PowerPC Microprocessor 32-bit Family: The Programming Environments8-92 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

fsubs x fsubs x
Floating Subtract Single (x’EC00 0028’)

fsubs frD,frA,frB (Rc = 0)
fsubs. frD,frA,frB (Rc = 1)

The following operation is performed:

fr D ← (fr A) – (fr B)

The floating-point operand in registerfr B is subtracted from the floating-point operand in
registerfr A. If the most-significant bit of the resultant significand is not a one, the result is
normalized. The result is rounded to single-precision under control of the floating-point
rounding control field RN of the FPSCR and placed intofr D.

The execution of thefsubs instruction is identical to that offadds, except that the contents
of frB participate in the operation with its sign bit (bit 0) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 20 Rc59 D A

Chapter 8. Instruction set 8-93Chapter 8. Instruction set 8-93Chapter 8. Instruction set 8-93

8

icbi icbi
Instruction Cache Block Invalidate (x’7C00 07AC’)

icbi r A,rB

EA is the sum (rA|0) + (rB).

If the block containing the byte addressed by EA is in coherency-required mode, and a
block containing the byte addressed by EA is in the instruction cache of any processor, the
block is made invalid in all such instruction caches, so that subsequent references cause the
block to be refetched.

If the block containing the byte addressed by EA is in coherency-not-required mode, and a
block containing the byte addressed by EA is in the instruction cache of this processor, the
block is made invalid in that instruction cache, so that subsequent references cause the
block to be refetched.

The function of this instruction is independent of the write-through, write-back, and
caching-inhibited/allowed modes of the block containing the byte addressed by EA.

This instruction is treated as a load from the addressed byte with respect to address
translation and memory protection. It may also be treated as a load for referenced and
changed bit recording except that referenced and changed bit recording may not occur.
Implementations with a combined data and instruction cache treat theicbi instruction as a
no-op, except that they may invalidate the target block in the instruction caches of other
processors if the block is in coherency-required mode.

The icbi instruction invalidates the block at EA (rA|0 + rB). If the processor is a
multiprocessor implementation (for example, the 601, 604, or 620) and the block is marked
coherency-required, the processor will send an address-only broadcast to other processors
causing those processors to invalidate the block from their instruction caches.

For faster processing, many implementations will not compare the entire EA (rA|0 + rB)
with the tag in the instruction cache. Instead, they will use the bits in the EA to locate the
set that the block is in, and invalidate all blocks in that set.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 982 031 0 0 0 0 0 A

8-94 PowerPC Microprocessor 32-bit Family: The Programming Environments8-94 PowerPC Microprocessor 32-bit Family: The Programming Environments8-94 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

isync isync
Instruction Synchronize (x’4C00 012C’)

isync

The isync instruction provides an ordering function for the effects of all instructions
executed by a processor. Executing anisync instruction ensures that all instructions
preceding theisync instruction have completed before theisync instruction completes,
except that memory accesses caused by those instructions need not have been performed
with respect to other processors and mechanisms. It also ensures that no subsequent
instructions are initiated by the processor until after theisync instruction completes.
Finally, it causes the processor to discard any prefetched instructions, with the effect that
subsequent instructions will be fetched and executed in the context established by the
instructions preceding the isync instruction. Theisync instruction has no effect on the other
processors or on their caches.

This instruction is context synchronizing.

Context synchronization is necessary after certain code sequences that perform complex
operations within the processor. These code sequences are usually operating system tasks
that involve memory management. For example, if an instruction A changes the memory
translation rules in the memory management unit (MMU), theisync instruction should be
executed so that the instructions following instruction A will be discarded from the pipeline
and refetched according to the new translation rules.

NOTE: All exceptions andrfi and scinstructions are also context synchronizing.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

VEA XL

0 0 0 0 0 150 0

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 0 0 0 0 0 0 0 0 0 0

Chapter 8. Instruction set 8-95Chapter 8. Instruction set 8-95Chapter 8. Instruction set 8-95

8

lbz lbz
Load Byte and Zero (x’8800 0000’)

lbz rD,d(rA)

if r A = 0
then b ← 0
else b ← (r A)

EA ← b + EXTS(d)
r D ← (24)0 || MEM(EA, 1)

EA is the sum (rA|0) + d. The byte in memory addressed by EA is loaded into the low-order
eight bits ofrD. The remaining bits inrD are cleared.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d34 D A

8-96 PowerPC Microprocessor 32-bit Family: The Programming Environments8-96 PowerPC Microprocessor 32-bit Family: The Programming Environments8-96 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

lbzu lbzu
Load Byte and Zero with Update (x’8C00 0000’)

lbzu rD,d(rA)

EA ← (r A) + EXTS(d)
r D ← (24)0 || MEM(EA, 1)
r A ← EA

EA is the sum (rA) + d. The byte in memory addressed by EA is loaded into the low-order
eight bits ofrD. The remaining bits inrD are cleared.

EA is placed intorA.

If rA = 0, orrA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d35 D A

Chapter 8. Instruction set 8-97Chapter 8. Instruction set 8-97Chapter 8. Instruction set 8-97

8

lbzux lbzux
Load Byte and Zero with Update Indexed (x’7C00 00EE’)

lbzux rD,rA,rB

EA ← (r A) + (r B)
r D ← (24)0 || MEM(EA, 1)
r A ← EA

EA is the sum (rA) + (rB). The byte in memory addressed by EA is loaded into the low-
order eight bits ofrD. The remaining bits inrD are cleared.

EA is placed intorA.

If rA = 0, orrA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 119 031 D A

8-98 PowerPC Microprocessor 32-bit Family: The Programming Environments8-98 PowerPC Microprocessor 32-bit Family: The Programming Environments8-98 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

lbzx lbzx
Load Byte and Zero Indexed (x’7C00 00AE’)

lbzx rD,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA ← b + (r B)
r D ← (24)0 || MEM(EA, 1)

EA is the sum (rA|0) + (rB). The byte in memory addressed by EA is loaded into the low-
order eight bits ofrD. The remaining bits inrD are cleared.

Other registers altered:

None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 87 031 D A

Chapter 8. Instruction set 8-99Chapter 8. Instruction set 8-99Chapter 8. Instruction set 8-99

8

lfd lfd
Load Floating-Point Double (x’C800 0000’)

lfd fr D,d(rA)

if r A = 0
then b ← 0
else b ← (r A)

EA ← b + EXTS(d)
fr D ← MEM(EA, 8)

EA is the sum (rA|0) + d.

The double word in memory addressed by EA is placed intofr D.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d50 D A

8-100 PowerPC Microprocessor 32-bit Family: The Programming Environments8-100 PowerPC Microprocessor 32-bit Family: The Programming Environments8-100 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

lfdu lfdu
Load Floating-Point Double with Update (x’CC00 0000’)

lfdu fr D,d(rA)

EA ← (r A) + EXTS(d)
fr D ← MEM(EA, 8)
r A ← EA

EA is the sum (rA) + d.

The double word in memory addressed by EA is placed intofr D.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d51 D A

Chapter 8. Instruction set 8-101Chapter 8. Instruction set 8-101Chapter 8. Instruction set 8-101

8

lfdux lfdux
Load Floating-Point Double with Update Indexed (x’7C00 04EE’)

lfdux fr D,rA,rB

EA ← (r A) + (r B)
fr D ← MEM(EA, 8)
r A ← EA

EA is the sum (rA) + (rB).

The double word in memory addressed by EA is placed intofr D.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 631 031 D A

8-102 PowerPC Microprocessor 32-bit Family: The Programming Environments8-102 PowerPC Microprocessor 32-bit Family: The Programming Environments8-102 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

lfdx lfdx
Load Floating-Point Double Indexed (x’7C00 04AE’)

lfdx fr D,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA ← b + (r B)
fr D ← MEM(EA, 8)

EA is the sum (rA|0) + (rB).

The double word in memory addressed by EA is placed intofr D.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 599 031 D A

Chapter 8. Instruction set 8-103Chapter 8. Instruction set 8-103Chapter 8. Instruction set 8-103

8

lfs lfs
Load Floating-Point Single (x’C000 0000’)

lfs fr D,d(rA)

if r A = 0
then b ← 0
else b ← (r A)

EA ← b + EXTS(d)
fr D ← DOUBLE(MEM(EA, 4))

EA is the sum (rA) + d.

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision and placed intofr D.
(see Appendix D.6,”Floating-Point Load Instructions”).

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d48 D A

8-104 PowerPC Microprocessor 32-bit Family: The Programming Environments8-104 PowerPC Microprocessor 32-bit Family: The Programming Environments8-104 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

lfsu lfsu
Load Floating-Point Single with Update (x’C400 0000’)

lfsu fr D,d(rA)

EA ← (r A) + EXTS(d)
fr D ← DOUBLE(MEM(EA, 4))
r A ← EA

EA is the sum (rA) + d.

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision and placed intofr D.
(see Appendix D.6,”Floating-Point Load Instructions”).

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d49 D A

Chapter 8. Instruction set 8-105Chapter 8. Instruction set 8-105Chapter 8. Instruction set 8-105

8

lfsux lfsux
Load Floating-Point Single with Update Indexed (x’7C00 046E’)

lfsux frD,rA,rB

EA ← (r A) + (r B)
fr D ← DOUBLE(MEM(EA, 4))
r A ← EA

EA is the sum (rA) + d.

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision and placed intofr D.
(see Appendix D.6,”Floating-Point Load Instructions”).

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 567 031 D A

8-106 PowerPC Microprocessor 32-bit Family: The Programming Environments8-106 PowerPC Microprocessor 32-bit Family: The Programming Environments8-106 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

lfsx lfsx
Load Floating-Point Single Indexed (x’7C00 042E’)
lfsx frD,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA ← b + (r B)
fr D ← DOUBLE(MEM(EA, 4))

EA is the sum (rA|0) + (rB).

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision and placed intofr D.
(see Appendix D.6,”Floating-Point Load Instructions”).

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 535 031 D A

Chapter 8. Instruction set 8-107Chapter 8. Instruction set 8-107Chapter 8. Instruction set 8-107

8

lha lha
Load Half Word Algebraic (x’A800 0000’)

lha rD,d(rA)

if r A = 0
then b ← 0
else b ← (r A)

EA ← b + EXTS(d)
r D ← EXTS(MEM(EA, 2))

EA is the sum (rA|0) + d. The half word in memory addressed by EA is loaded into the low-
order 16 bits ofrD. The remaining bits inrD are filled with a copy of the most-significant
bit of the loaded half word.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d42 D A

8-108 PowerPC Microprocessor 32-bit Family: The Programming Environments8-108 PowerPC Microprocessor 32-bit Family: The Programming Environments8-108 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

lhau lhau
Load Half Word Algebraic with Update (x’AC00 0000’)

lhau rD,d(rA)

EA ← (r A) + EXTS(d)
r D ← EXTS(MEM(EA, 2))
r A ← EA

EA is the sum (rA) + d. The half word in memory addressed by EA is loaded into the low-
order 16 bits ofrD. The remaining bits inrD are filled with a copy of the most-significant
bit of the loaded half word.

EA is placed intorA.

If rA = 0 orrA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d43 D A

Chapter 8. Instruction set 8-109Chapter 8. Instruction set 8-109Chapter 8. Instruction set 8-109

8

lhaux lhaux
Load Half Word Algebraic with Update Indexed (x’7C00 02EE’)

lhaux rD,rA,rB

EA ← (r A) + (r B)
r D ← EXTS(MEM(EA, 2))
r A ← EA

EA is the sum (rA) + (rB). The half word in memory addressed by EA is loaded into the
low-order 16 bits ofrD. The remaining bits inrD are filled with a copy of the most-
significant bit of the loaded half word.

EA is placed intorA.

If rA = 0 orrA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 375 031 D A

8-110 PowerPC Microprocessor 32-bit Family: The Programming Environments8-110 PowerPC Microprocessor 32-bit Family: The Programming Environments8-110 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

lhax lhax
Load Half Word Algebraic Indexed (x’7C00 02AE’)

lhax rD,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA ← b + (r B)
r D ← EXTS(MEM(EA, 2))

EA is the sum (rA|0) + (rB). The half word in memory addressed by EA is loaded into the
low-order 16 bits ofrD. The remaining bits inrD are filled with a copy of the most-
significant bit of the loaded half word.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 343 031 D A

Chapter 8. Instruction set 8-111Chapter 8. Instruction set 8-111Chapter 8. Instruction set 8-111

8

lhbrx lhbrx
Load Half Word Byte-Reverse Indexed (x’7C00 062C’)

lhbrx r D,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA ← b + (r B)
r D ← (16)0 || MEM(EA + 1, 1) || MEM(EA, 1)

EA is the sum (rA|0) + (rB). Bits 0–7 of the half word in memory addressed by EA are
loaded into the low-order eight bits ofrD. Bits 8–15 of the half word in memory addressed
by EA are loaded into the subsequent low-order eight bits ofrD. The remaining bits inrD
are cleared.

The PowerPC architecture cautions programmers that some implementations of the
architecture may run thelhbrx instructions with greater latency than other types of load
instructions.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 790 031 D A

8-112 PowerPC Microprocessor 32-bit Family: The Programming Environments8-112 PowerPC Microprocessor 32-bit Family: The Programming Environments8-112 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

lhz lhz
Load Half Word and Zero (x’A000 0000’)

lhz rD,d(rA)

if r A = 0
then b ← 0
else b ← (r A)

EA← b + EXTS(d)
r D← (16)0 || MEM(EA, 2)

EA is the sum (rA|0) + d. The half word in memory addressed by EA is loaded into the low-
order 16 bits ofrD. The remaining bits inrD are cleared.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d40 D A

Chapter 8. Instruction set 8-113Chapter 8. Instruction set 8-113Chapter 8. Instruction set 8-113

8

lhzu lhzu
Load Half Word and Zero with Update (x’A400 0000’)

lhzu rD,d(rA)

EA ← (r A) + EXTS(d)
r D← (16)0 || MEM(EA, 2)
r A ← EA

EA is the sum (rA) + d. The half word in memory addressed by EA is loaded into the low-
order 16 bits ofrD. The remaining bits inrD are cleared.

EA is placed intorA.

If rA = 0 orrA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d41 D A

8-114 PowerPC Microprocessor 32-bit Family: The Programming Environments8-114 PowerPC Microprocessor 32-bit Family: The Programming Environments8-114 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

lhzux lhzux
Load Half Word and Zero with Update Indexed (x’7C00 026E’)

lhzux rD,rA,rB

EA ← (r A) + (r B)
r D ← (16)0 || MEM(EA, 2)
r A ← EA

EA is the sum (rA) + (rB). The half word in memory addressed by EA is loaded into the
low-order 16 bits ofrD. The remaining bits inrD are cleared.

EA is placed intorA.

If rA = 0 orrA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 311 031 D A

Chapter 8. Instruction set 8-115Chapter 8. Instruction set 8-115Chapter 8. Instruction set 8-115

8

lhzx lhzx
Load Half Word and Zero Indexed (x’7C00 022E’)

lhzx rD,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA← b + (r B)
r D← (16)0 || MEM(EA, 2)

EA is the sum (rA|0) + (rB). The half word in memory addressed by EA is loaded into the
low-order 16 bits ofrD. The remaining bits inrD are cleared.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 279 031 D A

8-116 PowerPC Microprocessor 32-bit Family: The Programming Environments8-116 PowerPC Microprocessor 32-bit Family: The Programming Environments8-116 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

lmw lmw
Load Multiple Word (x’B800 0000’)

lmw r D,d(rA)

if r A = 0
then b ← 0
else b ← (r A)

EA← b + EXTS(d)
r ← r D
do while r ≤ 31

GPR(r) ← MEM(EA, 4)
r ← r + 1
EA← EA + 4

EA is the sum (rA|0) + d.

n = (32 –rD).

n consecutive words starting at EA are loaded into GPRsrD throughr31.

EA must be a multiple of four. If it is not, either the system alignment exception handler is
invoked or the results are boundedly undefined. For additional information about alignment
and DSI exceptions, see Section 6.4.3, “DSI Exception (0x00300).”

If rA is in the range of registers specified to be loaded, including the case in whichrA = 0,
the instruction form is invalid.

NOTE: In some implementations, this instruction is likely to have a greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load
or store instructions that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d46 D A

Chapter 8. Instruction set 8-117Chapter 8. Instruction set 8-117Chapter 8. Instruction set 8-117

8

lswi lswi
Load String Word Immediate (x’7C00 04AA’)

lswi rD,rA,NB

if r A = 0
then EA ← 0
else EA ← (r A)

if NB = 0
then n ← 32
else n ← NB

r ← r D – 1
i ← 0
do while n > 0

if i = 0
then r ← r + 1 (mod 32)

GPR(r) ← (32)0
GPR(r)[i,i + 7] ← MEM(EA, 1)
i ← i + 8
if i = 32 then i ← 0
EA ← EA + 1
n ← n – 1

EA is (rA|0). Let n = NB if NB ≠ 0, ν=32 if NB = 0; n is the number of bytes to load.
Let nr = CEIL(n, ÷ 4); nr is the number of registers to be loaded with data.
n consecutive bytes starting at EA are loaded into GPRsrD throughrD + nr – 1.

Bytes are loaded left to right in each register. The sequence of registers wraps around tor0
if required. If the low-order 4 bytes of registerrD + nr – 1 are only partially filled, the
unfilled low-order byte(s) of that register are cleared.

If rA is in the range of registers specified to be loaded, including the case in whichrA = 0,
the instruction form is invalid.

Under certain conditions (for example, segment boundary crossing) the data alignment
exception handler may be invoked. For additional information about data alignment
exceptions, see Section 6.4.3, “DSI Exception (0x00300).”

NOTE: In some implementations, this instruction is likely to have greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load
or store instructions that produce the same results.

Other registers altered: None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

NB 597 031 D A

8-118 PowerPC Microprocessor 32-bit Family: The Programming Environments8-118 PowerPC Microprocessor 32-bit Family: The Programming Environments8-118 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

lswx lswx
Load String Word Indexed (x’7C00 042A’)

lswx rD,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA← b + (r B)
n ← XER[25–31]
r ← r D – 1
i ← 0
r D ← undefined
 do while n > 0

if i = 0
then r ← r + 1 (mod 32)

GPR(r) ← (32)0
GPR(r)[i,i + 7] ← MEM(EA, 1)
i ← i + 8
if i = 32

then i ← 0
EA ← EA + 1
n ← n – 1

EA is the sum (rA|0) + (rB). Letn = XER[25–31];n is the number of bytes to load. Let
nr = CEIL(n 4); nr is the number of registers to receive data. Ifn > 0, n consecutive bytes
starting at EA are loaded into GPRsrD throughrD + nr – 1.

Bytes are loaded left to right in each register. The sequence of registers wraps around
throughr0 if required. If the low-order four bytes ofrD + nr – 1 are only partially filled,
the unfilled low-order byte(s) of that register are cleared. Ifn = 0, the contents ofrD are
undefined.

If rA or rB is in the range of registers specified to be loaded, including the case in which
rA = 0, either the system illegal instruction error handler is invoked or the results are
boundedly undefined.

If rD = rA or rD = rB, the instruction form is invalid.

If rD andrA both specify GPR0, the form is invalid.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 533 031 D A

Chapter 8. Instruction set 8-119Chapter 8. Instruction set 8-119Chapter 8. Instruction set 8-119

8

Under certain conditions (for example, segment boundary crossing) the data alignment
exception handler may be invoked. For additional information about data alignment
exceptions, see Section 6.4.3, “DSI Exception (0x00300).”

NOTE: In some implementations, this instruction is likely to have a greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load
or store instructions that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

8-120 PowerPC Microprocessor 32-bit Family: The Programming Environments8-120 PowerPC Microprocessor 32-bit Family: The Programming Environments8-120 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

lwarx lwarx
Load Word and Reserve Indexed (x’7C00 0028’)

lwarx r D,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA← b + (r B)
RESERVE← 1
RESERVE_ADDR← physical_addr(EA)
r D← MEM(EA,4)

EA is the sum (rA|0) + (rB).

The word in memory addressed by EA is loaded intorD.

This instruction creates a reservation for use by a store word conditional indexed
(stwcx.)instruction. The physical address computed from EA is associated with the
reservation, and replaces any address previously associated with the reservation.

EA must be a multiple of four. If it is not, either the system alignment exception handler is
invoked or the results are boundedly undefined. For additional information about alignment
and DSI exceptions, see Section 6.4.3, “DSI Exception (0x00300).”

When the RESERVE bit is set, the processor enables hardware snooping for the block of
memory addressed by the RESERVE address. If the processor detects that another
processor writes to the block of memory it has reserved, it clears the RESERVE bit. The
stwcx. instruction will only do a store if the RESERVE bit is set. Thestwcx. instruction
sets the CR0[EQ] bit if the store was successful and clears it if it failed. Thelwarx and
stwcx. combination can be used for atomic read-modify-write sequences.

NOTE: The atomic sequence is not guaranteed, but its failure can be detected if
CR0[EQ] = 0 after thestwcx. instruction.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 20 031 D A

Chapter 8. Instruction set 8-121Chapter 8. Instruction set 8-121Chapter 8. Instruction set 8-121

8

lwbrx lwbrx
Load Word Byte-Reverse Indexed (x’7C00 042C’)

lwbrx r D,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA← b + (r B)
r D← MEM(EA + 3, 1) || MEM(EA + 2, 1) || MEM(EA + 1, 1) || MEM(EA, 1)

EA is the sum (rA|0) + rB. Bits 0–7 of the word in memory addressed by EA are loaded
into the low-order 8 bits ofrD. Bits 8–15 of the word in memory addressed by EA are
loaded into the subsequent low-order 8 bits ofrD. Bits 16–23 of the word in memory
addressed by EA are loaded into the subsequent low-order eight bits ofrD. Bits 24–31 of
the word in memory addressed by EA are loaded into the subsequent low-order 8 bits ofrD.

The PowerPC architecture cautions programmers that some implementations of the
architecture may run thelwbrx instructions with greater latency than other types of load
instructions.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 534 031 D A

8-122 PowerPC Microprocessor 32-bit Family: The Programming Environments8-122 PowerPC Microprocessor 32-bit Family: The Programming Environments8-122 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

lwz lwz
Load Word and Zero (x’8000 0000’)

lwz rD,d(rA)

if r A = 0
then b ← 0
else b ← (r A)

EA← b + EXTS(d)
r D← MEM(EA, 4)

EA is the sum (rA|0) + d. The word in memory addressed by EA is loaded intorD.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d32 D A

Chapter 8. Instruction set 8-123Chapter 8. Instruction set 8-123Chapter 8. Instruction set 8-123

8

lwzu lwzu
Load Word and Zero with Update (x’8400 0000’)

lwzu rD,d(rA)

EA ← (r A) + EXTS(d)
r D← MEM(EA, 4)
r A ← EA

EA is the sum (rA) + d. The word in memory addressed by EA is loaded intorD.

EA is placed intorA.

If rA = 0, orrA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d33 D A

8-124 PowerPC Microprocessor 32-bit Family: The Programming Environments8-124 PowerPC Microprocessor 32-bit Family: The Programming Environments8-124 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

lwzux lwzux
Load Word and Zero with Update Indexed (x’7C00 006E’)

lwzux rD,rA,rB

EA ← (r A) + (r B)
r D← MEM(EA, 4)
r A ← EA

EA is the sum (rA) + (rB). The word in memory addressed by EA is loaded intorD.

EA is placed intorA.

If rA = 0, orrA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 55 031 D A

Chapter 8. Instruction set 8-125Chapter 8. Instruction set 8-125Chapter 8. Instruction set 8-125

8

lwzx lwzx
Load Word and Zero Indexed (x’7C00 002E’)

lwzx rD,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA← b + (r B)
r D← MEM(EA, 4)

EA is the sum (rA|0) + (rB). The word in memory addressed by EA is loaded intorD.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 23 031 D A

8-126 PowerPC Microprocessor 32-bit Family: The Programming Environments8-126 PowerPC Microprocessor 32-bit Family: The Programming Environments8-126 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

mcrf mcrf
Move Condition Register Field (x’4C00 0000’)

mcrf crf D,crfS

CR[(4 * crf D)–(4 * crf D + 3)] ← CR[(4 * crf S)–(4 * crf S + 3)]

The contents of condition register fieldcrfS are copied into condition register fieldcrfD.
All other condition register fields remain unchanged.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XL

0 5 6 8 9 10 11 13 14 15 16 20 21 30 31

Reserved

19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 8. Instruction set 8-127Chapter 8. Instruction set 8-127Chapter 8. Instruction set 8-127

8

mcrfs mcrfs
Move to Condition Register from FPSCR (x’FC00 0080’)

mcrfs crfD,crfS

The contents of FPSCR fieldcrfS are copied to CR fieldcrfD. All exception bits copied
(except FEX and VX) are cleared in the FPSCR.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: FX, FEX, VX, OX

• Floating-Point Status and Control Register:

Affected: FX, OX (ifcrfS = 0)

Affected: UX, ZX, XX, VXSNAN (if crfS = 1)

Affected: VXISI, VXIDI, VXZDZ, VXIMZ (if crfS = 2)

Affected: VXVC (if crfS = 3)

Affected: VXSOFT, VXSQRT, VXCVI (ifcrfS = 5)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 8 9 10 11 13 14 15 16 20 21 30 31

Reserved

63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

8-128 PowerPC Microprocessor 32-bit Family: The Programming Environments8-128 PowerPC Microprocessor 32-bit Family: The Programming Environments8-128 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

mcrxr mcrxr
Move to Condition Register from XER (x’7C00 0400’)

mcrxr crf D

CR[(4 * crf D)–(4 * crf D + 3)] ← XER[0–3]
XER[0–3] ← 0b0000

The contents of XER[0–3] are copied into the condition register field designated bycrfD.
All other fields of the condition register remain unchanged. XER[0–3] is cleared.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, SO

• XER[0–3]

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

Chapter 8. Instruction Set 8-129Chapter 8. Instruction Set 8-129Chapter 8. Instruction Set 8-129

8

mfcr mfcr
Move from Condition Register ((x’7C00 0026’)

mfcr r D

r D← CR

The contents of the condition register (CR) are placed intorD.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 19 031 D 0 0 0 0 0

8-130 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-130 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-130 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

mffs x mffs x
Move from FPSCR (x’FC00 048E’)

mffs fr D (Rc = 0)
mffs. frD (Rc = 1)

f r D[32-63] ← FPSCR

The contents of the floating-point status and control register (FPSCR) are placed into the
low-order bits of registerfr D. The high-order bits of registerfr D are undefined.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (If Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 583 Rc63 D 0 0 0 0 0

Chapter 8. Instruction Set 8-131Chapter 8. Instruction Set 8-131Chapter 8. Instruction Set 8-131

8

mfmsr mfmsr
Move from Machine State Register (x’7C00 00A6’)

mfmsr r D

rD← MSR

The contents of the MSR are placed intorD.

This is a supervisor-level instruction.

Other registers altered

None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

OEA yes X

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 83 031 D 0 0 0 0 0

8-132 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-132 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-132 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

mfspr mfspr
Move from Special-Purpose Register (x’7C00 02A6’)

mfspr r D,SPR

n ← spr[5–9] || spr[0–4]
r D← SPR(n)

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as shown
in Table 8-9.The contents of the designated special purpose register are placed intorD

.

If the SPR field contains any value other than one of the values shown in Table 8-9 (and the
processor is in user mode), one of the following occurs:

• The system illegal instruction error handler is invoked.
• The system supervisor-level instruction error handler is invoked.
• The results are boundedly undefined.

Other registers altered:

• None

Simplified mnemonics:

mfxer r D equivalent to mfspr r D,1
mflr r D equivalent to mfspr r D,8
mfctr r D equivalent to mfspr r D,9

Table 8-9. PowerPC UISA SPR Encodings for mfspr

SPR**
Register Name

Decimal spr[5–9] spr[0–4]

1 00000 00001 XER

8 00000 01000 LR

9 00000 01001 CTR

** Note: The order of the two 5-bit halves of the SPR number
is reversed compared with the actual instruction coding.

0 5 6 10 11 20 21 30 31

Reserved

spr* 339 031 D

NOTE: *This is a split field.

Chapter 8. Instruction Set 8-133Chapter 8. Instruction Set 8-133Chapter 8. Instruction Set 8-133

8

In the PowerPC OEA, the SPR field denotes a special-purpose register, encoded as shown
in Table 8-10. The contents of the designated SPR are placed intorD.

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as shown
in Table 8-10. If the SPR[0] = 0 (Access type User), the contents of the designated SPR are
placed intorD.

NOTE: For this instruction (mfspr), SPR[0] = 1 is supervisor-level, if and only if reading
the register. Execution of this instruction specifying a defined and supervisor-
level register when MSR[PR] = 1 results in a privileged instruction type program
exception.

If MSR[PR] = 1, the only effect of executing an instruction with an SPR number that is not
shown in Table 8-10 and has SPR[0] = 1 is to cause a supervisor-level instruction type
program exception or an illegal instruction type program exception. For all other cases,
MSR[PR] = 0 or SPR[0] = 0. If the SPR field contains any value that is not shown in
Table 8-10, either an illegal instruction type program exception occurs or the results are
boundedly undefined.

Other registers altered:

None

Table 8-10. PowerPC OEA SPR Encodings for mfspr

SPR
1

Register
Name

Access
Decimal spr[5–9] spr[0–4]

1 00000 00001 XER User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

25 00000 11001 SDR1 Supervisor

26 00000 11010 SRR0 Supervisor

27 00000 11011 SRR1 Supervisor

272 01000 10000 SPRG0 Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

282 01000 11010 EAR Supervisor

287 01000 11111 PVR Supervisor

8-134 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-134 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-134 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

528 10000 10000 IBAT0U Supervisor

529 10000 10001 IBAT0L Supervisor

530 10000 10010 IBAT1U Supervisor

531 10000 10011 IBAT1L Supervisor

532 10000 10100 IBAT2U Supervisor

533 10000 10101 IBAT2L Supervisor

534 10000 10110 IBAT3U Supervisor

535 10000 10111 IBAT3L Supervisor

536 10000 11000 DBAT0U Supervisor

537 10000 11001 DBAT0L Supervisor

538 10000 11010 DBAT1U Supervisor

539 10000 11011 DBAT1L Supervisor

540 10000 11100 DBAT2U Supervisor

541 10000 11101 DBAT2L Supervisor

542 10000 11110 DBAT3U Supervisor

543 10000 11111 DBAT3L Supervisor

1013 11111 10101 DABR Supervisor

1Note : The order of the two 5-bit halves of the SPR number is reversed
compared with actual instruction coding.

For mtspr and mfspr instructions, the SPR number coded in assembly
language does not appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit halves that are
reversed in the instruction, with the high-order five bits appearing in bits
16–20 of the instruction and the low-order five bits in bits 11–15.

NOTE: mfspr is supervisor-level only if SPR[0] = 1.

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA/OEA yes* XFX

Table 8-10. PowerPC OEA SPR Encodings for mfspr (Continued)

SPR
1

Register
Name

Access
Decimal spr[5–9] spr[0–4]

Chapter 8. Instruction Set 8-135Chapter 8. Instruction Set 8-135Chapter 8. Instruction Set 8-135

8

mfsr mfsr
 Move from Segment Register (x’7C00 04A6’)

mfsr rD,SR

r D← SEGREG(SR)

The contents of the segment register SR are copied intorD.

This is a supervisor-level instruction.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

OEA yes X

0 5 6 10 11 12 15 16 20 21 30 31

Reserved

0 0 0 0 0 595 031 D 0 SR

8-136 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-136 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-136 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

mfsrin mfsrin
Move from Segment Register Indirect (x’7C00 0526’)

mfsrin r D,rB

r D← SEGREG(r B[0–3])

The contents of the segment register selected by bits 0–3 ofrB are copied intorD.

This is a supervisor-level instruction.

The rA field is not defined for themfsrin instruction in the PowerPC architecture.
However,mfsrin performs the same function in the PowerPC architecture as does themfsri
instruction in the POWER architecture (ifrA = 0).

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

OEA yes X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 659 031 D 0 0 0 0 0

Chapter 8. Instruction Set 8-137Chapter 8. Instruction Set 8-137Chapter 8. Instruction Set 8-137

8

mftb mftb
Move from Time Base (x’7C00 02E6’)

mftb r D,TBR

n ← tbr[5–9] || tbr[0–4]
if n = 268

then r D← TBL
else if n = 269

then r D← TBU
else error (invalid TBR field)

The contents of the designated register are copied intorD. The TBR field denotes either the
TBL or TBU, encoded as shown in Table 8-11.

If the TBR field contains any value other than one of the values shown in Table 8-11, then
one of the following occurs:

• The system illegal instruction error handler is invoked.
• The system supervisor-level instruction error handler is invoked.
• The results are boundedly undefined.

It is important to note that some implementations may implementmftb and mfspr
identically, therefore, a TBR number must not match an SPR number.

For more information on the time base refer to Section 2.2, “PowerPC VEA Register
Set—Time Base.”

Other registers altered:

• None

Table 8-11. TBR Encodings for mftb

TBR*
Register

Name
Access

Decimal tbr[5–9] tbr[0–4]

268 01000 01100 TBL User

269 01000 01101 TBU User

*Note : The order of the two 5-bit halves of the TBR number is
reversed.

0 5 6 10 11 20 21 30 31

Reserved

31 D tbr* 371 0

NOTE: This is a split field.

8-138 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-138 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-138 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

Simplified mnemonics:

mftb r D equivalent to mftb r D,268
mftbu r D equivalent to mftb r D,269

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

VEA XFX

Chapter 8. Instruction Set 8-139Chapter 8. Instruction Set 8-139Chapter 8. Instruction Set 8-139

8

mtcrf mtcrf
Move to Condition Register Fields (x’7C00 0120’)

mtcrf CRM,rS

mask ← (4)(CRM[0]) || (4)(CRM[1]) ||... (4)(CRM[7])
CR← (r S & mask) | (CR & ¬ mask)

The contents ofrS are placed into the condition register under control of the field mask
specified by CRM. The field mask identifies the 4-bit fields affected. Let i be an integer in
the range 0–7. If CRM(i) = 1, CR field i (CR bits 4∗ i through 4∗ i + 3) is set to the contents
of the corresponding field ofrS.

NOTE: Updating a subset of the eight fields of the condition register may have
substantially poorer performance on some implementations than updating all of
the fields.

Other registers altered:

• CR fields selected by mask

Simplified mnemonics:

mtcr r S equivalent to mtcrf 0xFF,rS

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XFX

0 5 6 10 11 12 19 20 21 30 31

Reserved

CRM 0 144 031 S 0

8-140 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-140 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-140 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

mtfsb0 x mtfsb0 x
Move to FPSCR Bit 0 (x’FC00 008C’)

mtfsb0 crbD (Rc = 0)
mtfsb0. crbD (Rc = 1)

FPSRC[crb D] ← 0

Bit crbD of the FPSCR is cleared.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (If Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPSCR bitcrbD

NOTE: Bits 1 and 2 (FEX and VX) cannot be explicitly cleared.

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 70 Rc63 crbD 0 0 0 0 0

Chapter 8. Instruction Set 8-141Chapter 8. Instruction Set 8-141Chapter 8. Instruction Set 8-141

8

mtfsb1 x mtfsb1 x
Move to FPSCR Bit 1 (x’FC00 004C’)

mtfsb1 crbD (Rc = 0)
mtfsb1. crbD (Rc = 1)

FPSRC[crb D] ← 1

Bit crbD of the FPSCR is set.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (If Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPSCR bitcrbD and FX

NOTE: Bits 1 and 2 (FEX and VX) cannot be explicitly set.

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 38 Rc63 crbD 0 0 0 0 0

8-142 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-142 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-142 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

mtfsf x mtfsf x
Move to FPSCR Fields (x’FC00 058E’)

mtfsf FM,frB (Rc = 0)
mtfsf. FM,frB (Rc = 1)

The low-order 32 bits offr B are placed into the FPSCR under control of the field mask
specified by FM. The field mask identifies the 4-bit fields affected. Let i be an integer in the
range 0–7. If FM[i] = 1, FPSCR field i (FPSCR bits 4 * i through 4* i + 3) is set to the
contents of the corresponding field of the low-order 32 bits of registerfr B.

FPSCR[FX] is altered only if FM[0] = 1.

Updating fewer than all eight fields of the FPSCR may have substantially poorer
performance on some implementations than updating all the fields.

When FPSCR[0–3] is specified, bits 0 (FX) and 3 (OX) are set to the values offr B[32] and
fr B[35] (that is, even if this instruction causes OX to change from 0 to 1, FX is set from
fr B[32] and not by the usual rule that FX is set when an exception bit changes from 0 to 1).
Bits 1 and 2 (FEX and VX) are set according to the usual rule and not fromfr B[33–34].

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (If Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPSCR fields selected by mask

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XFL

0 5 6 7 14 15 16 20 21 30 31

Reserved

63 0 FM 0 B 711 Rc

Chapter 8. Instruction Set 8-143Chapter 8. Instruction Set 8-143Chapter 8. Instruction Set 8-143

8

mtfsfi x mtfsfi x
 Move to FPSCR Field Immediate (x’FC00 010C’)

mtfsfi crf D,IMM (Rc = 0)
mtfsfi. crfD,IMM (Rc = 1)

FPSCR[crf D] ← IMM

The value of the IMM field is placed into FPSCR fieldcrfD.

FPSCR[FX] is altered only ifcrfD = 0.

When FPSCR[0–3] is specified, bits 0 (FX) and 3 (OX) are set to the values of IMM[0] and
IMM[3] (that is, even if this instruction causes OX to change from 0 to 1, FX is set from
IMM[0] and not by the usual rule that FX is set when an exception bit changes from 0 to
1). Bits 1 and 2 (FEX and VX) are set according to the usual rule and not from IMM[1–2].

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (If Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPSCR fieldcrfD

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 8 9 10 11 12 15 16 19 20 21 30 31

Reserved

63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

8-144 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-144 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-144 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

mtmsr mtmsr
 Move to Machine State Register (x’7C00 0124’)

mtmsr rS

MSR← (r S)

The contents ofrS are placed into the MSR.

This is a supervisor-level instruction. It is also an execution synchronizing instruction
except with respect to alterations to the POW and LE bits. Refer to Section 2.3.18,
“Synchronization Requirements for Special Registers and for Lookaside Buffers,” for more
information.

In addition, alterations to the MSR[EE] and MSR[RI] bits are effective as soon as the
instruction completes. Thus if MSR[EE] = 0 and an external or decrementer exception is
pending, executing anmtmsr instruction that sets MSR[EE] = 1 will cause the external or
decrementer exception to be taken before the next instruction is executed, if no higher
priority exception exists.

Other registers altered:

• MSR

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

OEA yes X

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 146 031 S 0 0 0 0 0

Chapter 8. Instruction Set 8-145Chapter 8. Instruction Set 8-145Chapter 8. Instruction Set 8-145

8

mtspr mtspr
Move to Special-Purpose Register (x’7C00 03A6’)

mtspr SPR,rS

n ← spr[5–9] || spr[0–4]
SPR(n) ← (r S)

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as shown
in Table 8-12. The contents ofrS are placed into the designated special-purpose register.

If the SPR field contains any value other than one of the values shown in Table 8-12, and
the processor is operating in user mode, one of the following occurs:

• The system illegal instruction error handler is invoked.
• The system supervisor instruction error handler is invoked.
• The results are boundedly undefined.

Other registers altered:

• See Table 8-12.

Simplified mnemonics:

mtxer r D equivalent to mtspr 1,rD
mtlr r D equivalent to mtspr 8,rD
mtctr r D equivalent to mtspr 9,rD

Table 8-12. PowerPC UISA SPR Encodings for mtspr

 SPR**
Register Name

Decimal spr[5–9] spr[0–4]

1 00000 00001 XER

8 00000 01000 LR

9 00000 01001 CTR

** Note : The order of the two 5-bit halves of the SPR number
is reversed compared with actual instruction coding.

0 5 6 10 11 20 21 30 31

Reserved

spr* 467 031 S

NOTE: This is a split field.

8-146 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-146 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-146 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

In the PowerPC OEA, the SPR field denotes a special-purpose register, encoded as shown
in Table 8-13. The contents ofrS are placed into the designated special-purpose register.

In the PowerPC UISA, if the SPR[0]=0 (Access is User) the contents ofrS are placed into
the designated special-purpose register.

For this instruction, SPRs TBL and TBU are treated as separate 32-bit registers; setting one
leaves the other unaltered.

The value of SPR[0] = 1 if and only if writing the register is a supervisor-level operation.
Execution of this instruction specifying a defined and supervisor-level register when
MSR[PR] = 1 results in a privileged instruction type program exception.

If MSR[PR] = 1 then the only effect of executing an instruction with an SPR number that
is not shown in Table 8-13 and has SPR[0] = 1 is to cause a privileged instruction type
program exception or an illegal instruction type program exception. For all other cases,
MSR[PR] = 0 or SPR[0] = 0, if the SPR field contains any value that is not shown in
Table 8-13, either an illegal instruction type program exception occurs or the results are
boundedly undefined.

Other registers altered:

• See Table 8-13.

Table 8-13. PowerPC OEA SPR Encodings for mtspr

 SPR
1

Register
Name

Access
Decimal spr[5–9] spr[0–4]

1 00000 00001 XER User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

25 00000 11001 SDR1 Supervisor

26 00000 11010 SRR0 Supervisor

27 00000 11011 SRR1 Supervisor

272 01000 10000 SPRG0 Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

282 01000 11010 EAR Supervisor

Chapter 8. Instruction Set 8-147Chapter 8. Instruction Set 8-147Chapter 8. Instruction Set 8-147

8

284 01000 11100 TBL Supervisor

285 01000 11101 TBU Supervisor

528 10000 10000 IBAT0U Supervisor

529 10000 10001 IBAT0L Supervisor

530 10000 10010 IBAT1U Supervisor

531 10000 10011 IBAT1L Supervisor

532 10000 10100 IBAT2U Supervisor

533 10000 10101 IBAT2L Supervisor

534 10000 10110 IBAT3U Supervisor

535 10000 10111 IBAT3L Supervisor

536 10000 11000 DBAT0U Supervisor

537 10000 11001 DBAT0L Supervisor

538 10000 11010 DBAT1U Supervisor

539 10000 11011 DBAT1L Supervisor

540 10000 11100 DBAT2U Supervisor

541 10000 11101 DBAT2L Supervisor

542 10000 11110 DBAT3U Supervisor

543 10000 11111 DBAT3L Supervisor

1013 11111 10101 DABR Supervisor

1Note : The order of the two 5-bit halves of the SPR number is reversed. For mtspr and
mfspr instructions, the SPR number coded in assembly language does not appear
directly as a 10-bit binary number in the instruction. The number coded is split into two
5-bit halves that are reversed in the instruction, with the high-order five bits appearing
in bits 16–20 of the instruction and the low-order five bits in bits 11–15.

.

NOTE: mtspr is supervisor-level only if SPR[0] = 1.

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA/OEA yes* XFX

Table 8-13. PowerPC OEA SPR Encodings for mtspr (Continued)

 SPR
1

Register
Name

Access
Decimal spr[5–9] spr[0–4]

8-148 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-148 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-148 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

mtsr mtsr
 Move to Segment Register (x’7C00 01A4’)

mtsr SR,rS

SEGREG(SR)← (r S)

The contents ofrS are placed into SR.

This is a supervisor-level instruction.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

OEA yes X

0 5 6 10 11 12 15 16 20 21 30 31

Reserved

0 0 0 0 0 210 031 S 0 SR

Chapter 8. Instruction Set 8-149Chapter 8. Instruction Set 8-149Chapter 8. Instruction Set 8-149

8

mtsrin mtsrin
 Move to Segment Register Indirect (x’7C00 01E4’)

mtsrin r S,rB

SEGREG(r B[0–3]) ← (r S)

The contents ofrS are copied to the segment register selected by bits 0–3 ofrB.

This is a supervisor-level instruction.

NOTE: The PowerPC architecture does not define therA field for themtsrin instruction.
However,mtsrin performs the same function in the PowerPC architecture as
does themtsri instruction in the POWER architecture (ifrA = 0).

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

OEA yes X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 242 031 S 0 0 0 0 0

8-150 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-150 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-150 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

mulhw x mulhw x
Multiply High Word (x’7C00 0096’)

mulhw r D,rA,rB (Rc = 0)
mulhw. rD,rA,rB (Rc = 1)

prod[0–63] ← (r A) ∗ (r B)
r D← prod[0–31]

The 64-bit product is formed from the contents ofrA andrB. The high-order 32 bits of the
64-bit product of the operands are placed intorD.

Both the operands and the product are interpreted as signed integers.

This instruction may execute faster on some implementations ifrB contains the operand
having the smaller absolute value.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B 0 75 Rc

Chapter 8. Instruction Set 8-151Chapter 8. Instruction Set 8-151Chapter 8. Instruction Set 8-151

8

mulhwu x mulhwu x
Multiply High Word Unsigned (x’7C00 0016’)

mulhwu r D,rA,rB (Rc = 0)
mulhwu. rD,rA,rB (Rc = 1)

prod[0–63] ← (r A) ∗ (r B)
r D← prod[0–31]

The 32-bit operands are the contents ofrA and rB. The high-order 32 bits of the 64-bit
product of the operands are placed intorD.

Both the operands and the product are interpreted as unsigned integers, except that if
Rc = 1 the first three bits of CR0 field are set by signed comparison of the result to zero.

This instruction may execute faster on some implementations ifrB contains the operand
having the smaller absolute value.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B 0 11 Rc

8-152 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-152 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-152 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

mulli mulli
 Multiply Low Immediate (x’1C00 0000’)

mulli r D,rA,SIMM

prod[0–63] ← (r A) ∗ EXTS(SIMM)
r D← prod[32-63]

The first operand is (rA). The second operand is the sign-extended value of the SIMM field.
The low-order 32-bits of the 64-bit product of the operands are placed intorD.

Both the operands and the product are interpreted as signed integers. The low-order 32-bits
of the product are calculated independently of whether the operands are treated as signed
or unsigned 32-bit integers.

This instruction can be used withmulhdx or mulhwx to calculate a full 64-bit product.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

SIMM07 D A

Chapter 8. Instruction Set 8-153Chapter 8. Instruction Set 8-153Chapter 8. Instruction Set 8-153

8

mullw x mullw x
Multiply Low Word (x’7C00 01D6’)

mullw r D,rA,rB (OE = 0 Rc = 0)
mullw. r D,rA,rB (OE = 0 Rc = 1)
mullwo r D,rA,rB (OE = 1 Rc = 0)
mullwo. rD,rA,rB (OE = 1 Rc = 1)

prod[0–63] ← (r A) ∗ (r B)
r D← prod[32-63]

The 32-bit operands are the contents ofrA and rB. The low-order 32-bits of the 64-bit
product (rA) * (rB) are placed into rD.

The low-order 32-bits of the product are independent of whether the operands are regarded
as signed or unsigned 32-bit integers.

If OE = 1, then OV is set if the product cannot be represented in 32 bits. Both the operands
and the product are interpreted as signed integers.

This instruction can be used withmulhwx to calculate a full 64-bit product.

NOTE: This instruction may execute faster on some implementations ifrB contains the
operand having the smaller absolute value.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
next).

• XER:

Affected: SO, OV (If OE = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 235 Rc

8-154 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-154 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-154 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

nand x nand x
NAND (x’7C00 03B8’)

nand rA,rS,rB (Rc = 0)
nand. rA,rS,rB (Rc = 1)

r A ← ¬ ((r S) & (r B))

The contents ofrS are ANDed with the contents ofrB and the complemented result is
placed intorA.

nand with rS = rB can be used to obtain the one's complement.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 476 Rc

Chapter 8. Instruction Set 8-155Chapter 8. Instruction Set 8-155Chapter 8. Instruction Set 8-155

8

negx negx
Negate (x’7C00 00D0’)

neg rD,rA (OE = 0 Rc = 0)
neg. rD,rA (OE = 0 Rc = 1)
nego rD,rA (OE = 1 Rc = 0)
nego. rD,rA (OE = 1 Rc = 1)

r D← ¬ (r A) + 1

The value 1 is added to the one’s complement of the value inrA, and the resulting two’s
complement is placed intorD.

If rA contains the most negative 32-bit number (0x8000_0000), the result is the most
negative number and, if OE = 1, OV is set.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

• XER:

Affected: SO OV (If OE = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

31 D A 0 0 0 0 0 OE 104 Rc

8-156 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-156 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-156 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

nor x nor x
 NOR (x’7C00 00F8’)

nor r A,rS,rB (Rc = 0)
nor. rA,rS,rB (Rc = 1)

r A ← ¬ ((r S) | (r B))

The contents ofrS are ORed with the contents ofrB and the complemented result is placed
into rA.

nor with rS =rB can be used to obtain the one’s complement.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

Simplified mnemonics:

not rD,rS equivalent to nor r A,rS,rS

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 124 Rc

Chapter 8. Instruction Set 8-157Chapter 8. Instruction Set 8-157Chapter 8. Instruction Set 8-157

8

orx orx
OR (x’7C00 0378’)

or r A,rS,rB (Rc = 0)
or. rA,rS,rB (Rc = 1)

r A ← (r S) | (r B)

The contents ofrS are ORed with the contents ofrB and the result is placed intorA.

The simplified mnemonicmr (shown below) demonstrates the use of theor instruction to
move register contents.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

Simplified mnemonics:

mr r A,rS equivalent to or r A,rS,rS

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 444 Rc

8-158 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-158 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-158 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

orc x orc x
OR with Complement (x’7C00 0338’)

orc rA,rS,rB (Rc = 0)
orc. rA,rS,rB (Rc = 1)

r A ← (r S) | ¬ (r B)

The contents ofrS are ORed with the complement of the contents ofrB and the result is
placed intorA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 412 Rc

Chapter 8. Instruction Set 8-159Chapter 8. Instruction Set 8-159Chapter 8. Instruction Set 8-159

8

ori ori
OR Immediate (x’6000 0000’)

ori r A,rS,UIMM

r A ← (r S) | ((16)0 || UIMM)

The contents ofrS are ORed with 0x0000 || UIMM and the result is placed intorA.

The preferred no-op (an instruction that does nothing) is ori 0,0,0.

Other registers altered:

• None

Simplified mnemonics:

nop equivalent to ori 0,0,0

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

24 S A UIMM

8-160 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-160 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-160 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

oris oris
OR Immediate Shifted (x’6400 0000’)

oris rA,rS,UIMM

r A ← (r S) | (UIMM || (16)0)

The contents ofrS are ORed with UIMM || 0x0000 and the result is placed intorA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

25 S A UIMM

Chapter 8. Instruction Set 8-161Chapter 8. Instruction Set

8

rfi rfi
Return from Interrupt (x’4C00 0064’)

MSR[0,5-9,16–23, 25–27, 30–31] ← SRR1[0,5-9,16–23, 25–27, 30–31]
MSR[13] ← 0
NIA ←ieaSRR0[0–29] || 0b00

Bits SRR1[0,5-9,16–23, 25–27, 30–31] are placed into the corresponding bits of the MSR.
MSR[13] is set to 0. If the new MSR value does not enable any pending exceptions, then
the next instruction is fetched, under control of the new MSR value, from the address
SRR0[0–29] || 0b00. If the new MSR value enables one or more pending exceptions, the
exception associated with the highest priority pending exception is generated; in this case
the value placed into SRR0 by the exception processing mechanism is the address of the
instruction that would have been executed next had the exception not occurred.

NOTE: An implementation may define additional MSR bits, and in this case, may also
cause them to be saved to SRR1 from MSR on an exception and restored to MSR
from SRR1 on anrfi .

This is a supervisor-level, context synchronizing instruction.

Other registers altered:

• MSR

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

OEA YES XL

0 0 0 0 0 50 0

Reserved

0 5 6 10 11 15 16 20 21 30 31

19 0 0 0 0 0 0 0 0 0 0

8-162 PowerPC Microprocessor 32-bit Family: The Programming Environments8-162 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

rlwimi x rlwimi x
Rotate Left Word Immediate then Mask Insert (x’5000 0000’)

rlwimi r A,rS,SH,MB,ME (Rc = 0)
rlwimi. r A,rS,SH,MB,ME (Rc = 1)

n ← SH
r ← ROTL(r S, n)
m← MASK(MB, ME)
r A ← (r & m) | (r A & ¬ m)

The contents ofrS are rotated left the number of bits specified by operand SH. A mask is
generated having 1 bits from bit MB through bit ME and 0 bits elsewhere. The rotated data
is inserted intorA under control of the generated mask.

NOTE: rlwimi can be used to copy a bit field of any length from registerrS into the
contents ofrA. This field can start from any bit position inrS and be placed into
any position inrA. The length of the field can range from 0 to 32 bits. The
remaining bits in register rA remain unchanged:

• To copy byte_0 (bits 0-7) from rS into byte_3 (bits 24-31) of rA, set SH = 8 , MB =
24, and ME = 31.

• In general, to copy ann-bit field that starts in bit position b in register rS into register
rA starting a bit position c: set SH = 32 - c + bMod(32), set MB =c, and set ME =
(c + n) – 1 Mod(32).

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Simplified mnemonics:
inslwi rA,rS,n,b equivalent to rlwimirA,rS,32 – b,b,b + n – 1
insrw i rA,rS,n,b (n > 0)equivalent torlwim i rA,rS,32 – (b + n),b, (b + n) – 1

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA M

0 5 6 10 11 15 16 20 21 25 26 30 31

20 S A SH MB ME Rc

Chapter 8. Instruction Set 8-163Chapter 8. Instruction Set

8

rlwinm x rlwinm x
Rotate Left Word Immediate then AND with Mask (x’5400 0000’)

rlwinm r A,rS,SH,MB,ME (Rc = 0)
rlwinm. r A,rS,SH,MB,ME (Rc = 1)

n ← SH
r ← ROTL(r S, n)
m← MASK(MB , ME)
r A ← r & m

The contents ofrS are rotated left the number of bits specified by operand SH. A mask is
generated having 1 bits from bit MB through bit ME and 0 bits elsewhere. The rotated data
is ANDed with the generated mask and the result is placed intorA.

NOTE: rlwinm can be used to extract, rotate, shift, and clear bit fields using the methods
shown below:

• To extract ann-bit field, that starts at bit positionb in rS, right-justified intorA
(clearing the remaining 32 – n bits ofrA), set SH = b + n,
MB = 32 – n, and ME = 31.

• To extract ann-bit field, that starts at bit positionb in rS, left-justified intorA
(clearing the remaining 32 – n bits ofrA), set SH = b, MB = 0, and ME = n – 1.

• To rotate the contents of a register left (or right) byn bits, set SH = n (32 – n),
MB = 0, and ME = 31.

• To shift the contents of a register right byn bits, by setting SH = 32 –n, MB = n, and
ME = 31. It can be used to clear the high-orderb bits of a register and then shift the
result left byn bits by setting SH = n, MB = b – n and ME = 31 – n.

• To clear the low-ordern bits of a register, by setting SH = 0, MB = 0, and
ME = 31 – n..

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

0 5 6 10 11 15 16 20 21 25 26 30 31

21 S A SH MB ME Rc

8-164 PowerPC Microprocessor 32-bit Family: The Programming Environments8-164 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

Simplified mnemonics:

extlwi rA,rS,n,b (n > 0) equivalent to rlwinm r A,rS,b,0,n – 1
extrwi r A,rS,n,b (n > 0) equivalent to rlwinm r A,rS,b + n,32 – n,31
rotlwi r A,rS,n equivalent to rlwinm r A,rS,n,0,31
rotrwi r A,rS,n equivalent to rlwinm r A,rS,32– n,0,31
slwi rA,rS,n (n < 32) equivalent to rlwinm r A,rS,n,0,31–n
srwi r A,rS,n (n < 32) equivalent to rlwinm r A,rS,32 – n,n,31
clrlwi r A,rS,n (n < 32) equivalent to rlwinm r A,rS,0,n,31
clrrwi r A,rS,n (n < 32) equivalent to rlwinm r A,rS,0,0,31 – n
clrlslwi r A,rS,b,n (n ≤ b < 32) equivalent to rlwinm r A,rS,n,b – n,31 – n

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA M

Chapter 8. Instruction Set 8-165Chapter 8. Instruction Set

8

rlwnm x rlwnm x
Rotate Left Word then AND with Mask (x’5C00 0000’)

rlwnm r A,rS,rB,MB,ME (Rc = 0)
rlwnm. r A,rS,rB,MB,ME (Rc = 1)

n ← r B[27-31]
r ← ROTL(r S, n)
m← MASK(MB, ME)
r A ← r & m

The contents ofrS are rotated left the number of bits specified by the low-order five bits of
rB. A mask is generated having 1 bits from bit MB through bit ME and 0 bits elsewhere.
The rotated data is ANDed with the generated mask and the result is placed intorA.

NOTE: rlwnm can be used to extract and rotate bit fields using the methods shown as
follows:

• To extract ann-bit field, that starts at variable bit positionb in rS, right-justified into
rA (clearing the remaining 32 – n bits ofrA), by setting the low-order five bits of
rB to b + n, MB = 32 –n, and ME = 31.

• To extract ann-bit field, that starts at variable bit positionb in rS, left-justified into
rA (clearing the remaining 32 – n bits ofrA), by setting the low-order five bits of
rB to b, MB = 0, and ME =n – 1.

• To rotate the contents of a register left (or right) byn bits, by setting the low-order
five bits ofrB to n (32 –n), MB = 0, and ME = 31.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Simplified mnemonics:

rotlw r A,rS,rB equivalent to rlwnm r A,rS,rB,0,31

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA M

0 5 6 10 11 15 16 20 21 25 26 30 31

23 S A B MB ME Rc

8-166 PowerPC Microprocessor 32-bit Family: The Programming Environments8-166 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

sc sc
System Call (x’4400 0002’)

In the PowerPC UISA, thesc instruction calls the operating system to perform a service.
When control is returned to the program that executed the system call, the content of the
registers depends on the register conventions used by the program providing the system
service.

This instruction is context synchronizing, as described in Section 4.1.5.1, “Context
Synchronizing Instructions.”

Other registers altered:

• Dependent on the system service

In PowerPC OEA, thesc instruction does the following:

SRR0 ←iea CIA + 4
SRR1[1-4, 10-15] ← 0
SRR1[0,5-9, 16-23, 25-27, 30-31] ← MSR[0,5-9, 16-23, 25-27, 30-31]
MSR← new_value (see below)
NIA ←iea base_ea + 0xC00 (see below)

The EA of the instruction following thesc instruction is placed into SRR0. Bits 0, 5-9,16-
23, 25-27, and 30-31 of the MSR are placed into the corresponding bits of SRR1, and bits
1-4 and 10-15 of SRR1 are set to undefined values.

NOTE: An implementation may define additional MSR bits, and in this case, may also
cause them to be saved to SRR1 from MSR on an exception and restored to MSR
from SRR1 on anrfi .

Then a system call exception is generated. The exception causes the MSR to be altered as
described in Section 6.4, “Exception Definitions.”

The exception causes the next instruction to be fetched from offset 0xC00 from the physical
base address determined by the new setting of MSR[IP].

Other registers altered:

• SRR0
• SRR1
• MSR

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA/OEA SC

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Reserved

0 5 6 10 11 15 16 29 30 31

17 0 0 0 0 0 0 0 0 0 0

Chapter 8. Instruction Set 8-167Chapter 8. Instruction Set

8

slw x slw x
Shift Left Word (x’7C00 0030’)

slw rA,rS,rB (Rc = 0)
slw. rA,rS,rB (Rc = 1)

n ← r B[27-31]
r ← ROTL(r S, n)
if r B[26] = 0

then m ← MASK(0, 31 – n)
else m ← (32)0

r A ← r & m

The contents ofrS are shifted left the number of bits specified by the low-order five bits of
rB. Bits shifted out of position 0 are lost. Zeros are supplied to the vacated positions on the
right. The 32-bit result is placed intorA. However, shift amounts from 32 to 63 give a zero
result.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 24 Rc

8-168 PowerPC Microprocessor 32-bit Family: The Programming Environments8-168 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

sraw x sraw x
Shift Right Algebraic Word (x’7C00 0630’)

sraw rA,rS,rB (Rc = 0)
sraw. rA,rS,rB (Rc = 1)

n ← r B[27-31]
r ← ROTL(r S, 32– n)
if r B[26] = 0

then m ← MASK(n, 31)
else m ← (32)0

S ← r S(0)
r A ← r & m | (32)S & ¬ m
XER[CA] ← S & ((r & ¬ m) ≠ 0)

The contents ofrS are shifted right the number of bits specified by the low-order five bits
of rB (shift amounts between 0-31). Bits shifted out of position 31 are lost. Bit 0 ofrS is
replicated to fill the vacated positions on the left. The 32-bit result is placed intorA.
XER[CA] is set if rS contains a negative number and any 1 bits are shifted out of position
31; otherwise XER[CA] is cleared. A shift amount of zero causesrA to receive the 32 bits
of rS, and XER[CA] to be cleared. However, shift amounts from 32 to 63 give a result of
32 sign bits, and cause XER[CA] to receive the sign bit ofrS.

NOTE: Thesraw instruction, followed byaddze, can be used to divide quickly by 2n.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

• XER:

Affected: CA

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 792 Rc

Chapter 8. Instruction Set 8-169Chapter 8. Instruction Set

8

srawi x srawi x
Shift Right Algebraic Word Immediate (x’7C00 0670’)

srawi rA,rS,SH (Rc = 0)
srawi. rA,rS,SH (Rc = 1)

n ← SH
r ← ROTL(r S, 32– n)
m← MASK(n, 31)
S ← r S(0)
r A ← r & m | (32)S & ¬ m
XER[CA] ← S & ((r & ¬ m) ≠ 0)

The contents ofrS are shifted right SH bits. Bits shifted out of position 31 are lost. Bit 0 of
rS is replicated to fill the vacated positions on the left. The result is placed intorA.
XER[CA] is set if the 32 bits ofrS contain a negative number and any 1 bits are shifted out
of position 31; otherwise XER[CA] is cleared. A shift amount of zero causesrA to receive
the value ofrS, and XER[CA] to be cleared.

NOTE: Thesrawi instruction, followed byaddze, can be used to divide quickly by 2n.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

• XER:

Affected: CA

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A SH 824 Rc

8-170 PowerPC Microprocessor 32-bit Family: The Programming Environments8-170 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

srw x srw x
Shift Right Word (x’7C00 0430’)

srw rA,rS,rB (Rc = 0)
srw. rA,rS,rB (Rc = 1)

n ← r B[27-31]
r ← ROTL(r S, 32– n)
if r B[26] = 0

then m ← MASK(n, 31)
else m ← (32)0

r A ← r & m

The contents ofrS are shifted right the number of bits specified by the low-order five bits
of rB (shift amounts between 0-31). Bits shifted out of position 31 are lost. Zeros are
supplied to the vacated positions on the left. The 32-bit result is placed intorA. However,
shift amounts from 32 to 63 give a zero result.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 536 Rc

Chapter 8. Instruction Set 8-171Chapter 8. Instruction Set

8

stb stb
Store Byte (x’9800 0000’)

stb rS,d(rA)

if r A = 0
then b ← 0
else b ← (r A)

EA← b + EXTS(d)
MEM(EA, 1) ← r S[24-31]

EA is the sum (rA|0) + d. The contents of the low-order eight bits ofrS are stored into the
byte in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

38 S A d

8-172 PowerPC Microprocessor 32-bit Family: The Programming Environments8-172 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

stbu stbu
Store Byte with Update (x’9C00 0000’)

stbu rS,d(rA)

EA← (r A) + EXTS(d)
MEM(EA, 1) ← r S[24-31]
r A ← EA

EA is the sum (rA) + d. The contents of the low-order eight bits ofrS are stored into the
byte in memory addressed by EA.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

39 S A d

Chapter 8. Instruction Set 8-173Chapter 8. Instruction Set

8

stbux stbux
Store Byte with Update Indexed (x’7C00 01EE’)

stbux rS,rA,rB

EA← (r A) + (r B)
MEM(EA, 1) ← r S[24-31]
r A ← EA

EA is the sum (rA) + (rB). The contents of the low-order eight bits ofrS are stored into the
byte in memory addressed by EA.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 21 22 30 31

31 S A B 247 0

8-174 PowerPC Microprocessor 32-bit Family: The Programming Environments8-174 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

stbx stbx
Store Byte Indexed (x’7C00 01AE’)

stbx rS,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA← b + (r B)
MEM(EA, 1) ← r S[24-31]

EA is the sum (rA|0) + (rB). The contents of the low-order eight bits ofrS are stored into
the byte in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 21 22 30 31

31 S A B 215 0

Chapter 8. Instruction Set 8-175Chapter 8. Instruction Set

8

stfd stfd
Store Floating-Point Double (x’D800 0000’)

stfd frS,d(rA)

if r A = 0
then b ← 0
else b ← (r A)

EA← b + EXTS(d)
MEM(EA, 8) ← (fr S)

EA is the sum (rA|0) + d.

The contents of registerfr S are stored into the double word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 30 31

54 S A d

8-176 PowerPC Microprocessor 32-bit Family: The Programming Environments8-176 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

stfdu stfdu
Store Floating-Point Double with Update (x’DC00 0000’)

stfdu frS,d(rA)

EA← (r A) + EXTS(d)
MEM(EA, 8) ← (fr S)
r A ← EA

EA is the sum (rA) + d.

The contents of registerfr S are stored into the double word in memory addressed by EA.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

55 S A d

Chapter 8. Instruction Set 8-177Chapter 8. Instruction Set

8

stfdux stfdux
Store Floating-Point Double with Update Indexed (x’7C00 05EE’)

stfdux fr S,rA,rB

EA← (r A) + (r B)
MEM(EA, 8) ← (fr S)
r A ← EA

EA is the sum (rA) + (rB).

The contents of registerfr S are stored into the double word in memory addressed by EA.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 759 0

8-178 PowerPC Microprocessor 32-bit Family: The Programming Environments8-178 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

stfdx stfdx
Store Floating-Point Double Indexed (x’7C00 05AE’)

stfdx frS,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA← b + (r B)
MEM(EA, 8) ← (fr S)

EA is the sum (rA|0) + rB.

The contents of register fr S are stored into the double word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 727 0

Chapter 8. Instruction Set 8-179Chapter 8. Instruction Set

8

stfiwx stfiwx
Store Floating-Point as Integer Word Indexed (x’7C00 07AE’)

stfiwx fr S,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA← b + (r B)
MEM(EA, 4) ← fr S[32–63]

EA is the sum (rA|0) + (rB).

The contents of the low-order 32 bits of registerfr S are stored, without conversion, into the
word in memory addressed by EA.

This instruction when preceded by the floating-point convert to integer word (fctiwx) or
floating-point convert to integer word with round toward zero (fctiwzx) will store the 32-
bit integer value of a double-precision floating-point number. (seefctiwx and fctiwzx
instructions)

If the content of registerfr S is a double-precision floating point number, the low-order 32
bits of the 52 bit mantissa are stored. (without the exponent, this could be a meaningless
value)

If the contents of registerfr S were produced, either directly or indirectly, by anlfs
instruction, a single-precision arithmetic instruction, orfrsp, then the value stored is the
low-order 32 bits of the 52 bit mantissa of the double-precision number. (all single-
precision floating-point numbers are maintained in double precision format in the floating-
point register file)

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA YES X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A B 983 0

8-180 PowerPC Microprocessor 32-bit Family: The Programming Environments8-180 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

stfs stfs
Store Floating-Point Single (x’D000 0000’)

stfs frS,d(rA)

if r A = 0
then b ← 0
else b ← (r A)

EA← b + EXTS(d)
MEM(EA, 4) ← SINGLE(fr S)

EA is the sum (rA|0) + d.

The contents of registerfr S are converted to single-precision and stored into the word in
memory addressed by EA. For a discussion on floating-point store conversions, see
Section D.7, “Floating-Point Store Instructions.”

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

52 S A d

Chapter 8. Instruction Set 8-181Chapter 8. Instruction Set

8

stfsu stfsu
Store Floating-Point Single with Update (x’D400 0000’)

stfsu frS,d(rA)

EA← (r A) + EXTS(d)
MEM(EA, 4) ← SINGLE(fr S)
r A ← EA

EA is the sum (rA) + d.

The contents offr S are converted to single-precision and stored into the word in memory
addressed by EA. For a discussion on floating-point store conversions, see Section D.7,
“Floating-Point Store Instructions.”

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

53 S A d

8-182 PowerPC Microprocessor 32-bit Family: The Programming Environments8-182 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

stfsux stfsux
Store Floating-Point Single with Update Indexed (x’7C00 056E’)

stfsux frS,rA,rB

EA← (r A) + (r B)
MEM(EA, 4) ← SINGLE(fr S)
r A ← EA

EA is the sum (rA) + (rB).

The contents offr S are converted to single-precision and stored into the word in memory
addressed by EA. For a discussion on floating-point store conversions, see Section D.7,
“Floating-Point Store Instructions.”

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 695 0

Chapter 8. Instruction Set 8-183Chapter 8. Instruction Set

8

stfsx stfsx
Store Floating-Point Single Indexed (x’7C00 052E’)

stfsx frS,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA← b + (r B)
MEM(EA, 4) ← SINGLE(fr S)

EA is the sum (rA|0) + (rB).

The contents of registerfr S are converted to single-precision and stored into the word in
memory addressed by EA. For a discussion on floating-point store conversions, see
Section D.7, “Floating-Point Store Instructions.”

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 663 0

8-184 PowerPC Microprocessor 32-bit Family: The Programming Environments8-184 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

sth sth
Store Half Word (x’B000 0000’)

sth rS,d(rA)

if r A = 0
then b ← 0
else b ← (r A)

EA← b + EXTS(d)
MEM(EA, 2) ← r S[16-31]

EA is the sum (rA|0) + d. The contents of the low-order 16 bits ofrS are stored into the half
word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

44 S A d

Chapter 8. Instruction Set 8-185Chapter 8. Instruction Set

8

sthbrx sthbrx
Store Half Word Byte-Reverse Indexed (x’7C00 072C’)

sthbrx r S,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA← b + (r B)
MEM(EA, 2) ← r S[24-31] || r S[16-23]

EA is the sum (rA|0) + (rB). The contents of the low-order eight bits (24-31) ofrS are
stored into bits 0–7 of the half word in memory addressed by EA. The contents of the
subsequent low-order eight bits (16-23) ofrS are stored into bits 8–15 of the half word in
memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 918 0

8-186 PowerPC Microprocessor 32-bit Family: The Programming Environments8-186 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

sthu sthu
Store Half Word with Update (x’B400 0000’)

sthu rS,d(rA)

EA← (r A) + EXTS(d)
MEM(EA, 2) ← r S[16-31]
r A ← EA

EA is the sum (rA) + d. The contents of the low-order 16 bits ofrS are stored into the half
word in memory addressed by EA.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

45 S A d

Chapter 8. Instruction Set 8-187Chapter 8. Instruction Set

8

sthux sthux
Store Half Word with Update Indexed (x’7C00 036E’)

sthux rS,rA,rB

EA← (r A) + (r B)
MEM(EA, 2) ← r S[16-31]
r A ← EA

EA is the sum (rA) + (rB). The contents of the low-order 16 bits ofrS are stored into the
half word in memory addressed by EA.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 439 0

8-188 PowerPC Microprocessor 32-bit Family: The Programming Environments8-188 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

sthx sthx
Store Half Word Indexed (x’7C00 032E’)

sthx rS,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA← b + (r B)
MEM(EA, 2) ← r S[16-31]

EA is the sum (rA|0) + (rB). The contents of the low-order 16 bits ofrS are stored into the
half word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 407 0

Chapter 8. Instruction Set 8-189Chapter 8. Instruction Set

8

stmw stmw
Store Multiple Word (x’BC00 0000’)

stmw rS,d(rA)

if r A = 0
then b ← 0
else b ← (r A)

EA← b + EXTS(d)
r ← r S
do while r ≤ 31

MEM(EA, 4) ← GPR(r)
r ← r + 1
EA← EA + 4

EA is the sum (rA|0) + d.

n = (32 –rS).

n consecutive words starting at EA are stored from the GPRsrS throughr31. For example,
if rS = 30, 2 words are stored.

EA must be a multiple of four. If it is not, either the system alignment exception handler is
invoked or the results are boundedly undefined. For additional information about alignment
and DSI exceptions, see Section 6.4.3, “DSI Exception (0x00300).”

NOTE: In some implementations, this instruction is likely to have a greater latency and
take longer to execute, perhaps much longer, than a sequence of individual store
instructions that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

47 S A d

8-190 PowerPC Microprocessor 32-bit Family: The Programming Environments8-190 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

stswi stswi
Store String Word Immediate (x’7C00 05AA’)

stswi rS,rA,NB

if r A = 0
then EA ← 0
else EA ← (r A)

if NB = 0
then n ← 32
else n ← NB

r ← r S – 1
i ← 0
do while n > 0

if i = 0
then r ← r + 1 (mod 32)

MEM(EA, 1) ← GPR(r)[i, i+7]
i ← i + 8
if i = 32

then i ← 0
EA← EA + 1
n ← n – 1

EA is (rA|0). Letn = NB if NB ≠ 0, n = 32 if NB = 0;n is the number of bytes to store. Let
nr = CEIL(n / 4);nr is the number of registers to supply data.

n consecutive bytes starting at EA are stored from GPRsrS throughrS +nr – 1. Bytes are
stored left to right from each register. The sequence of registers wraps around throughr0 if
required.

Under certain conditions (for example, segment boundary crossing) the data alignment
exception handler may be invoked. For additional information about data alignment
exceptions, see Section 6.4.3, “DSI Exception (0x00300).”

NOTE: In some implementations, this instruction is likely to have a greater latency and
take longer to execute, perhaps much longer, than a sequence of individual store
instructions that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A NB 725 0

Chapter 8. Instruction Set 8-191Chapter 8. Instruction Set

8

stswx stswx
Store String Word Indexed (x’7C00 052A’)

stswx rS,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA← b + (r B)
n ← XER[25–31]
r ← r S – 1
i ← 0
do while n > 0

if i = 0
then r ← r + 1 (mod 32)

MEM(EA, 1) ← GPR(r)[i, i+7]
i ← i + 8
if i = 32

then i ← 0
EA← EA + 1
n ← n – 1

EA is the sum (rA|0) + (rB). Letn = XER[25–31];n is the number of bytes to store. Let
nr = CEIL(n / 4);nr is the number of registers to supply data.

n consecutive bytes starting at EA are stored from GPRsrS throughrS +nr – 1. Bytes are
stored left to right from each register. The sequence of registers wraps around throughr0 if
required. Ifn = 0, no bytes are stored.

Under certain conditions (for example, segment boundary crossing) the data alignment
exception handler may be invoked. For additional information about data alignment
exceptions, see Section 6.4.3, “DSI Exception (0x00300).”

NOTE: In some implementations, this instruction is likely to have a greater latency and
take longer to execute, perhaps much longer, than a sequence of individual store
instructions that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 661 0

8-192 PowerPC Microprocessor 32-bit Family: The Programming Environments8-192 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

stw stw
Store Word (x’9000 0000’)

stw rS,d(rA)

if r A = 0
then b ← 0
else b ← (r A)

EA← b + EXTS(d)
MEM(EA, 4) ← r S

EA is the sum (rA|0) + d. The contents ofrS are stored into the word in memory addressed
by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

36 S A d

Chapter 8. Instruction Set 8-193Chapter 8. Instruction Set

8

stwbrx stwbrx
Store Word Byte-Reverse Indexed (x’7C00 052C’)

stwbrx r S,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA← b + (r B)
MEM(EA, 4) ← r S[24-31] || r S[16-23] || r S[8-15] || r S[0-7]

EA is the sum (rA|0) + (rB). The contents of the low-order eight bits (24-31) ofrS are
stored into bits 0–7 of the word in memory addressed by EA. The contents of the
subsequent eight low-order bits (16-23) ofrS are stored into bits 8–15 of the word in
memory addressed by EA. The contents of the subsequent eight low-order bits (8-15) ofrS
are stored into bits 16–23 of the word in memory addressed by EA. The contents of the
subsequent eight low-order bits (0-7) ofrS are stored into bits 24–31 of the word in
memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 662 0

8-194 PowerPC Microprocessor 32-bit Family: The Programming Environments8-194 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

stwcx. stwcx.
Store Word Conditional Indexed (x’7C00 012D’)

stwcx. rS,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA← b + (r B)
if RESERVE

then
MEM(EA, 4) ← (r S)
CR0← 0b00 || 0b1 || XER[SO]
RESERVE← 0

else
CR0← 0b00 || 0b0 || XER[SO]

EA is the sum (rA|0) + (rB). If the reserved bit is set, thestwcx. instruction storesrS to
effective address (rA + rB), clears the reserved bit, and sets CR0[EQ]. If the reserved bit
is not set, thestwcx. instruction does not do a store; it leaves the reserved bit cleared and
clears CR0[EQ]. Software must look at CR0[EQ] to see if thestwcx. was successful.

The reserved bit is set by thelwarx instruction. The reserved bit is cleared by anystwcx.
instruction to any address, and also by snooping logic if it detects that another processor
does any kind of write or invalidate to the block indicated in the reservation buffer when
reserved is set.

EA must be a multiple of four. If it is not, either the system alignment exception handler is
invoked or the results are boundedly undefined. For additional information about alignment
and DSI exceptions, see Section 6.4.3, “DSI Exception (0x00300).”

The granularity with which reservations are managed is implementation-dependent.
Therefore, the memory to be accessed by the load and reserve and store conditional
instructions should be controlled by a system library program.

Because the hardware doesn’t compare reservation address when executing the stwcx.
instruction, operating systems software MUST reset the reservation if an exception or other
type of interrupt occurs to insure atomic memory references oflwarx andstwcx. pairs.

0 5 6 10 11 15 16 20 21 30 31

31 S A B 150 1

Chapter 8. Instruction Set 8-195Chapter 8. Instruction Set

8

Other registers altered:
• CR0 field is set to reflect whether the store operation was performed as follows:

CR0[LT GT EQ S0]= 0b00 || store_performed || XER[SO]

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

8-196 PowerPC Microprocessor 32-bit Family: The Programming Environments8-196 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

stwu stwu
Store Word with Update (x’9400 0000’)

stwu rS,d(rA)

EA← (r A) + EXTS(d)
MEM(EA, 4) ← (r S)
r A ← EA

EA is the sum (rA) + d. The contents ofrS are stored into the word in memory addressed
by EA.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

37 S A d

Chapter 8. Instruction Set 8-197Chapter 8. Instruction Set

8

stwux stwux
Store Word with Update Indexed (x’7C00 016E’)

stwux rS,rA,rB

EA← (r A) + (r B)
MEM(EA, 4) ←(r S)
r A ← EA

EA is the sum (rA) + (rB). The contents ofrS are stored into the word in memory addressed
by EA.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 183 0

8-198 PowerPC Microprocessor 32-bit Family: The Programming Environments8-198 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

stwx stwx
Store Word Indexed (x’7C00 012E’)

stwx rS,rA,rB

if r A = 0
then b ← 0
else b ← (r A)

EA← b + (r B)
MEM(EA, 4) ← (r S)

EA is the sum (rA|0) + (rB). The contents ofrS are stored into the word in memory
addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 151 0

Chapter 8. Instruction Set 8-199Chapter 8. Instruction Set

8

subf x subf x
Subtract From (x’7C00 0050’)

subf rD,rA,rB (OE = 0 Rc = 0)
subf. rD,rA,rB (OE = 0 Rc = 1)
subfo rD,rA,rB (OE = 1 Rc = 0)
subfo. rD,rA,rB (OE = 1 Rc = 1)

r D← ¬(r A) + (r B) + 1

The sum ¬ (rA) + (rB) + 1 is placed intorD. (equivlent to (rB)--(rA))

Thesubf instruction is preferred for subtraction because it sets few status bits.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

• XER:

Affected: SO, OV (if OE = 1)

Simplified mnemonics:

sub rD,rA,rB equivalent to subf rD,rB,rA

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 40 Rc

8-200 PowerPC Microprocessor 32-bit Family: The Programming Environments8-200 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

subfc x subfc x
Subtract from Carrying (x’7C00 0010’)

subfc rD,rA,rB (OE = 0 Rc = 0)
subfc. rD,rA,rB (OE = 0 Rc = 1)
subfco rD,rA,rB (OE = 1 Rc = 0)
subfco. rD,rA,rB (OE = 1 Rc = 1)

r D← ¬(r A) + (r B) + 1

The sum ¬ (rA) + (rB) + 1 is placed intorD. (equivlent to (rB)--(rA))

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

Note: The setting of the affected bits in the XER reflects overflow of the 32-bit
results. For further information see Chapter 3, “Operand Conventions.”

Simplified mnemonics:

subc rD,rA,rB equivalent to subfc rD,rB,rA

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 8 Rc

Chapter 8. Instruction Set 8-201Chapter 8. Instruction Set

8

subfe x subfe x
Subtract from Extended (x’7C00 0110’)

subfe rD,rA,rB (OE = 0 Rc = 0)
subfe. rD,rA,rB (OE = 0 Rc = 1)
subfeo rD,rA,rB (OE = 1 Rc = 0)
subfeo. rD,rA,rB (OE = 1 Rc = 1)

r D← ¬ (r A) + (r B) + XER[CA]

The sum ¬ (rA) + (rB) + XER[CA] is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note:CR0 field may not reflect the infinitely precise result if overflow occurs (Note:
See Chapter 3, “Operand Conventions” for setting of affected bits).

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 136 Rc

8-202 PowerPC Microprocessor 32-bit Family: The Programming Environments8-202 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

subfic subfic
Subtract from Immediate Carrying (x’2000 0000’)

subfic rD,rA,SIMM

r D← ¬ (r A) + EXTS(SIMM) + 1

The sum ¬ (rA) + EXTS(SIMM) + 1 is placed intorD.(equivlent to EXTS(SIMM)-(rA))

Other registers altered:

• XER:

Affected: CA

Note: See Chapter 3, “Operand Conventions.”

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

08 D A SIMM

Chapter 8. Instruction Set 8-203Chapter 8. Instruction Set

8

subfme x subfme x
Subtract from Minus One Extended (x’7C00 01D0’)

subfme rD,rA (OE = 0 Rc = 0)
subfme. rD,rA (OE = 0 Rc = 1)
subfmeo rD,rA (OE = 1 Rc = 0)
subfmeo. rD,rA (OE = 1 Rc = 1)

r D← ¬ (r A) + XER[CA] – 1

The sum ¬ (rA) + XER[CA] + (32)1 is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (See
Chapter 3, “Operand Conventions.”

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A

Reserved

0 0 0 0 0 OE 232 Rc

8-204 PowerPC Microprocessor 32-bit Family: The Programming Environments8-204 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

subfze x subfze x
Subtract from Zero Extended (x’7C00 0190’)

subfze rD,rA (OE = 0 Rc = 0)
subfze. rD,rA (OE = 0 Rc = 1)
subfzeo rD,rA (OE = 1 Rc = 0)
subfzeo. rD,rA (OE = 1 Rc = 1)

r D← ¬ (r A) + XER[CA]

The sum ¬ (rA) + XER[CA] is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

Note: See Chapter 3, “Operand Conventions.”

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A

Reserved

0 0 0 0 0 OE 200 Rc

Chapter 8. Instruction Set 8-205Chapter 8. Instruction Set

8

sync sync
Synchronize (x’7C00 04AC’)

The sync instruction provides an ordering function for the effects of all instructions
executed by a given processor. Executing async instruction ensures that all instructions
preceding thesync instruction appear to have completed before thesync instruction
completes, and that no subsequent instructions are initiated by the processor until after the
sync instruction completes. When thesync instruction completes, all external accesses
caused by instructions preceding thesync instruction will have been performed with
respect to all other mechanisms that access memory. For more information on how thesync
instruction affects the VEA, refer to Chapter 5, “Cache Model and Memory Coherency.”

Multiprocessor implementations also send asyncaddress-only broadcast that is useful in
some designs. For example, if a design has an external buffer that re-orders loads and stores
for better bus efficiency, thesyncbroadcast signals to that buffer that previous loads/stores
must be completed before any following loads/stores.

Thesyncinstruction can be used to ensure that the results of all stores into a data structure,
caused by store instructions executed in a “critical section” of a program, are seen by other
processors before the data structure is seen as unlocked.

The functions performed by thesyncinstruction will normally take a significant amount of
time to complete, so indiscriminate use of this instruction may adversely affect
performance. In addition, the time required to executesyncmay vary from one execution
to another.

Theeieio instruction may be more appropriate thansync for many cases.

This instruction is execution synchronizing. For more information on execution
synchronization, see Section 4.1.5, “Synchronizing Instructions.”

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 0 0 0 0 598 031 0 0 0 0 0 0 0 0 0 0

0 5 6 10 11 15 16 20 21 30 31

Reserved

8-206 PowerPC Microprocessor 32-bit Family: The Programming Environments8-206 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

tlbia tlbia
Translation Lookaside Buffer Invalidate All (x’7C00 02E4’)

tlbia

All TLB entries ← invalid

The entire translation lookaside buffer (TLB) is invalidated (that is, all entries are
removed).

The TLB is invalidated regardless of the settings of MSR[IR] and MSR[DR]. The
invalidation is done without reference to the segment registers.

This instruction does not cause the entries to be invalidated in other processors.

This is a supervisor-level instruction and optional in the PowerPC architecture.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

OEA YES YES X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

Chapter 8. Instruction Set 8-207Chapter 8. Instruction Set

8

tlbie tlbie
Translation Lookaside Buffer Invalidate Entry (x’7C00 0264’)

tlbie r B

VPS ← r B[4-19]
Identify TLB entries corresponding to VPS
Each such TLB entry ← invalid

EA is the contents ofrB. If the translation lookaside buffer (TLB) contains an entry
corresponding to EA, that entry is made invalid (that is, removed from the TLB).

Multiprocessing implementations (for example, the 601, and 604) send atlbie address-only
broadcast over the address bus to tell other processors to invalidate the same TLB entry in
their TLBs.

The TLB search is done regardless of the settings of MSR[IR] and MSR[DR]. The search
is done based on a portion of the logical page number within a segment, without reference
to the segment registers. All entries matching the search criteria are invalidated.

Block address translation for EA, if any, is ignored. Refer to Section 7.5.3.4,
“Synchronization of Memory Accesses and Referenced and Changed Bit Updates,” and
Section 7.6.3, “Page Table Updates,” for other requirements associated with the use of this
instruction.

This is a supervisor-level instruction and optional in the PowerPC architecture.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

OEA YES YES X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 B 306 0

8-208 PowerPC Microprocessor 32-bit Family: The Programming Environments8-208 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

tlbsync tlbsync
TLB Synchronize (x’7C00 046C’)

If an implementation sends a broadcast fortlbie then it will also send a broadcast for
tlbsync. Executing atlbsync instruction ensures that alltlbie instructions previously
executed by the processor executing thetlbsync instruction have completed on all other
processors.

The operation performed by this instruction is treated as a caching-inhibited and guarded
data access with respect to the ordering done byeieio.

NOTE: The 601 expands the use of thesync instruction to covertlbsync functionality.

Refer to Section 7.5.3.4, “Synchronization of Memory Accesses and Referenced and
Changed Bit Updates,” and Section 7.6.3, “Page Table Updates,” for other requirements
associated with the use of this instruction.

This instruction is supervisor-level and optional in the PowerPC architecture.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

OEA YES YES X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

Chapter 8. Instruction Set 8-209Chapter 8. Instruction Set

8

tw tw
Trap Word (x’7C00 0008’)

tw TO,rA,rB

a ← EXTS(r A)
b ← EXTS(r B)
if (a < b) & TO[0] then TRAP
if (a > b) & TO[1] then TRAP
if (a = b) & TO[2] then TRAP
if (a <U b) & TO[3] then TRAP
if (a >U b) & TO[4] then TRAP

The contents ofrA are compared arithmetically with the contents ofrB for TO[0, 1, 2]. The
contents ofrA are compared logically with the contents ofrB for TO[3, 4]. If any bit in the
TO field is set and its corresponding condition is met by the result of the comparison, then
the system trap handler is invoked.

Other registers altered:

• None

Simplified mnemonics:

tweq rA,rB equivalent to tw 4,rA,rB
twlge rA,rB equivalent to tw 5,rA,rB
trap equivalent to tw 31,0,0

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 TO A B 4 0

8-210 PowerPC Microprocessor 32-bit Family: The Programming Environments8-210 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

twi twi
Trap Word Immediate (x’0C00 0000’)

twi TO,rA,SIMM

a ← EXTS(r A)
if (a < EXTS(SIMM)) & TO[0] then TRAP
if (a > EXTS(SIMM)) & TO[1] then TRAP
if (a = EXTS(SIMM)) & TO[2] then TRAP
if (a <U EXTS(SIMM)) & TO[3] then TRAP
if (a >U EXTS(SIMM)) & TO[4] then TRAP

The contents ofrA are compared arithmetically with the sign-extended value of the SIMM
field for TO[0, 1, 2]. The contents ofrA are compared logically with the sign-extended
value of the SIMM field for TO[3, 4]. If any bit in the TO field is set and its corresponding
condition is met by the result of the comparison, then the system trap handler is invoked.

Other registers altered:

• None

Simplified mnemonics:

twgti r A,value equivalent to twi 8,rA,value
twllei r A,value equivalent to twi 6,rA,value

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

03 TO A SIMM

Chapter 8. Instruction Set 8-211Chapter 8. Instruction Set

8

xor x xor x
XOR (x’7C00 0278’)

xor r A,rS,rB (Rc = 0)
xor. rA,rS,rB (Rc = 1)

r A ← (r S) ⊕ (r B)

The contents ofrS are XORed with the contents ofrB and the result is placed intorA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 316 Rc

8-212 PowerPC Microprocessor 32-bit Family: The Programming Environments8-212 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

xori xori
XOR Immediate (x’6800 0000’)

xori r A,rS,UIMM

r A ← (r S) ⊕ ((16)0 || UIMM)

The contents ofrS are XORed with 0x0000 || UIMM and the result is placed intorA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

26 S A UIMM

Chapter 8. Instruction Set 8-213Chapter 8. Instruction Set

8

xoris xoris
XOR Immediate Shifted (x’6C00 0000’)

xoris rA,rS,UIMM

r A ← (r S) ⊕ (UIMM || (16)0)

The contents ofrS are XORed with UIMM || 0x0000 and the result is placed intorA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

27 S A UIMM

8-214 PowerPC Microprocessor 32-bit Family: The Programming Environments8-214 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

This page deliberately left blank.

Appendix A. PowerPC Instruction Set Listings A-1

A

Appendix A. PowerPC Instruction Set
Listings
A0
A0

This appendix lists the PowerPC architecture’s instruction set. Instructions are sorted by
mnemonic, opcode, function, and form. Also included in this appendix is a quick reference
table that contains general information, such as the architecture level, privilege level, and
form, and indicates if the instruction is optional.

Note that split fields, which represent the concatenation of sequences from left to right, are
shown in lowercase. For more information refer to Chapter 8, “Instruction Set.”

A.1 Instructions Sorted by Mnemonic
Table A-1 lists the instructions implemented in the PowerPC architecture in alphabetical
order by mnemonic.

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addc x 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addme x 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

andx 31 S A B 28 Rc

andc x 31 S A B 60 Rc

andi. 28 S A UIMM

Reserved bits

Key:

A-2 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

andis. 29 S A UIMM

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctr x 19 BO BI 0 0 0 0 0 528 LK

bclr x 19 BO BI 0 0 0 0 0 16 LK

cmp 31 crfD 0 L A B 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

cntlzw x 31 S A 0 0 0 0 0 26 Rc

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

dcba 1 31 0 0 0 0 0 A B 758 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 2 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

divw x 31 D A B OE 491 Rc

divwu x 31 D A B OE 459 Rc

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

extsb x 31 S A 0 0 0 0 0 954 Rc

extsh x 31 S A 0 0 0 0 0 922 Rc

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-3

A

fabs x 63 D 0 0 0 0 0 B 264 Rc

fadd x 63 D A B 0 0 0 0 0 21 Rc

fadds x 59 D A B 0 0 0 0 0 21 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctiw x 63 D 0 0 0 0 0 B 14 Rc

fctiwz x 63 D 0 0 0 0 0 B 15 Rc

fdiv x 63 D A B 0 0 0 0 0 18 Rc

fdivs x 59 D A B 0 0 0 0 0 18 Rc

fmadd x 63 D A B C 29 Rc

fmadds x 59 D A B C 29 Rc

fmr x 63 D 0 0 0 0 0 B 72 Rc

fmsub x 63 D A B C 28 Rc

fmsubs x 59 D A B C 28 Rc

fmul x 63 D A 0 0 0 0 0 C 25 Rc

fmuls x 59 D A 0 0 0 0 0 C 25 Rc

fnabs x 63 D 0 0 0 0 0 B 136 Rc

fneg x 63 D 0 0 0 0 0 B 40 Rc

fnmadd x 63 D A B C 31 Rc

fnmadds x 59 D A B C 31 Rc

fnmsub x 63 D A B C 30 Rc

fnmsubs x 59 D A B C 30 Rc

fres x 1 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsp x 63 D 0 0 0 0 0 B 12 Rc

frsqrte x 1 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsel x 1 63 D A B C 23 Rc

fsqrt x 1 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrts x 1 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsub x 63 D A B 0 0 0 0 0 20 Rc

fsubs x 59 D A B 0 0 0 0 0 20 Rc

icbi 31 0 0 0 0 0 A B 982 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

lbz 34 D A d

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-4 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lmw 3 46 D A d

lswi 3 31 D A NB 597 0

lswx 3 31 D A B 533 0

lwarx 31 D A B 20 0

lwbrx 31 D A B 534 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-5

A

mffs x 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 2 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr 4 31 D spr 339 0

mfsr 2 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 2 31 D 0 0 0 0 0 B 659 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtfsb0 x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1 x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsf x 63 0 FM 0 B 711 Rc

mtfsfi x 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 2 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr 4 31 S spr 467 0

mtsr 2 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 2 31 S 0 0 0 0 0 B 242 0

mulhw x 31 D A B 0 75 Rc

mulhwu x 31 D A B 0 11 Rc

mulli 7 D A SIMM

mullw x 31 D A B OE 235 Rc

nand x 31 S A B 476 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

nor x 31 S A B 124 Rc

orx 31 S A B 444 Rc

orc x 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

rfi 2 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

rlwimi x 20 S A SH MB ME Rc

rlwinm x 21 S A SH MB ME Rc

rlwnm x 23 S A B MB ME Rc

sc 17 0 1 0

slw x 31 S A B 24 Rc

sraw x 31 S A B 792 Rc

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-6 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

srawi x 31 S A SH 824 Rc

srw x 31 S A B 536 Rc

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 1 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sth 44 S A d

sthbrx 31 S A B 918 0

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stmw 3 47 S A d

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

stw 36 S A d

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

subf x 31 D A B OE 40 Rc

subfc x 31 D A B OE 8 Rc

subfe x 31 D A B OE 136 Rc

subfic 08 D A SIMM

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-7

A

subfme x 31 D A 0 0 0 0 0 OE 232 Rc

subfze x 31 D A 0 0 0 0 0 OE 200 Rc

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

tlbia 1,2 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,2 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync 1,2 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

twi 03 TO A SIMM

xor x 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

Notes :
1 Optional instruction
2 Supervisor-level instruction
3 Load/store string/multiple instruction
4 Supervisor- and user-level instruction

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-8 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

A.2 Instructions Sorted by Opcode
Table A-2 lists the instructions defined in the PowerPC architecture in numeric order by
opcode.

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

twi 0 0 0 0 1 1 TO A SIMM

mulli 0 0 0 1 1 1 D A SIMM

subfic 0 0 1 0 0 0 D A SIMM

cmpli 0 0 1 0 1 0 crfD 0 L A UIMM

cmpi 0 0 1 0 1 1 crfD 0 L A SIMM

addic 0 0 1 1 0 0 D A SIMM

addic. 0 0 1 1 0 1 D A SIMM

addi 0 0 1 1 1 0 D A SIMM

addis 0 0 1 1 1 1 D A SIMM

bcx 0 1 0 0 0 0 BO BI BD AA LK

sc 0 1 0 0 0 1 0 1 0

bx 0 1 0 0 1 0 LI AA LK

mcrf 0 1 0 0 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bclr x 0 1 0 0 1 1 BO BI 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 LK

crnor 0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 0

rfi 2 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

crandc 0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 0

isync 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

crxor 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 0

crnand 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 0

crand 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 0

creqv 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 0

crorc 0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 0

cror 0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 0

bcctr x 0 1 0 0 1 1 BO BI 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 LK

rlwimi x 0 1 0 1 0 0 S A SH MB ME Rc

rlwinm x 0 1 0 1 0 1 S A SH MB ME Rc

rlwnm x 0 1 0 1 1 1 S A B MB ME Rc

Reserved bitsKey:

Appendix A. PowerPC Instruction Set Listings A-9

A

ori 0 1 1 0 0 0 S A UIMM

oris 0 1 1 0 0 1 S A UIMM

xori 0 1 1 0 1 0 S A UIMM

xoris 0 1 1 0 1 1 S A UIMM

andi. 0 1 1 1 0 0 S A UIMM

andis. 0 1 1 1 0 1 S A UIMM

cmp 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

tw 0 1 1 1 1 1 TO A B 0 0 0 0 0 0 0 1 0 0 0

subfc x 0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 0 0 Rc

addc x 0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 1 0 Rc

mulhwu x 0 1 1 1 1 1 D A B 0 0 0 0 0 0 0 1 0 1 1 Rc

mfcr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

lwarx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 0

lwzx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 1 1 0

slw x 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 0 0 Rc

cntlzw x 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 Rc

andx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 1 0 0 Rc

cmpl 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 1 0 0 0 0 0 0

subf x 0 1 1 1 1 1 D A B OE 0 0 0 0 1 0 1 0 0 0 Rc

dcbst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 0 1 1 0 1 1 0 0

lwzux 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 1 1 0

andc x 0 1 1 1 1 1 S A B 0 0 0 0 1 1 1 1 0 0 Rc

mulhw x 0 1 1 1 1 1 D A B 0 0 0 0 1 0 0 1 0 1 1 Rc

mfmsr 2 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0

dcbf 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 1 0 1 0 1 1 0 0

lbzx 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 1 1 0

negx 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 0 1 1 0 1 0 0 0 Rc

lbzux 0 1 1 1 1 1 D A B 0 0 0 1 1 1 0 1 1 1 0

nor x 0 1 1 1 1 1 S A B 0 0 0 1 1 1 1 1 0 0 Rc

subfe x 0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 0 0 Rc

addex 0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 1 0 Rc

mtcrf 0 1 1 1 1 1 S 0 CRM 0 0 0 1 0 0 1 0 0 0 0 0

mtmsr 2 0 1 1 1 1 1 S 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-10 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

stwcx. 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 0 1

stwx 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 1 0

stwux 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 1 1 0

subfze x 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 0 0 Rc

addzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 1 0 Rc

mtsr 2 0 1 1 1 1 1 S 0 SR 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0

stbx 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 1 0

subfme x 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 0 0 Rc

addme x 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 1 0 Rc

mullw x 0 1 1 1 1 1 D A B OE 0 0 1 1 1 0 1 0 1 1 Rc

mtsrin 2 0 1 1 1 1 1 S 0 0 0 0 0 B 0 0 1 1 1 1 0 0 1 0 0

dcbtst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 1 1 1 1 0 1 1 0 0

stbux 0 1 1 1 1 1 S A B 0 0 1 1 1 1 0 1 1 1 0

addx 0 1 1 1 1 1 D A B OE 0 1 0 0 0 0 1 0 1 0 Rc

dcbt 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 0 0 0 1 0 1 1 0 0

lhzx 0 1 1 1 1 1 D A B 0 1 0 0 0 1 0 1 1 1 0

eqvx 0 1 1 1 1 1 S A B 0 1 0 0 0 1 1 1 0 0 Rc

tlbie 1,2 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 0 0 1 1 0 0 1 0 0

eciwx 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 0 0

lhzux 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 1 0

xor x 0 1 1 1 1 1 S A B 0 1 0 0 1 1 1 1 0 0 Rc

mfspr 2,4 0 1 1 1 1 1 D spr 0 1 0 1 0 1 0 0 1 1 0

lhax 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 1 1 0

tlbia 1, 2 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0

mftb 0 1 1 1 1 1 D tbr 0 1 0 1 1 1 0 0 1 1 0

lhaux 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 1 1 0

sthx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 0 1 1 1 0

orc x 0 1 1 1 1 1 S A B 0 1 1 0 0 1 1 1 0 0 Rc

ecowx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 0 0

sthux 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 1 0

orx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 1 1 0 0 Rc

divwu x 0 1 1 1 1 1 D A B OE 0 1 1 1 0 0 1 0 1 1 Rc

mtspr 2,4 0 1 1 1 1 1 S spr 0 1 1 1 0 1 0 0 1 1 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-11

A

dcbi 2 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 1 1 0 1 0 1 1 0 0

nand x 0 1 1 1 1 1 S A B 0 1 1 1 0 1 1 1 0 0 Rc

divw x 0 1 1 1 1 1 D A B OE 0 1 1 1 1 0 1 0 1 1 Rc

 mcrxr 0 1 1 1 1 1 crfD 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

lswx 3 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 0 1 0

lwbrx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 0 0

lfsx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 1 0

srw x 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 0 0 Rc

tlbsync 1,2 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0

lfsux 0 1 1 1 1 1 D A B 1 0 0 0 1 1 0 1 1 1 0

mfsr 2 0 1 1 1 1 1 D 0 SR 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0

lswi 3 0 1 1 1 1 1 D A NB 1 0 0 1 0 1 0 1 0 1 0

sync 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0

lfdx 0 1 1 1 1 1 D A B 1 0 0 1 0 1 0 1 1 1 0

lfdux 0 1 1 1 1 1 D A B 1 0 0 1 1 1 0 1 1 1 0

mfsrin 2 0 1 1 1 1 1 D 0 0 0 0 0 B 1 0 1 0 0 1 0 0 1 1 0

stswx 3 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 0 1 0

stwbrx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 0 0

stfsx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 1 0

stfsux 0 1 1 1 1 1 S A B 1 0 1 0 1 1 0 1 1 1 0

stswi 3 0 1 1 1 1 1 S A NB 1 0 1 1 0 1 0 1 0 1 0

stfdx 0 1 1 1 1 1 S A B 1 0 1 1 0 1 0 1 1 1 0

dcba 1 0 1 1 1 1 1 0 0 0 0 0 A B 1 0 1 1 1 1 0 1 1 0 0

stfdux 0 1 1 1 1 1 S A B 1 0 1 1 1 1 0 1 1 1 0

lhbrx 0 1 1 1 1 1 D A B 1 1 0 0 0 1 0 1 1 0 0

sraw x 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 0 0 Rc

srawi x 0 1 1 1 1 1 S A SH 1 1 0 0 1 1 1 0 0 0 Rc

eieio 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0

sthbrx 0 1 1 1 1 1 S A B 1 1 1 0 0 1 0 1 1 0 0

extsh x 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 Rc

extsb x 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 Rc

icbi 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 0 1 0 1 1 0 0

stfiwx 1 0 1 1 1 1 1 S A B 1 1 1 1 0 1 0 1 1 1 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-12 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

dcbz 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 1 1 0 1 1 0 0

lwz 1 0 0 0 0 0 D A d

lwzu 1 0 0 0 0 1 D A d

lbz 1 0 0 0 1 0 D A d

lbzu 1 0 0 0 1 1 D A d

stw 1 0 0 1 0 0 S A d

stwu 1 0 0 1 0 1 S A d

stb 1 0 0 1 1 0 S A d

stbu 1 0 0 1 1 1 S A d

lhz 1 0 1 0 0 0 D A d

lhzu 1 0 1 0 0 1 D A d

lha 1 0 1 0 1 0 D A d

lhau 1 0 1 0 1 1 D A d

sth 1 0 1 1 0 0 S A d

sthu 1 0 1 1 0 1 S A d

lmw 3 1 0 1 1 1 0 D A d

stmw 3 1 0 1 1 1 1 S A d

lfs 1 1 0 0 0 0 D A d

lfsu 1 1 0 0 0 1 D A d

lfd 1 1 0 0 1 0 D A d

lfdu 1 1 0 0 1 1 D A d

 stfs 1 1 0 1 0 0 S A d

stfsu 1 1 0 1 0 1 S A d

stfd 1 1 0 1 1 0 S A d

stfdu 1 1 0 1 1 1 S A d

fdivs x 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubs x 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

fadds x 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrts x 1 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fres x 1 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 0 0 Rc

fmuls x 1 1 1 0 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

fmsubs x 1 1 1 0 1 1 D A B C 1 1 1 0 0 Rc

fmadds x 1 1 1 0 1 1 D A B C 1 1 1 0 1 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-13

A

fnmsubs x 1 1 1 0 1 1 D A B C 1 1 1 1 0 Rc

fnmadds x 1 1 1 0 1 1 D A B C 1 1 1 1 1 Rc

fcmpu 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 0 0 0 0 0 0 0

frsp x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 0 0 Rc

fctiw x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 0

fctiwz x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 1 Rc

fdiv x 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsub x 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

fadd x 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrt x 1 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fsel x 1 1 1 1 1 1 1 D A B C 1 0 1 1 1 Rc

fmul x 1 1 1 1 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

frsqrte x 1 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 1 0 Rc

fmsub x 1 1 1 1 1 1 D A B C 1 1 1 0 0 Rc

fmadd x 1 1 1 1 1 1 D A B C 1 1 1 0 1 Rc

fnmsub x 1 1 1 1 1 1 D A B C 1 1 1 1 0 Rc

fnmadd x 1 1 1 1 1 1 D A B C 1 1 1 1 1 Rc

fcmpo 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 1 0 0 0 0 0 0

mtfsb1 x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 Rc

fneg x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 1 0 1 0 0 0 Rc

mcrfs 1 1 1 1 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

mtfsb0 x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 Rc

fmr x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 1 0 0 1 0 0 0 Rc

mtfsfi x 1 1 1 1 1 1 crfD 0 0 0 0 0 0 0 IMM 0 0 0 1 0 0 0 0 1 1 0 Rc

fnabs x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 1 0 0 0 1 0 0 0 Rc

fabs x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 1 0 0 0 0 1 0 0 0 Rc

mffs x 1 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 Rc

mtfsf x 1 1 1 1 1 1 0 FM 0 B 1 0 1 1 0 0 0 1 1 1 Rc

Notes :

1 Optional instruction
2 Supervisor-level instruction
3 Load/store string/multiple instruction
4 Supervisor-level and user-level instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-14 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

A.3 Instructions Grouped by Functional Categories
Table A-3 through Table A-30 list the PowerPC instructions grouped by function.

Table A-3. Integer Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addc x 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addme x 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divw x 31 D A B OE 491 Rc

divwu x 31 D A B OE 459 Rc

mulhw x 31 D A B 0 75 Rc

mulhwu x 31 D A B 0 11 Rc

mulli 07 D A SIMM

mullw x 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subf x 31 D A B OE 40 Rc

subfc x 31 D A B OE 8 Rc

subfic x 08 D A SIMM

subfe x 31 D A B OE 136 Rc

subfme x 31 D A 0 0 0 0 0 OE 232 Rc

subfze x 31 D A 0 0 0 0 0 OE 200 Rc

Reserved bitsKey:

Appendix A. PowerPC Instruction Set Listings A-15

A

Table A-4. Integer Compare Instructions

Table A-5. Integer Logical Instructions

Table A-6. Integer Rotate Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmp 31 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andc x 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

cntlzw x 31 S A 0 0 0 0 0 26 Rc

eqvx 31 S A B 284 Rc

extsb x 31 S A 0 0 0 0 0 954 Rc

extsh x 31 S A 0 0 0 0 0 922 Rc

nand x 31 S A B 476 Rc

nor x 31 S A B 124 Rc

orx 31 S A B 444 Rc

orc x 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

xor x 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

:

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rlwimi x 22 S A SH MB ME Rc

rlwinm x 20 S A SH MB ME Rc

rlwnm x 21 S A SH MB ME Rc

A-16 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

Table A-7. Integer Shift Instructions

Table A-8. Floating-Point Arithmetic Instructions

Table A-9. Floating-Point Multiply-Add Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

slw x 31 S A B 24 Rc

sraw x 31 S A B 792 Rc

srawi x 31 S A SH 824 Rc

srw x 31 S A B 536 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fadd x 63 D A B 0 0 0 0 0 21 Rc

fadds x 59 D A B 0 0 0 0 0 21 Rc

fdiv x 63 D A B 0 0 0 0 0 18 Rc

fdivs x 59 D A B 0 0 0 0 0 18 Rc

fmul x 63 D A 0 0 0 0 0 C 25 Rc

fmuls x 59 D A 0 0 0 0 0 C 25 Rc

fres x 1

1 Optional instruction

59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrte x 1 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsub x 63 D A B 0 0 0 0 0 20 Rc

fsubs x 59 D A B 0 0 0 0 0 20 Rc

fsel x 1 63 D A B C 23 Rc

fsqrt x 1 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrts x 1 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

Note :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fmadd x 63 D A B C 29 Rc

fmadds x 59 D A B C 29 Rc

fmsub x 63 D A B C 28 Rc

fmsubs x 59 D A B C 28 Rc

fnmadd x 63 D A B C 31 Rc

fnmadds x 59 D A B C 31 Rc

Appendix A. PowerPC Instruction Set Listings A-17

A

Table A-10. Floating-Point Rounding and Conversion Instructions

Table A-11. Floating-Point Compare Instructions

Table A-12. Floating-Point Status and Control Register Instructions

Table A-13. Integer Load Instructions

fnmsub x 63 D A B C 30 Rc

fnmsubs x 59 D A B C 30 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fctiw x 63 D 0 0 0 0 0 B 14 Rc

fctiwz x 63 D 0 0 0 0 0 B 15 Rc

frsp x 63 D 0 0 0 0 0 B 12 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

mffs x 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mtfsb0 x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1 x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsf x 31 0 FM 0 B 711 Rc

mtfsfi x 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

A-18 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

Table A-14. Integer Store Instructions

Table A-15. Integer Load and Store with Byte Reverse Instructions

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

sth 44 S A d

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stw 36 S A d

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lhbrx 31 D A B 790 0

lwbrx 31 D A B 534 0

sthbrx 31 S A B 918 0

stwbrx 31 S A B 662 0

Appendix A. PowerPC Instruction Set Listings A-19

A

Table A-16. Integer Load and Store Multiple Instructions

Table A-17. Integer Load and Store String Instructions

Table A-18. Memory Synchronization Instructions

Table A-19. Floating-Point Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lmw 1

1 Load/store string/multiple instruction

46 D A d

stmw 1 47 S A d

Note :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lswi 1

1 Load/store string/multiple instruction

31 D A NB 597 0

lswx 1 31 D A B 533 0

stswi 1 31 S A NB 725 0

stswx 1 31 S A B 661 0

Note :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

lwarx 31 D A B 20 0

stwcx. 31 S A B 150 1

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

A-20 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

Table A-20. Floating-Point Store Instructions

Table A-21. Floating-Point Move Instructions

Table A-22. Branch Instructions

lfsx 31 D A B 535 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 1

1 Optional instruction

31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fabs x 63 D 0 0 0 0 0 B 264 Rc

fmr x 63 D 0 0 0 0 0 B 72 Rc

fnabs x 63 D 0 0 0 0 0 B 136 Rc

fneg x 63 D 0 0 0 0 0 B 40 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctr x 19 BO BI 0 0 0 0 0 528 LK

bclr x 19 BO BI 0 0 0 0 0 16 LK

Appendix A. PowerPC Instruction Set Listings A-21

A

Table A-23. Condition Register Logical Instructions

Table A-24. System Linkage Instructions

Table A-25. Trap Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rfi 1

1 Supervisor-level instruction

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

sc 17 0 1 0

Notes :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tw 31 TO A B 4 0

twi 03 TO A SIMM

A-22 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

Table A-26. Processor Control Instructions

Table A-27. Cache Management Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 mcrxr 31 crfS 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mfmsr 1

1 Supervisor-level instruction

31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr 2

2 Supervisor- and user-level instruction

31 D spr 339 0

mftb 31 D tpr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr 2 31 D spr 467 0

Notes :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dcba 1

1 Optional instruction

31 0 0 0 0 0 A B 758 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 2

2 Supervisor-level instruction

31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

icbi 31 0 0 0 0 0 A B 982 0

Notes :

Appendix A. PowerPC Instruction Set Listings A-23

A

Table A-28. Segment Register Manipulation Instructions.

Table A-29. Lookaside Buffer Management Instructions

Table A-30. External Control Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfsr 1

1 Supervisor-level instruction

31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1 31 D 0 0 0 0 0 B 659 0

mtsr 1 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1 31 S 0 0 0 0 0 B 242 0

Notes :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tlbia 1,2

1 Supervisor-level instruction

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,2 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync 1,2

2 Optional instruction

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

Notes :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

A-24 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

A.4 Instructions Sorted by Form
Table A-31 through Table A-41 list the PowerPC instructions grouped by form.

Table A-31. I-Form

Table A-32. B-Form

Table A-33. SC-Form

Table A-34. D-Form

OPCD LI AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

OPCD BO BI BD AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcx 16 BO BI BD AA LK

OPCD 0 1 0

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sc 17 0 1 0

OPCD D A d

OPCD D A SIMM

OPCD S A d

OPCD S A UIMM

OPCD crfD 0 L A SIMM

OPCD crfD 0 L A UIMM

OPCD TO A SIMM

Reserved bits

Key:

Appendix A. PowerPC Instruction Set Listings A-25

A

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

andi. 28 S A UIMM

andis. 29 S A UIMM

cmpi 11 crfD 0 L A SIMM

cmpli 10 crfD 0 L A UIMM

lbz 34 D A d

lbzu 35 D A d

lfd 50 D A d

lfdu 51 D A d

lfs 48 D A d

lfsu 49 D A d

lha 42 D A d

lhau 43 D A d

lhz 40 D A d

lhzu 41 D A d

lmw 1 46 D A d

lwz 32 D A d

lwzu 33 D A d

mulli 7 D A SIMM

ori 24 S A UIMM

oris 25 S A UIMM

stb 38 S A d

stbu 39 S A d

stfd 54 S A d

stfdu 55 S A d

 stfs 52 S A d

stfsu 53 S A d

sth 44 S A d

sthu 45 S A d

stmw 1 47 S A d

A-26 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

Table A-35. X-Form

stw 36 S A d

stwu 37 S A d

subfic 08 D A SIMM

twi 03 TO A SIMM

xori 26 S A UIMM

xoris 27 S A UIMM

Note :
1 Load/store string/multiple instruction

OPCD D A B XO 0
OPCD D A NB XO 0
OPCD D 0 0 0 0 0 B XO 0
OPCD D 0 0 0 0 0 0 0 0 0 0 XO 0
OPCD D 0 SR 0 0 0 0 0 XO 0
OPCD S A B XO Rc
OPCD S A B XO 1
OPCD S A B XO 0
OPCD S A NB XO 0
OPCD S A 0 0 0 0 0 XO Rc
OPCD S 0 0 0 0 0 B XO 0
OPCD S 0 0 0 0 0 0 0 0 0 0 XO 0
OPCD S 0 SR 0 0 0 0 0 XO 0
OPCD S A SH XO Rc
OPCD crfD 0 L A B XO 0
OPCD crfD 0 0 A B XO 0
OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0
OPCD crfD 0 0 0 0 0 0 0 0 0 0 0 0 XO 0
OPCD crfD 0 0 0 0 0 0 0 IMM 0 XO Rc
OPCD TO A B XO 0
OPCD D 0 0 0 0 0 B XO Rc
OPCD D 0 0 0 0 0 0 0 0 0 0 XO Rc
OPCD crbD 0 0 0 0 0 0 0 0 0 0 XO Rc
OPCD 0 0 0 0 0 A B XO 0
OPCD 0 0 0 0 0 0 0 0 0 0 B XO 0
OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andc x 31 S A B 60 Rc

cmp 31 crfD 0 L A B 0 0

cmpl 31 crfD 0 L A B 32 0

cntlzw x 31 S A 0 0 0 0 0 26 Rc

Appendix A. PowerPC Instruction Set Listings A-27

A

dcba 1 31 0 0 0 0 0 A B 758 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 2 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

extsb x 31 S A 0 0 0 0 0 954 Rc

extsh x 31 S A 0 0 0 0 0 922 Rc

fabs x 63 D 0 0 0 0 0 B 264 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctiw x 63 D 0 0 0 0 0 B 14 Rc

fctiwz x 63 D 0 0 0 0 0 B 15 Rc

fmr x 63 D 0 0 0 0 0 B 72 Rc

fnabs x 63 D 0 0 0 0 0 B 136 Rc

fneg x 63 D 0 0 0 0 0 B 40 Rc

frsp x 63 D 0 0 0 0 0 B 12 Rc

icbi 31 0 0 0 0 0 A B 982 0

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lswi 3 31 D A NB 597 0

A-28 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

lswx 3 31 D A B 533 0

lwarx 31 D A B 20 0

lwbrx 31 D A B 534 0

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffs x 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 2 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfsr 2 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 2 31 D 0 0 0 0 0 B 659 0

mtfsb0 x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1 x 63 crfD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfi x 63 crbD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 2 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtsr 2 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 2 31 S 0 0 0 0 0 B 242 0

nand x 31 S A B 476 Rc

nor x 31 S A B 124 Rc

orx 31 S A B 444 Rc

orc x 31 S A B 412 Rc

slw x 31 S A B 24 Rc

sraw x 31 S A B 792 Rc

srawi x 31 S A SH 824 Rc

srw x 31 S A B 536 Rc

stbux 31 S A B 247 0

stbx 31 S A B 215 0

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 1 31 S A B 983 0

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sthbrx 31 S A B 918 0

sthux 31 S A B 439 0

Appendix A. PowerPC Instruction Set Listings A-29

A

sthx 31 S A B 407 0

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwux 31 S A B 183 0

stwx 31 S A B 151 0

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

tlbia 1, 2 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1, 2 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync 1, 2 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

xor x 31 S A B 316 Rc

Notes :
1 Optional instruction
2 Supervisor-level instruction
3 Load/store string/multiple instruction

A-30 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

A.5 Instruction Set Legend
Table A-36 provides general information on the PowerPC instruction set (such as the
architectural level, privilege level, and form)

Table A-36. PowerPC Instruction Set Legend

UISA VEA OEA
Supervisor

Level
Optional Form

addx √ XO

addc x √ XO

addex √ XO

addi √ D

addic √ D

addic. √ D

addis √ D

addmex √ XO

addzex √ XO

andx √ X

andc x √ X

andi. √ D

andis. √ D

bx √ I

bcx √ B

bcctr x √ XL

bclr x √ XL

cmp √ X

cmpi √ D

cmpl √ X

cmpli √ D

cntlzw x √ X

crand √ XL

crandc √ XL

creqv √ XL

crnand √ XL

crnor √ XL

cror √ XL

crorc √ XL

Appendix A. PowerPC Instruction Set Listings A-31

A

crxor √ XL

dcba √ √ X

dcbf √ X

dcbi √ √ X

dcbst √ X

dcbt √ X

dcbtst √ X

dcbz √ X

divw x √ XO

divwu x √ XO

eciwx √ √ X

ecowx √ √ X

eieio √ X

eqvx √ X

extsb x √ X

extsh x √ X

fabs x √ X

fadd x √ A

fadds x √ A

fcmpo √ X

fcmpu √ X

fctiw x √ X

fctiwz x √ √ X

fdiv x √ A

fdivs x √ A

fmadd x √ A

fmadds x √ A

fmr x √ X

fmsub x √ A

fmsubs x √ A

fmul x √ A

fmuls x √ A

fnabs x √ X

Table A-36. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
Optional Form

A-32 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

fneg x √ X

fnmadd x √ A

fnmadds x √ A

fnmsub x √ A

fnmsubs x √ A

fres x √ √ A

frsp x √ X

frsqrte x √ √ A

fsel x √ √ A

fsqrt x √ √ A

fsqrts x √ √ A

fsub x √ A

fsubs x √ A

icbi √ X

isync √ XL

lbz √ D

lbzu √ D

lbzux √ X

lbzx √ X

lfd √ D

lfdu √ D

lfdux √ X

lfdx √ X

lfs √ D

lfsu √ D

lfsux √ X

lfsx √ X

lha √ D

lhau √ D

lhaux √ X

lhax √ X

lhbrx √ X

lhz √ D

Table A-36. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
Optional Form

Appendix A. PowerPC Instruction Set Listings A-33

A

lhzu √ D

lhzux √ X

lhzx √ X

lmw 2 √ D

lswi 2 √ X

lswx 2 √ X

lwarx √ X

lwbrx √ X

lwz √ D

lwzu √ D

lwzux √ X

lwzx √ X

mcrf √ XL

mcrfs √ X

mcrxr √ X

mfcr √ X

mffs √ X

mfmsr √ √ X

mfspr 1 √ √ √ XFX

mfsr √ √ X

mfsrin √ √ X

mftb √ XFX

mtcrf √ XFX

mtfsb0 x √ X

mtfsb1 x √ X

mtfsf x √ XFL

mtfsfi x √ X

mtmsr √ √ X

mtspr 1 √ √ √ XFX

mtsr √ √ X

mtsrin √ √ √ X

mulhw x √ XO

mulhwu x √ XO

Table A-36. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
Optional Form

A-34 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

mulli √ D

mullw x √ XO

nand x √ X

negx √ XO

nor x √ X

orx √ X

orc x √ X

ori √ D

oris √ D

rfi √ √ XL

rlwimi x √ M

rlwinm x √ M

rlwnm x √ M

sc √ √ SC

slw x √ X

sraw x √ X

srawi x √ X

srw x √ X

stb √ D

stbu √ D

stbux √ X

stbx √ X

stfd √ D

stfdu √ D

stfdux √ X

stfdx √ X

stfiwx √ √ X

stfs √ D

stfsu √ D

stfsux √ X

stfsx √ X

sth √ D

sthbrx √ X

Table A-36. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
Optional Form

Appendix A. PowerPC Instruction Set Listings A-35

A

1 Supervisor- and user-level instruction
2 Load/store string or multiple instruction

sthu √ D

sthux √ X

sthx √ X

stmw 2 √ D

stswi 2 √ X

stswx 2 √ X

stw √ D

stwbrx √ X

stwcx. √ X

stwu √ D

stwux √ X

stwx √ X

subf x √ XO

subfc x √ XO

subfe x √ XO

subfic √ D

subfme x √ XO

subfze x √ XO

sync √ X

tlbia x √ √ √ X

tlbie x √ √ √ X

tlbsync √ √ X

tw √ X

twi √ D

xor x √ X

xori √ D

xoris √ D

Notes:

Table A-36. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
Optional Form

A-36 PowerPC Microprocessor 32-bit Family: The Programming Environments

A

Appendix B. POWER Architecture Cross Reference B-1

B

Appendix B. POWER Architecture
Cross Reference
B0
B0

This appendix identifies the incompatibilities that must be managed in migration from the
POWER architecture to PowerPC architecture. Some of the incompatibilities can, at least
in principle, be detected by the processor, which traps and lets software simulate the
POWER operation. Others cannot be detected by the processor.

In general, the incompatibilities identified here are those that affect a POWER application
program. Incompatibilities for instructions that can be used only by POWER system
programs are not discussed.

NOTE: This appendix describes incompatibilities with respect to the PowerPC
architecture in general.

B.1 New Instructions, Formerly Supervisor-Level
Instructions

Instructions new to PowerPC typically use opcode values (including extended opcodes)
which are illegal in the POWER architecture. A few instructions that are supervisor-level
in the POWER architecture (for example,dclz, calleddcbz in the PowerPC architecture)
have been made user-level in the PowerPC architecture.

Any POWER program that executes one of these now-valid, or now-user-level, instructions
expecting to cause the system illegal instruction error handler (program exception), or the
system supervisor-level instruction error handler to be invoked, will not execute correctly
on PowerPC processors.

NOTE: In the architecture specification, user- and supervisor-level are referred to as
problem and privileged state, respectively, and exceptions are referred to as
interrupts.

B.2 New Supervisor-Level Instructions
The following instructions are user-level in the POWER architecture but are supervisor-
level in PowerPC processors.

• mfmsr

• mfsr

B-2 PowerPC Microprocessor 32-bit Family: The Programming Environments

B

B.3 Reserved Bits in Instructions
These are shown as zeros and the bit field is shaded in the instruction opcode definitions.
In the POWER architecture such bits are ignored by the processor. In the PowerPC
architecture they must be zero or the instruction form is invalid. In several cases, the
PowerPC architecture assumes that such bits in POWER instructions are indeed zero. The
cases include the following:

• cmpi, cmp, cmpli, andcmpl assume that bit 10 in the POWER instructions is 0.

• mtspr andmfspr assume that bits 16–20 in the POWER instructions are 0.

B.4 Reserved Bits in Registers
The POWER architecture defines these bits to be zero when read, and either zero or one
when written to. In the PowerPC architecture it is implementation-dependent for each
register, whether these bits are zero when read, and ignored when written to, or are copied
from source to destination when read or written to.

B.5 Alignment Check
The AL bit in the POWER machine state register, MSR[24], is not supported in the
PowerPC architecture. The bit is reserved in the PowerPC architecture. The low-order bits
of the EA are always used. Notice that value zero—the normal value for a reserved SPR
bit—means ignore the low-order EA bits in the POWER architecture, and value one means
use the low-order EA bits. However, MSR[24] is not assigned new meaning in the PowerPC
architecture.

B.6 Condition Register
The following instructions specify a field in the condition register (CR) explicitly (via the
crfD field) and also have the record bit (Rc) option. In the PowerPC architecture, if Rc = 1
for these instructions the instruction form is invalid. In the POWER architecture, if Rc = 1
the instructions execute normally except as shown in Table B-1.

Table B-1. Condition Register Settings

Instruction Setting

cmp CR0 is undefined if Rc = 1 and crf D≠0

cmpl CR0 is undefined if Rc = 1 and crf D≠0

mcrxr CR0 is undefined if Rc = 1 and crf D≠0

fcmpu CR1 is undefined if Rc = 1

fcmpo CR1 is undefined if Rc = 1

mcrfs CR1 is undefined if Rc = 1 and crf D≠1

Appendix B. POWER Architecture Cross Reference B-3

B

B.7 Inappropriate Use of LK and Rc bits
For the instructions listed below, if LK = 1 or Rc = 1, POWER processors execute the
instruction normally with the exception of setting the link register (if LK = 1) or the CR0
or CR1 fields (if Rc = 1) to an undefined value. In the PowerPC architecture, such
instruction forms are invalid.

The PowerPC instruction form is invalid if LK = 1:

• sc (svcx in the POWER architecture)

• Condition register logical instructions (that is,crand, crandc, creqv, crnand,
crnor, cror, crorc, andcrxor)

• mcrf

• isync (ics in the POWER architecture)

The PowerPC instruction form is invalid if Rc = 1:

• Integer X-form load and store instructions:

— X-form load instructions—lbzux, lbzx, ldarx, ldux, ldx, lhaux, lhax, lhbrx ,
lhzux, lhzx, lswi, lswx, lwarx , lwaux, lwax, lwbrx , lwzux, lwzx

— X-form store instructions—stbux, stbx, stdcx., stdux, stdx, sthbrx, sthux,
sthx, stswi, stswx, stwbrx, stwcx., stwux, stwx

• Integer X-form compare instructions (that is,cmp, cmpl)

• X-form trap instruction (that is,td)

• mtspr, mfspr, mtcrf , mcrxr , mfcr

• Floating-point X-form load and store instructions and floating-point compare
instructions

— Floating-point X-form load instructions— lfdux, lfdx , lfsux, lfsx

— Floating-point X-form store instructions—stfdux, stfdx, stfiwx, stfsux, stfsx

— Floating-point X-form compare instruction—fcmpo, fcmpu

• mcrfs

• dcbz (dclz in the POWER architecture)

B.8 BO Field
The POWER architecture shows certain bits in the BO field—used by branch conditional
instructions—asx without indicating how these bits are to be interpreted. These bits are
ignored by POWER processors.

The PowerPC architecture shows these bits as eitherz or y. The z bits are ignored, as in
POWER. However, they bit need not be ignored, but rather can be used to give a hint about
whether the branch is likely to be taken. If a POWER program has the incorrect value for
this bit, the program will run correctly but performance may suffer.

B-4 PowerPC Microprocessor 32-bit Family: The Programming Environments

B

B.9 Branch Conditional to Count Register
For the case in which the count register is decremented and tested (that is, the case in which
BO[2] = 0), the POWER architecture specifies only that the branch target address is
undefined, implying that the count register, and the link register (if LK = 1), are updated in
the normal way. The PowerPC architecture considers this instruction form invalid.

B.10 System Call/Supervisor Call
The System Call (sc) instruction in the PowerPC architecture is called Supervisor Call
(svcx) in the POWER architecture. Differences in implementations are as follows:

• The POWER architecture provides a version of thesvcx instruction (bit 30 = 0) that
allows instruction fetching to continue at any one of 128 locations. It is used for “fast
Supervisor Calls.” The PowerPC architecture provides no such version. If bit 30 of
the instruction is zero the instruction form is invalid.

• The POWER architecture provides a version of thesvcx instruction
(bits 30–31 = 0b11) that resumes instruction fetching at one location and sets the
link register (LR) to the address of the next instruction. The PowerPC architecture
provides no such version; if Rc = 1, the instruction form is invalid.

• For the POWER architecture, information from the MSR is saved in the count
register (CTR). For the PowerPC architecture, this information is saved in the
machine status save/restore register 1 (SRR1).

• The POWER architecture permits bits 16–29 of the instruction to be nonzero, while
in the PowerPC architecture, such an instruction form is invalid.

• The POWER architecture saves the low-order 16 bits of thesvcx instruction in the
CTR; the PowerPC architecture does not save them.

• The settings of the MSR bits by the system call exception differ between the
POWER architecture and the PowerPC architecture.

B.11 XER Register
Bits 16–23 of the XER are reserved in the PowerPC architecture, whereas in the POWER
architecture they are defined to contain the comparison byte for thelscbx instruction, which
is not included in the PowerPC architecture.

B.12 Update Forms of Memory Access
The PowerPC architecture requires thatrA not be equal to eitherrD (integer load only) or
zero. If the restriction is violated, the instruction form is invalid. See Section 4.1.3, “Classes
of Instructions,” for information about invalid instructions. The POWER architecture
permits these cases and simply avoids saving the EA.

Appendix B. POWER Architecture Cross Reference B-5

B

B.13 Multiple Register Loads
When executing instructions that load multiple registers, the PowerPC architecture requires
that rA, and rB if present in the instruction format, not be in the range of registers to be
loaded, while the POWER architecture permits this and does not alterrA or rB in this case.
(The PowerPC architecture restriction applies even ifrA = 0, although there is no obvious
benefit to the restriction in this case sincerA is not used to compute the effective address
if rA = 0.) If the PowerPC architecture restriction is violated, either the system illegal
instruction error handler is invoked or the results are boundedly undefined.

The instructions affected are listed as follows:

• lmw (lm in the POWER architecture)

• lswi (lsi in the POWER architecture)

• lswx (lsx in the POWER architecture)

For example, anlmw instruction that loads all 32 registers is valid in the POWER
architecture but is an invalid form in the PowerPC architecture.

B.14 Alignment for Load/Store Multiple
When executing load/store multiple instructions, the PowerPC architecture requires the EA
to be word-aligned and yields an alignment exception or boundedly-undefined results if it
is not. The POWER architecture specifies that an alignment exception occurs (if AL = 1).

B.15 Load and Store String Instructions
In the PowerPC architecture, anlswx instruction with zero length leaves the content ofrD
undefined (ifrD≠rA andrD≠rB) or is an invalid instruction form (ifrD = rA or
rD = rB), while in the POWER architecture the corresponding instruction (lsx) is a no-op
in these cases.

Note also that, in the PowerPC architecture, anlswx instruction with zero length may alter
the referenced bit, and anstswx instruction with zero length may alter the referenced and
changed bits, while in the POWER architecture the corresponding instructions (lsx and
stsx) do not alter the referenced and changed bits.

B.16 Synchronization
The sync instruction (calleddcs in the POWER architecture) and theisync instruction
(called theics in the POWER architecture) cause a much more pervasive synchronization
in the PowerPC architecture than in the POWER architecture. For more information, refer
to Chapter 8, “Instruction Set.”

B-6 PowerPC Microprocessor 32-bit Family: The Programming Environments

B

B.17 Move to/from SPR
Differences in how the Move to/from Special Purpose Register (mtspr and mfspr)
instructions function are as follows:

• The SPR field is 10 bits long in the PowerPC architecture, but only 5 bits in POWER
architecture.

• Themfspr instruction can be used to read the decrementer (DEC) register in
problem state (user mode) in the POWER architecture, but only in supervisor state
in the PowerPC architecture.

• If the SPR value specified in the instruction is not one of the defined values, the
POWER architecture behaves as follows:

— If the instruction is executed in user-level privilege state and SPR[0] = 1, a
supervisor-level instruction type program exception occurs. No architected
registers are altered except those set by the exception.

— If the instruction is executed in supervisor-level privilege state and SPR[0] = 0,
no architected registers are altered.

In this same case, the PowerPC architecture behaves as follows:
— If the instruction is executed in user-level privilege state and SPR[0] = 1, either

an illegal instruction type program exception or a supervisor-level instruction
type program exception occurs. No architected registers are altered except those
set by the exception.

— Otherwise, (the instruction is executed in supervisor-level privilege state or
SPR[0] = 0), either an illegal instruction type program exception occurs (in
which case no architected registers are altered except those set by the exception)
or the results are boundedly undefined.

B.18 Effects of Exceptions on FPSCR Bits FR and FI
For the following cases, the POWER architecture does not specify how the FR and FI bits
are set, while the PowerPC architecture preserves them for illegal operation exceptions
caused by compare instructions and clears them otherwise.

• Invalid operation exception (enabled or disabled)

• Zero divide exception (enabled or disabled)

• Disabled overflow exception

Appendix B. POWER Architecture Cross Reference B-7

B

B.19 Floating-Point Store Single Instructions
There are several respects in which the PowerPC architecture is incompatible with the
POWER architecture when executing store floating-point single instructions.

The POWER architecture uses FPSCR[UE] to help determine whether denormalization
should be done, while the PowerPC architecture does not.

NOTE: In the PowerPC architecture, if FPSCR[UE] = 1 and a denormalized single-
precision number is copied from one memory location to another by means of an
lfs instruction followed by anstfs instruction, the two “copies” may not be the
same. Refer to Section 3.3.6.2.2, “Underflow Exception Condition,” for more
information about underflow exceptions.

For an operand having an exponent that is less than 874 (an unbiased exponent less than -
149), the POWER architecture specifies storage of a zero (if FPSCR[UE] = 0), while the
PowerPC architecture specifies the storage of an undefined value.

B.20 Move from FPSCR
The POWER architecture defines the high-order 32 bits of the result ofmffs to be
0xFFFF_FFFF. In the PowerPC architecture they are undefined.

B.21 Clearing Bytes in the Data Cache
Thedclz instruction of the POWER architecture and thedcbz instruction of the PowerPC
architecture have the same opcode. However, the functions differ in the following respects.

• Thedclz instruction clears a line;dcbz clears a block.

• Thedclz instruction saves the EA inrA (if rA≠0); dcbz does not.

• Thedclz instruction is supervisor-level;dcbz is not.

B.22 Segment Register Instructions
The definitions of the four segment register instructions (mtsr, mtsrin , mfsr, andmfsrin)
differ in two respects between the POWER architecture and the PowerPC architecture.
Instructions similar tomtsrin and mfsrin are calledmtsri and mfsri in the POWER
architecture. The definitions follow:

• Privilege—mfsr andmfsri are problem state instructions in the POWER
architecture, whilemfsr andmfsrin are supervisor-level in the PowerPC
architecture.

• Function—the indirect instructions (mtsri andmfsri) in the POWER architecture
use anrA register in computing the segment register number, and the computed EA
is stored intorA (if rA≠0 andrA≠rD); in the PowerPC architecturemtsrin and
mfsrin have norA field and EA is not stored.

B-8 PowerPC Microprocessor 32-bit Family: The Programming Environments

B

Themtsr, mtsrin (mtsri), andmfsr instructions have the same opcodes in the PowerPC
architecture as in the POWER architecture. Themfsri instruction in the POWER
architecture and themfsrin instruction in PowerPC architecture have different opcodes.

B.23 TLB Entry Invalidation
The tlbi instruction in the POWER architecture and thetlbie instruction in the PowerPC
architecture have the same opcode. However, the functions differ in the following respects.

• Thetlbi instruction computes the EA as (rA|0) + rB, while tlbie lacks anrA field
and computes the EA asrB.

• Thetlbi instruction saves the EA inrA (if rA≠0); tlbie lacks anrA field and does
not save the EA.

B.24 Floating-Point Exceptions
Both the PowerPC and the POWER architectures use bit 20 of the MSR to control the
generation of exceptions for floating-point enabled exceptions. However, in the PowerPC
architecture this bit is part of a 2-bit value which controls the occurrence, precision, and
recoverability of the exception, whereas, in the POWER architecture this bit is used
independently to control the occurrence of the exception (in the POWER architecture all
floating-point exceptions are precise).

B.25 Timing Facilities
This section describes differences between the POWER architecture and the PowerPC
architecture timer facilities.

B.25.1 Real-Time Clock
The POWER real-time clock (RTC) is not supported in the PowerPC architecture. Instead,
the PowerPC architecture provides a time base register (TB). Both the RTC and the TB are
64-bit special-purpose registers, but they differ in the following respects:

• The RTC counts seconds and nanoseconds, while the TB counts ticks. The
frequency of the TB is implementation-dependent.

• The RTC increments discontinuously—1 is added to RTCU when the value in RTCL
passes 999_999_999. The TB increments continuously—1 is added to TBU when
the value in TBL passes 0xFFFF_FFFF.

• The RTC is written and read by themtspr andmfspr instructions, using SPR
numbers that denote the RTCU and RTCD. The TB is written by themtspr
instruction (using new SPR numbers) and read by the newmftb instruction.

• The SPR numbers that denote POWER architectures’s RTCL and RTCU are invalid
in the PowerPC architecture.

Appendix B. POWER Architecture Cross Reference B-9

B

• The RTC is guaranteed to increment at least once in the time required to execute ten
Add Immediate (addi) instructions. No analogous guarantee is made for the TB.

• Not all bits of RTCL need be implemented, while all bits of the TB must be
implemented.

B.25.2 Decrementer
The decrementer (DEC) register differs, in the PowerPC and POWER architectures, in the
following respects:

• The PowerPC architecture DEC register decrements at the same rate that the TB
increments, while the POWER decrementer decrements every nanosecond (which is
the same rate that the RTC increments).

• Not all bits of the POWER DEC need be implemented, while all bits of the PowerPC
DEC must be implemented.

• The exception caused by the DEC has its own exception vector location in the
PowerPC architecture, but is considered an external exception in the POWER
architecture.

B.26 Deleted Instructions
The following instructions, shown in Table B-2, are part of the POWER architecture but
have been dropped from the PowerPC architecture.

Table B-2. Deleted POWER Instructions

Mnemonic Instruction
Primary
Opcode

Extended
Opcode

abs Absolute 31 360

clcs Cache Line Compute Size 31 531

clf Cache Line Flush 31 118

cli Cache Line Invalidate 31 502

dclst Data Cache Line Store 31 630

div Divide 31 331

divs Divide Short 31 363

doz Difference or Zero 31 264

dozi Difference or Zero Immediate 09 —

lscbx Load String and Compare Byte Indexed 31 277

maskg Mask Generate 31 29

maskir Mask Insert from Register 31 541

mfsrin Move from Segment Register Indirect 31 627

mul Multiply 31 107

B-10 PowerPC Microprocessor 32-bit Family: The Programming Environments

B

nabs Negative Absolute 31 488

rac Real Address Compute 31 818

rlmi Rotate Left then Mask Insert 22 —

rrib Rotate Right and Insert Bit 31 537

sle Shift Left Extended 31 153

sleq Shift Left Extended with MQ 31 217

sliq Shift Left Immediate with MQ 31 184

slliq Shift Left Long Immediate with MQ 31 248

sllq Shift Left Long with MQ 31 216

slq Shift Left with MQ 31 152

sraiq Shift Right Algebraic Immediate with MQ 31 952

sraq Shift Right Algebraic with MQ 31 920

sre Shift Right Extended 31 665

srea Shift Right Extended Algebraic 31 921

sreq Shift Right Extended with MQ 31 729

sriq Shift Right Immediate with MQ 31 696

srliq Shift Right Long Immediate with MQ 31 760

srlq Shift Right Long with MQ 31 728

srq Shift Right with MQ 31 664

Note : Many of these instructions use the MQ register. The MQ is not defined in the
PowerPC architecture.

Table B-2. Deleted POWER Instructions (Continued)

Mnemonic Instruction
Primary
Opcode

Extended
Opcode

Appendix B. POWER Architecture Cross Reference B-11

B

B.27 POWER Instructions Supported by the PowerPC
Architecture

Table B-3 lists the POWER instructions implemented in the PowerPC architecture.

Table B-3. POWER Instructions Implemented in PowerPC Architecture

POWER PowerPC

Mnemonic Instruction Mnemonic Instruction

ax Add addc x Add Carrying

aex Add Extended addex Add Extended

ai Add Immediate addic Add Immediate Carrying

ai. Add Immediate and Record addic. Add Immediate Carrying and Record

amex Add to Minus One Extended addmex Add to Minus One Extended

andil. AND Immediate Lower andi. AND Immediate

andiu. AND Immediate Upper andis. AND Immediate Shifted

azex Add to Zero Extended addzex Add to Zero Extended

bcc x Branch Conditional to Count Register bcctr x Branch Conditional to Count Register

bcr x Branch Conditional to Link Register bclr x Branch Conditional to Link Register

cal Compute Address Lower addi Add Immediate

cau Compute Address Upper addis Add Immediate Shifted

caxx Compute Address addx Add

cntlz x Count Leading Zeros cntlzw x Count Leading Zeros Word

dclz Data Cache Line Set to Zero dcbz Data Cache Block Set to Zero

dcs Data Cache Synchronize sync Synchronize

exts x Extend Sign extsh x Extend Sign Half Word

fax Floating Add fadd x Floating Add

fdx Floating Divide fdiv x Floating Divide

fmx Floating Multiply fmul x Floating Multiply

fmax Floating Multiply-Add fmadd x Floating Multiply-Add

fms x Floating Multiply-Subtract fmsub x Floating Multiply-Subtract

fnma x Floating Negative Multiply-Add fnmadd x Floating Negative Multiply-Add

fnms x Floating Negative Multiply-Subtract fnmsub x Floating Negative Multiply-Subtract

fsx Floating Subtract fsub x Floating Subtract

ics Instruction Cache Synchronize isync Instruction Synchronize

l Load lwz Load Word and Zero

lbrx Load Byte-Reverse Indexed lwbrx Load Word Byte-Reverse Indexed

B-12 PowerPC Microprocessor 32-bit Family: The Programming Environments

B

lm Load Multiple lmw Load Multiple Word

lsi Load String Immediate lswi Load String Word Immediate

lsx Load String Indexed lswx Load String Word Indexed

lu Load with Update lwzu Load Word and Zero with Update

lux Load with Update Indexed lwzux Load Word and Zero with Update
Indexed

lx Load Indexed lwzx Load Word and Zero Indexed

mtsri Move to Segment Register Indirect mtsrin Move to Segment Register Indirect *

muli Multiply Immediate mulli Multiply Low Immediate

muls x Multiply Short mullw x Multiply Low

oril OR Immediate Lower ori OR Immediate

oriu OR Immediate Upper oris OR Immediate Shifted

rlimi x Rotate Left Immediate then Mask
Insert

rlwimi x Rotate Left Word Immediate then Mask
Insert

rlinm x Rotate Left Immediate then AND With
Mask

rlwinm x Rotate Left Word Immediate then AND
with Mask

rlnm x Rotate Left then AND with Mask rlwnm x Rotate Left Word then AND with Mask

sfx Subtract from subfc x Subtract from Carrying

sfex Subtract from Extended subfe x Subtract from Extended

sfi Subtract from Immediate subfic Subtract from Immediate Carrying

sfmex Subtract from Minus One Extended subfme x Subtract from Minus One Extended

sfzex Subtract from Zero Extended subfze x Subtract from Zero Extended

slx Shift Left slw x Shift Left Word

srx Shift Right srw x Shift Right Word

srax Shift Right Algebraic sraw x Shift Right Algebraic Word

srai x Shift Right Algebraic Immediate srawi x Shift Right Algebraic Word Immediate

st Store stw Store Word

stbrx Store Byte-Reverse Indexed stwbrx Store Word Byte-Reverse Indexed

stm Store Multiple stmw Store Multiple Word

stsi Store String Immediate stswi Store String Word Immediate

stsx Store String Indexed stswx Store String Word Indexed

stu Store with Update stwu Store Word with Update

Table B-3. POWER Instructions Implemented in PowerPC Architecture (Continued)

POWER PowerPC

Mnemonic Instruction Mnemonic Instruction

Appendix B. POWER Architecture Cross Reference B-13

B

* Supervisor-level instruction

stux Store with Update Indexed stwux Store Word with Update Indexed

stx Store Indexed stwx Store Word Indexed

svca Supervisor Call sc System Call

t Trap tw Trap Word

ti Trap Immediate twi Trap Word Immediate *

tlbi TLB Invalidate Entry tlbie Translation Lookaside Buffer Invalidate
Entry

xoril XOR Immediate Lower xori XOR Immediate

xoriu XOR Immediate Upper xoris XOR Immediate Shifted

Table B-3. POWER Instructions Implemented in PowerPC Architecture (Continued)

POWER PowerPC

Mnemonic Instruction Mnemonic Instruction

B-14 PowerPC Microprocessor 32-bit Family: The Programming Environments

B

Appendix C. Multiple-Precision Shifts C-1

C

Appendix C. Multiple-Precision Shifts
C0
C0

This appendix gives examples of how multiple precision shifts can be programmed. A
multiple-precision shift is initially defined to be a shift of ann-word quantity, wheren > 1.
The quantity to be shifted is contained inn registers. The shift amount is specified either by
an immediate value in the instruction or by bits 27–31 of a register.

The examples distinguish between the casesn = 2 andn > 2. However, ifn > 2, the shift
amount may be in the range 0–31, for the examples to yield the desired result. The specific
instance shown forn > 2 is n = 3: extending those instruction sequences to largern is
straightforward, as is reducing them to the casen = 2 when the more stringent restriction
on shift amount is met. For shifts with immediate shift amounts, only the casen = 3 is
shown because the more stringent restriction on shift amount is always met.

In the examples it is assumed that GPRs 2 and 3 (and 4) contain the quantity to be shifted,
and that the result is to be placed into the same registers. For non-immediate shifts, the shift
amount is assumed to be in bits 27–31 of GPR6. For immediate shifts, the shift amount is
assumed to be greater than zero. GPRs 0–31 are used as scratch registers. Forn > 2, the
number of instructions required is 2n – 1 (immediate shifts) or 3n – 1 (non-immediate
shifts).

The following sections provide examples of multiple-precision shifts.

C.1 Multiple-Precision Shifts in 32-Bit
Implementations

Shift Left Immediate, n = 3 (Shift Amount < 32)
rlwinm r 2, r 2,sh,0,31 – sh
rlwimi r 2, r 3,sh,32 – sh,31
rlwinm r 3, r 3,sh,0,31 – sh
rlwimi r 3, r 4,sh,32 – sh,31
rlwinm r 4, r 4,sh,0,31 – sh

Shift Left, n = 2 (Shift Amount < 64)
subfic r 31, r 6,32
slw r 2, r 2, r 6
srw r 0, r 3, r 31
or r 2, r 2, r 0
addi r 31, r 6,–32
slw r 0, r 3, r 31
or r 2, r 2, r 0
slw r 3, r 3, r 6

C-2 PowerPC Microprocessor 32-bit Family: The Programming Environments

C

Shift Left, n = 3 (Shift Amount < 32)
subfic r 31, r 6,32
slw r 2, r 2, r 6
srw r 0, r 3, r 31
or r 2, r 2, r 0
slw r 3, r 3, r 6
srw r 0, r 4, r 31
or r 3, r 3, r 0
slw r 4, r 4, r 6

Shift Right Immediate, n = 3 (Shift Amount < 32)
rlwinm r 4, r 4,32 – sh,sh,31
rlwimi r 4, r 3,32 – sh,0,sh – 1
rlwinm r 3, r 3,32 – sh,sh,31
rlwimi r 3, r 2,32 – sh,0,sh – 1
rlwinm r 2, r 2,32 – sh,sh,31

Shift Right, n = 2 (Shift Amount < 64)
subfic r 31, r 6,32
srw r 3, r 3, r 6
slw r 0, r 2, r 31
or r 3, r 3, r 0
addi r 31, r 6, –32
srw r 0, r 2, r 31
or r 3, r 3, r 0
srw r 2, r 2, r 6

Shift Right, n = 3 (Shift Amount < 32)
subfic r 31, r 6,–32
srw r 4, r 4, r 6
slw r 0, r 3, r 31
or r 4, r 4, r 0
srw r 3, r 3, r 6
slw r 0, r 2, r 31
or r 3, r 3, r 0
srw r 2, r 2, r 6

Shift Right Algebraic Immediate, n = 3 (Shift Amount < 32)
rlwinm r 4, r 4,32 – sh,sh,31
rlwimi r 4, r 3,32 – sh,0,sh – 1
rlwinm r 3, r 3,32 – sh,sh,31
rlwimi r 3, r 2,32 – sh,0,sh – 1
srawi r 2, r 2,sh

Shift Right Algebraic, n = 2 (Shift Amount < 64)
subfic r 31, r 6,32
srw r 3, r 3, r 6
slw r 0, r 2, r 31
or r 3, r 3, r 0
addic. r 31, r 6,–32
sraw r 0, r 2, r 31
ble $+8
ori r 3, r 0,0
sraw r 2, r 2, r 6

Shift Right Algebraic, n = 3 (Shift Amount < 32)
subfic r 31, r 6,32
srw r 4, r 4, r 6
slw r 0, r 3, r 31
or r 4, r 4, r 0
srw r 3, r 3, r 6
slw r 0, r 2, r 31
or r 3, r 3, r 0
sraw r 2, r 2, r 6

Appendix D. Floating-Point Models D-1

D

Appendix D. Floating-Point Models
D0
D0

This appendix describes the execution model for IEEE operations and gives examples of
how the floating-point conversion instructions can be used to perform various conversions
as well as providing models for floating-point instructions.

D.1 Execution Model for IEEE Operations
The following description uses double-precision arithmetic as an example; single-precision
arithmetic is similar except that the fraction field is a 23-bit field and the single-precision
guard, round, and sticky bits (described in this section) are logically adjacent to the 23-bit
FRACTION field.

IEEE-conforming significand arithmetic is performed with a floating-point accumulator
where bits 0–55, shown in Figure D-1, comprise the significand of the intermediate result.

Figure D-1. IEEE 64-Bit Execution Model

The bits and fields for the IEEE double-precision execution model are defined as follows:

• The S bit is the sign bit.

• The C bit is the carry bit that captures the carry out of the significand.

• The L bit is the leading unit bit of the significand that receives the implicit bit from
the operands.

• The FRACTION is a 52-bit field that accepts the fraction of the operands.

• The guard (G), round (R), and sticky (X) bits are extensions to the low-order bits of
the accumulator. The G and R bits are required for postnormalization of the result.
The G, R, and X bits are required during rounding to determine if the intermediate
result is equally near the two nearest representable values. The X bit serves as an
extension to the G and R bits by representing the logical OR of all bits that may
appear to the low-order side of the R bit, due to either shifting the accumulator right
or to other generation of low-order result bits. The G and R bits participate in the left
shifts with zeros being shifted into the R bit.

0 1 52 55

S C L FRACTION XG R

D-2 PowerPC Microprocessor 32-bit Family: The Programming Environments

D

Table D-1 shows the significance of the G, R, and X bits with respect to the intermediate
result (IR), the next lower in magnitude representable number (NL), and the next higher in
magnitude representable number (NH).

The significand of the intermediate result is made up of the L bit, the FRACTION, and the
G, R, and X bits.

The infinitely precise intermediate result of an operation is the result normalized in bits L,
FRACTION, G, R, and X of the floating-point accumulator.

After normalization, the intermediate result is rounded, using the rounding mode specified
by FPSCR[RN]. If rounding causes a carry into C, the significand is shifted right one
position and the exponent is incremented by one. This causes an inexact result and possibly
exponent overflow. Fraction bits to the left of the bit position used for rounding are stored
into the FPR, and low-order bit positions, if any, are set to zero.

Four user-selectable rounding modes are provided through FPSCR[RN] as described in
Section 3.3.5, “Rounding.” For rounding, the conceptual guard, round, and sticky bits are
defined in terms of accumulator bits.

Table D-2 shows the positions of the guard, round, and sticky bits for double-precision and
single-precision floating-point numbers in the IEEE execution model.

Table D-1. Interpretation of G, R, and X Bits

G R X Interpretation

0 0 0 IR is exact

0 0 1

0 1 0 IR closer to NL

0 1 1

1 0 0 IR midway between NL & NH

1 0 1

1 1 0 IR closer to NH

1 1 1

Appendix D. Floating-Point Models D-3

D

Rounding can be treated as though the significand were shifted right, if required, until the
least-significant bit to be retained is in the low-order bit position of the FRACTION. If any
of the guard, round, or sticky bits are nonzero, the result is inexact.

Z1 and Z2, defined in Section 3.3.5, “Rounding,” can be used to approximate the result in
the target format when one of the following rules is used:

• Round to nearest

— Guard bit = 0: The result is truncated. (Result exact (GRX = 000) or closest to
next lower value in magnitude (GRX = 001, 010, or 011).

— Guard bit = 1: Depends on round and sticky bits:

Case a: If the round or sticky bit is one (inclusive), the result is incremented
(result closest to next higher value in magnitude (GRX = 101, 110, or 111)).

Case b: If the round and sticky bits are zero (result midway between closest
representable values) then if the low-order bit of the result is one, the result is
incremented. Otherwise (the low-order bit of the result is zero) the result is
truncated (this is the case of a tie rounded to even).

If during the round-to-nearest process, truncation of the unrounded number
produces the maximum magnitude for the specified precision, the following action
is taken:

— Guard bit = 1: Store infinity with the sign of the unrounded result.

— Guard bit = 0: Store the truncated (maximum magnitude) value.

• Round toward zero—Choose the smaller in magnitude of Z1 or Z2. If the guard,
round, or sticky bit is nonzero, the result is inexact.

• Round toward +infinity—Choose Z1.

• Round toward –infinity—Choose Z2.

Where the result is to have fewer than 53 bits of precision because the instruction is a
floating round to single-precision or single-precision arithmetic instruction, the
intermediate result either is normalized or is placed in correct denormalized form before
being rounded.

Table D-2. Location of the Guard, Round, and Sticky Bits—IEEE Execution Model

Format Guard Round Sticky

Double G bit R bit X bit

Single 24 25 OR of 26–52 G,R,X

D-4 PowerPC Microprocessor 32-bit Family: The Programming Environments

D

D.2 Execution Model for Multiply-Add Type
Instructions

The PowerPC architecture makes use of a special instruction form that performs up to three
operations in one instruction (a multiply, an add, and a negate). With this added capability
comes the special ability to produce a more exact intermediate result as an input to the
rounder. Single-precision arithmetic is similar except that the fraction field is smaller. Note
that the rounding occurs only after add; therefore, the computation of the sum and product
together are infinitely precise before the final result is rounded to a representable format.

The multiply-add significand arithmetic is considered to be performed with a floating-point
accumulator, where bits 1–106 comprise the significand of the intermediate result. The
format is shown in Figure D-2.

Figure D-2. Multiply-Add 64-Bit Execution Model

The first part of the operation is a multiply. The multiply has two 53-bit significands as
inputs, which are assumed to be prenormalized, and produces a result conforming to the
above model. If there is a carry out of the significand (into the C bit), the significand is
shifted right one position, placing the L bit into the most-significant bit of the FRACTION
and placing the C bit into the L bit. All 106 bits (L bit plus the fraction) of the product take
part in the add operation. If the exponents of the two inputs to the adder are not equal, the
significand of the operand with the smaller exponent is aligned (shifted) to the right by an
amount added to that exponent to make it equal to the other input’s exponent. Zeros are
shifted into the left of the significand as it is aligned and bits shifted out of bit 105 of the
significand are ORed into the X' bit. The add operation also produces a result conforming
to the above model with the X' bit taking part in the add operation.

The result of the add is then normalized, with all bits of the add result, except the X' bit,
participating in the shift. The normalized result serves as the intermediate result that is input
to the rounder.

For rounding, the conceptual guard, round, and sticky bits are defined in terms of
accumulator bits. Table D-3 shows the positions of the guard, round, and sticky bits for
double-precision and single-precision floating-point numbers in the multiply-add execution
model.

Table D-3. Location of the Guard, Round, and Sticky Bits—Multiply-Add Execution
Model

Format Guard Round Sticky

Double 53 54 OR of 55–105, X'

Single 24 25 OR of 26–105, X'

0 1 105

S C L FRACTION X'

Appendix D. Floating-Point Models D-5

D

The rules for rounding the intermediate result are the same as those given in Section D.1,
“Execution Model for IEEE Operations.”

If the instruction is floating negative multiply-add or floating negative multiply-subtract,
the final result is negated.

Floating-point multiply-add instructions combine a multiply and an add operation without
an intermediate rounding operation. The fraction part of the intermediate product is 106 bits
wide, and all 106 bits take part in the add/subtract portion of the instruction.

Status bits are set as follows:

• Overflow, underflow, and inexact exception bits, the FR and FI bits, and the FPRF
field are set based on the final result of the operation, and not on the result of the
multiplication.

• Invalid operation exception bits are set as if the multiplication and the addition were
performed using two separate instructions (for example, anfmul instruction
followed by anfadd instruction). That is, multiplication of infinity by 0 or of
anything by an SNaN, causes the corresponding exception bits to be set.

D.3 Floating-Point Conversions
This section provides examples of floating-point conversion instructions. Note that some of
the examples use the optional Floating Select (fsel) instruction. Care must be taken in using
fsel if IEEE compatibility is required, or if the values being tested can be NaNs or infinities.

D.3.1 Conversion from Floating-Point Number to Signed Fixed-Point
Integer Word

The full convert to signed fixed-point integer word function can be implemented with the
following sequence, assuming that the floating-point value to be converted is in FPR1, the
result is returned in GPR3, and a double word at displacement (disp) from the address in
GPR1 can be used as scratch space.

fctiw[z]f 2, f 1 #convert to fx int
stfd f 2,disp(r 1) #store float
lwz r 3,disp + 4(r 1) #load word and zero

D-6 PowerPC Microprocessor 32-bit Family: The Programming Environments

D

D.3.2 Conversion from Floating-Point Number to Unsigned Fixed-
Point Integer Word

In a 32-bit implementation, the full convert to unsigned fixed-point integer word function
can be implemented with the sequence shown below, assuming that the floating-point value
to be converted is in FPR1, the value zero is in FPR0, the value 232– 1 is in FPR3, the value
231 is in FPR4, the result is returned in GPR3, and a double word at displacement (disp)
from the address in GPR1 can be used as scratch space.

fsel f 2, f 1, f 1, f 0 #use 0 if < 0
fsub f 5, f 3, f 1 #use max if > max
fsel f 2, f 5, f 2, f 3
fsub f 5, f 2, f 4 #subtract 2**31
fcmpu cr 2, f 2, f 4 #use diff if 2**31
fsel f 2, f 5, f 5, f 2
fctiw[z] f 2, f 2 #convert to fx int
stfd f 2,disp(r 1) #store float
lwz r 3,disp + 4(r 1) #load word
blt cr2 ,$+8 #add 2**31 if input
xoris r 3, r 3,0x8000 #was ≥ 2**31

D.4 Floating-Point Models
This section describes models for floating-point instructions.

D.4.1 Floating-Point Round to Single-Precision Model
The following algorithm describes the operation of the Floating Round to Single-Precision
(frsp) instruction.

If fr B[1–11] < 897 andfr B[1–63] > 0 then
Do

If FPSCR[UE] = 0 then goto Disabled Exponent Underflow
If FPSCR[UE] = 1 then goto Enabled Exponent Underflow

End

If fr B[1–11] > 1150 andfr B[1–11] < 2047 then
Do

If FPSCR[OE] = 0 then goto Disabled Exponent Overflow
If FPSCR[OE] = 1 then goto Enabled Exponent Overflow

End

If fr B[1–11] > 896 andfr B[1–11] < 1151 then goto Normal Operand

If fr B[1–63] = 0 then goto Zero Operand

If fr B[1–11] = 2047 then
Do

If fr B[12–63] = 0 then goto Infinity Operand
If fr B[12] = 1 then goto QNaN Operand
If fr B[12] = 0 andfr B[13–63] > 0 then goto SNaN Operand

End

Disabled Exponent Underflow:
sign← fr B[0]
If fr B[1–11] = 0 then

Do
exp← –1022
frac[0–52]← 0b0 ||fr B[12–63]

End
If fr B[1–11] > 0 then

Appendix D. Floating-Point Models D-7

D

Do
exp← fr B[1–11] – 1023
frac[0–52]← 0b1 ||fr B[12–63]

End
Denormalize operand:

G || R || X← 0b000
Do while exp < –126

exp← exp + 1
frac[0–52] || G || R || X← 0b0 || frac || G || (R | X)

End
FPSCR[UX]← frac[24–52] || G || R || X > 0
Round single(sign,exp,frac[0–52],G,R,X)
FPSCR[XX]← FPSCR[XX] | FPSCR[FI]
If frac[0–52] = 0 then

Do
fr D[0] ← sign
fr D[1–63] ← 0
If sign = 0 then FPSCR[FPRF]← “+zero”
If sign = 1 then FPSCR[FPRF]← “–zero”

End
If frac[0–52] > 0 then

Do
If frac[0] = 1 then

Do
If sign = 0 then FPSCR[FPRF]← “+normal number”
If sign = 1 then FPSCR[FPRF]← “–normal number”

End
If frac[0] = 0 then

Do
If sign = 0 then FPSCR[FPRF]← “+denormalized number”
If sign = 1 then FPSCR[FPRF]← “–denormalized number”

End
Normalize operand:

Do while frac[0] = 0
exp← exp – 1
frac[0–52]← frac[1–52] || 0b0

End
fr D[0] ← sign
fr D[1–11] ← exp + 1023
fr D[12–63]← frac[1–52]

End
Done

Enabled Exponent Underflow
FPSCR[UX]← 1
sign← fr B[0]
If fr B[1–11] = 0 then

Do
exp← –1022
frac[0–52]← 0b0 ||fr B[12–63]

End
If fr B[1–11] > 0 then

Do
exp← fr B[1–11] – 1023
frac[0–52]← 0b1 ||fr B[12–63]

End

Normalize operand:
Do while frac[0] = 0

exp← exp – 1
frac[0–52]← frac[1–52] || 0b0

End
Round single(sign,exp,frac[0–52],0,0,0)
FPSCR[XX]← FPSCR[XX] | FPSCR[FI]
exp← exp + 192
fr D[0] ← sign

D-8 PowerPC Microprocessor 32-bit Family: The Programming Environments

D

fr D[1–11] ← exp + 1023
fr D[12–63]← frac[1–52]
If sign = 0 then FPSCR[FPRF]← “+normal number”
If sign = 1 then FPSCR[FPRF]← “–normal number”
Done

Disabled Exponent Overflow
FPSCR[OX]← 1
If FPSCR[RN] = 0b00 then /* Round to Nearest */

Do
If fr B[0] = 0 thenfr D ← 0x7FF0_0000_0000_0000
If fr B[0] = 1 thenfr D ← 0xFFF0_0000_0000_0000
If fr B[0] = 0 then FPSCR[FPRF]← “+infinity”
If fr B[0] = 1 then FPSCR[FPRF]← “–infinity”

End
If FPSCR[RN] = 0b01 then /* Round Truncate */

Do
If fr B[0] = 0 thenfr D ← 0x47EF_FFFF_E000_0000
If fr B[0] = 1 thenfr D ← 0xC7EF_FFFF_E000_0000
If fr B[0] = 0 then FPSCR[FPRF]← “+normal number”
If fr B[0] = 1 then FPSCR[FPRF]← “–normal number”

End
If FPSCR[RN] = 0b10 then /* Round to +Infinity */

Do
If fr B[0] = 0 thenfr D ← 0x7FF0_0000_0000_0000
If fr B[0] = 1 thenfr D ← 0xC7EF_FFFF_E000_0000
If fr B[0] = 0 then FPSCR[FPRF]← “+infinity”
If fr B[0] = 1 then FPSCR[FPRF]← “–normal number”

End
If FPSCR[RN] = 0b11 then /* Round to -Infinity */

Do
If fr B[0] = 0 thenfr D ← 0x47EF_FFFF_E000_0000
If fr B[0] = 1 thenfr D ← 0xFFF0_0000_0000_0000
If fr B[0] = 0 then FPSCR[FPRF]← “+normal number”
If fr B[0] = 1 then FPSCR[FPRF]← “–infinity”

End
FPSCR[FR]← undefined
FPSCR[FI]← 1
FPSCR[XX]← 1
Done

Enabled Exponent Overflow
sign← fr B[0]
exp← fr B[1–11] – 1023

frac[0–52]← 0b1 ||fr B[12–63]
Round single(sign,exp,frac[0–52],0,0,0)
FPSCR[XX]← FPSCR[XX] | FPSCR[FI]

Enabled Overflow
FPSCR[OX]← 1
exp← exp – 192
fr D[0] ← sign
fr D[1–11] ← exp + 1023
fr D[12–63]← frac[1–52]
If sign = 0 then FPSCR[FPRF]← “+normal number”
If sign = 1 then FPSCR[FPRF]← “–normal number”

Done

Zero Operand
fr D ← fr B
If fr B[0] = 0 then FPSCR[FPRF] ← “+zero”
If fr B[0] = 1 then FPSCR[FPRF] ← “–zero”
FPSCR[FR FI] ← 0b00
Done

Appendix D. Floating-Point Models D-9

D

Infinity Operand
fr D ← fr B
If fr B[0] = 0 then FPSCR[FPRF] ← “+infinity”
If fr B[0] = 1 then FPSCR[FPRF] ← “–infinity”
Done

QNaN Operand:
fr D ← fr B[0–34] || 0b0_0000_0000_0000_0000_0000_0000_0000
FPSCR[FPRF]← “QNaN”
FPSCR[FR FI]← 0b00
Done

SNaN Operand
FPSCR[VXSNAN]← 1
If FPSCR[VE] = 0 then

Do
fr D[0–11] ← fr B[0–11]
fr D[12] ← 1
fr D[13–63]← fr B[13–34] || 0b0_0000_0000_0000_0000_0000_0000_0000
FPSCR[FPRF]← “QNaN”

End
FPSCR[FR FI]← 0b00
Done

Normal Operand
sign ← fr B[0]
exp ← fr B[1–11] – 1023
frac[0–52] ← 0b1 || fr B[12–63]
Round single(sign,exp,frac[0–52],0,0,0)
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]
If exp > +127 and FPSCR[OE] = 0 then go to Disabled Exponent Overflow
If exp > +127 and FPSCR[OE] = 1 then go to Enabled Overflow
fr D[0] ← sign
fr D[1–11] ← exp + 1023
fr D[12–63] ← frac[1–52]
If sign = 0 then FPSCR[FPRF] ← “+normal number”
If sign = 1 then FPSCR[FPRF] ← “–normal number”
Done

Round Single (sign,exp,frac[0–52],G,R,X)
inc ← 0
lsb ← frac[23]
gbit ← frac[24]
rbit ← frac[25]
xbit ← (frac[26–52] || G || R || X) 0
If FPSCR[RN] = 0b00 then

Do
If sign || lsb || gbit || rbit || xbit = 0bu11uu then inc← 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then inc← 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then inc← 1

End
If FPSCR[RN] = 0b10 then

Do
If sign || lsb || gbit || rbit || xbit = 0b0u1uu then inc← 1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then inc← 1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then inc← 1

End
If FPSCR[RN] = 0b11 then

Do
If sign || lsb || gbit || rbit || xbit = 0b1u1uu then inc← 1
If sign || lsb || gbit || rbit || xbit = 0b1uu1u then inc← 1
If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then inc← 1

End

D-10 PowerPC Microprocessor 32-bit Family: The Programming Environments

D

frac[0–23]← frac[0–23] + inc
If carry_out =1 then

Do
frac[0–23]← 0b1 || frac[0–22]
exp← exp + 1

End
frac[24–52]← (29)0
FPSCR[FR]← inc
FPSCR[FI]← gbit | rbit | xbit
Return

D.4.2 Floating-Point Convert to Integer Model
The following algorithm describes the operation of the floating-point convert to integer
instructions. In this example, ‘u’ represents an undefined hexadecimal digit.

If Floating Convert to Integer Word
Then Do

Then round_mode← FPSCR[RN]
tgt_precision← “32-bit integer”

End
If Floating Convert to Integer Word with round toward Zero

Then Do
round_mode← 0b01
tgt_precision← “32-bit integer”

End
If Floating Convert to Integer Double Word

Then Do
round_mode← FPSCR[RN]
tgt_precision← “64-bit integer”

End
If Floating Convert to Integer Double Word with Round toward Zero

Then Do
round_mode← 0b01
tgt_precision← “64-bit integer”

End
sign← fr B[0]
If fr B[1–11] = 2047 andfr B[12–63] = 0 then goto Infinity Operand
If fr B[1–11] = 2047 andfr B[12] = 0 then goto SNaN Operand
If fr B[1–11] = 2047 andfr B[12] = 1 then goto QNaN Operand
If fr B[1–11] > 1054 then goto Large Operand

If fr B[1–11] > 0 then exp← fr B[1–11] – 1023 /* exp – bias */
If fr B[1–11] = 0 then exp← –1022
If fr B[1–11] > 0 then frac[0–64]← 0b01 || frB[12–63] || (11)0 /*normal*/
If fr B[1–11] = 0 then frac[0–64]← 0b00 || frB[12–63] || (11)0 /*denormal*/

gbit || rbit || xbit← 0b000
Do i = 1,63 – exp /*do the loop 0 times if exp = 63*/

frac[0–64] || gbit || rbit || xbit← 0b0 || frac[0–64] || gbit || (rbit | xbit)
End

Round Integer (sign,frac[0–64],gbit,rbit,xbit,round_mode)
In this example, ‘u’ represents an undefined hexadecimal digit. Comparisons ignore the u
bits.

If sign = 1 then frac[0–64]← ¬frac[0–64] + 1 /* needed leading 0 for –264< fr B < –263*/

If tgt_precision = “32-bit integer” and frac[0–64] > +231 – 1
then goto Large Operand

Appendix D. Floating-Point Models D-11

D

If tgt_precision = “64-bit integer” and frac[0–64] > +263 – 1
then goto Large Operand

If tgt_precision = “32-bit integer” and frac[0–64] < –231 then goto Large Operand

FPSCR[XX]← FPSCR[XX] | FPSCR[FI]

If tgt_precision = “64-bit integer” and frac[0–64] < –263 then goto Large Operand
If tgt_precision = “32-bit integer”

thenfr D ← 0xxuuu_uuuu || frac[33–64]
If tgt_precision = “64-bit integer” thenfr D ← frac[1–64]
FPSCR[FPRF]← undefined
Done

Round Integer(sign,frac[0–64],gbit,rbit,xbit,round_mode)
In this example, ‘u’ represents an undefined hexadecimal digit. Comparisons ignore the u
bits.

inc ← 0
If round_mode = 0b00 then

Do
If sign || frac[64] || gbit || rbit || xbit = 0bu11uu then inc← 1
If sign || frac[64] || gbit || rbit || xbit = 0bu011u then inc← 1
If sign || frac[64] || gbit || rbit || xbit = 0bu01u1 then inc← 1

End
If round_mode = 0b10 then

Do
If sign || frac[64] || gbit || rbit || xbit = 0b0u1uu then inc ←1
If sign || frac[64] || gbit || rbit || xbit = 0b0uu1u then inc← 1
If sign || frac[64] || gbit || rbit || xbit = 0b0uuu1 then inc← 1

End
If round_mode = 0b11 then

Do
If sign || frac[64] || gbit || rbit || xbit = 0b1u1uu then inc← 1
If sign || frac[64] || gbit || rbit || xbit = 0b1uu1u then inc← 1
If sign || frac[64] || gbit || rbit || xbit = 0b1uuu1 then inc ← 1

End
frac[0–64]← frac[0–64] + inc
FPSCR[FR]← inc
FPSCR[FI]← gbit | rbit | xbit
Return

Infinity Operand
FPSCR[FR FI VXCVI]← 0b001
If FPSCR[VE] = 0 then Do

If tgt_precision = “32-bit integer” then
Do

If sign = 0 thenfr D ← 0xuuuu_uuuu_7FFF_FFFF
If sign = 1 thenfr D ← 0xuuuu_uuuu_8000_0000

End
Else

Do
If sign = 0 thenfr D ← 0x7FFF_FFFF_FFFF_FFFF
If sign = 1 thenfr D ← 0x8000_0000_0000_0000

End
FPSCR[FPRF]← undefined
End

Done

SNaN Operand
FPSCR[FR FI VXCVI VXSNAN]← 0b0011
If FPSCR[VE] = 0 then

Do

D-12 PowerPC Microprocessor 32-bit Family: The Programming Environments

D

If tgt_precision = “32-bit integer”
thenfr D ← 0xuuuu_uuuu_8000_0000

If tgt_precision = “64-bit integer”
thenfr D ← 0x8000_0000_0000_0000

FPSCR[FPRF]← undefined
End

Done

QNaN Operand
FPSCR[FR FI VXCVI]← 0b001
If FPSCR[VE] = 0 then

Do
If tgt_precision = “32-bit integer” thenfr D ← 0xuuuu_uuuu_8000_0000
If tgt_precision = “64-bit integer” thenfr D ← 0x8000_0000_0000_0000
FPSCR[FPRF]← undefined

End
Done

Large Operand
FPSCR[FR FI VXCVI]← 0b001
If FPSCR[VE] = 0 then Do

If tgt_precision = “32-bit integer” then
Do

If sign = 0 thenfr D ← 0xuuuu_uuuu_7FFF_FFFF
If sign = 1 thenfr D ← 0xuuuu_uuuu_8000_0000

End
Else

Do
If sign = 0 thenfr D ← 0x7FFF_FFFF_FFFF_FFFF
If sign = 1 thenfr D ← 0x8000_0000_0000_0000

End
FPSCR[FPRF]← undefined
End

Done

D.4.3 Floating-Point Convert from Integer Model
The following describes, algorithmically, the operation of the floating-point convert from
integer instructions.

sign← fr B[0]
exp← 63
frac[0–63]← fr B

If frac[0–63] = 0 then go to Zero Operand

If sign = 1 then frac[0–63]← ¬frac[0–63] + 1

Do while frac[0] = 0
frac[0–63]← frac[1–63] || '0'
exp← exp – 1

End

Round Float(sign,exp,frac[0–63],FPSCR[RN])
If sign = 1 then FPSCR[FPRF]← “–normal number”
If sign = 0 then FPSCR[FPRF]← “+normal number”
fr D[0] ← sign
fr D[1–11] ← exp + 1023
fr D[12–63]← frac[1–52]
Done

Zero Operand
FPSCR[FR FI]← 0b00

Appendix D. Floating-Point Models D-13

D

FPSCR[FPRF]← “+zero”
fr D ← 0x0000_0000_0000_0000
Done

Round Float(sign,exp,frac[0–63],round_mode)
In this example ‘u’ represents an undefined hexadecimal digit. Comparisons ignore the u
bits.

inc ← 0
lsb ← frac[52]
gbit ← frac[53]
rbit ← frac[54]
xbit ← frac[55–63] > 0
If round_mode = 0b00 then

Do

If sign || lsb || gbit || rbit || xbit = 0bu11uu then inc← 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then inc← 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then inc← 1

End
If round_mode = 0b10 then

Do
If sign || lsb || gbit || rbit || xbit = 0b0u1uu then inc← 1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then inc← 1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then inc← 1

End
If round_mode = 0b11 then

Do
If sign || lsb || gbit || rbit || xbit = 0b1u1uu then inc← 1
If sign || lsb || gbit || rbit || xbit = 0b1uu1u then inc← 1
If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then inc← 1

End
frac[0–52]← frac[0–52] + inc
If carry_out = 1 then exp← exp + 1
FPSCR[FR]← inc
FPSCR[FI]← gbit | rbit | xbit
FPSCR[XX]← FPSCR[XX] | FPSCR[FI]
Return

D.5 Floating-Point Selection
The following are examples of how the optionalfsel instruction can be used to implement
floating-point minimum and maximum functions, and certain simple forms of if-then-else
constructions, without branching.

The examples show program fragments in an imaginary, C-like, high-level programming
language, and the corresponding program fragment usingfsel and other PowerPC
instructions. In the examples,a, b, x, y, and z are floating-point variables, which are
assumed to be in FPRsfa, fb, fx, fy, andfz. FPRfs is assumed to be available for scratch
space.

Additional examples can be found in Section D.3, “Floating-Point Conversions.”

Note that care must be taken in usingfsel if IEEE compatibility is required, or if the values
being tested can be NaNs or infinities; see Section D.5.4, “Notes.”

D-14 PowerPC Microprocessor 32-bit Family: The Programming Environments

D

D.5.1 Comparison to Zero
This section provides examples in a program fragment code sequence for the comparison
to zero case.

High-level language: PowerPC:
if a ≥ 0.0 then x ← y fsel fx, fa, fy, fz (see Section D.5.4, “Notes” number 1)

else x ← z

if a > 0.0 then x← y fneg fs, fa
else x← z fsel fx, fs, fz, fy (see Section D.5.4, “Notes” numbers 1 and 2)

if a = 0.0 then x← y fsel fx, fa, fy, fz
else x← z fneg fs, fa

fsel fx, fs, fx, fz (see Section D.5.4, “Notes” number 1)

D.5.2 Minimum and Maximum
This section provides examples in a program fragment code sequence for the minimum and
maximum cases.

High-level language: PowerPC:
x ← min(a, b) fsub fs, fa, fb (see Section D.5.4, “Notes” numbers 3, 4, and 5)

fsel fx, fs, fb, fa

x ← max(a, b) fsub fs, fa, fb (see Section D.5.4, “Notes” numbers 3, 4, and 5)
fsel fx, fs, fa, fb

D.5.3 Simple If-Then-Else Constructions
This section provides examples in a program fragment code sequence for simple if-then-
else statements.

High-level language: PowerPC:
if a ≥ b then x ← y fsub fs, fa, fb

else x ← z fsel fx, fs, fy, fz (see Section D.5.4, “Notes” numbers 4 and 5)

if a >b then x← y fsub fs, fb, fa
else x← z fsel fx, fs, fz, fy (see Section D.5.4, “Notes” numbers 3, 4, and 5)

if a = b then x← y fsub fs, fa, fb
else x← z fsel fx, fs, fy, fz

fneg fs, fs
fsel fx, fs, fx, fz (see Section D.5.4, “Notes” numbers 4 and 5)

D.5.4 Notes
The following notes apply to the examples found in Section D.5.1, “Comparison to Zero,”
Section D.5.2, “Minimum and Maximum,” and Section D.5.3, “Simple If-Then-Else
Constructions,” and to the corresponding cases using the other three arithmetic relations (<,
≤, and≠). These notes should also be considered when any other use offsel is contemplated.

Appendix D. Floating-Point Models D-15

D

In these notes the “optimized program” is the PowerPC program shown, and the
“unoptimized program” (not shown) is the corresponding PowerPC program that uses
fcmpu and branch conditional instructions instead offsel.

1. The unoptimized program affects the VXSNAN bit of the FPSCR, and therefore
may cause the system error handler to be invoked if the corresponding exception is
enabled, while the optimized program does not affect this bit. This property of the
optimized program is incompatible with the IEEE standard. (Note that the
architecture specification also refers to exceptions as interrupts.)

2. The optimized program gives the incorrect result if ‘a’ is a NaN.

3. The optimized program gives the incorrect result if ‘a’ and/or ‘b’ is a NaN (except
that it may give the correct result in some cases for the minimum and maximum
functions, depending on how those functions are defined to operate on NaNs).

4. The optimized program gives the incorrect result if ‘a’ and ‘b’ are infinities of the
same sign. (Here it is assumed that invalid operation exceptions are disabled, in
which case the result of the subtraction is a NaN. The analysis is more complicated
if invalid operation exceptions are enabled, because in that case the target register of
the subtraction is unchanged.)

5. The optimized program affects the OX, UX, XX, and VXISI bits of the FPSCR, and
therefore may cause the system error handler to be invoked if the corresponding
exceptions are enabled, while the unoptimized program does not affect these bits.
This property of the optimized program is incompatible with the IEEE standard.

D.6 Floating-Point Load Instructions
There are two basic forms of load instruction—single-precision and double-precision.
Because the FPRs support only floating-point double format, single-precision load floating-
point instructions convert single-precision data to double-precision format prior to loading
the operands into the target FPR. The conversion and loading steps follow:

Let WORD[0–31] be the floating point single-precision operand accessed from memory.

Normalized Operand
If WORD[1–8] > 0 and WORD[1–8] < 255

fr D[0–1] ← WORD[0–1]
fr D[2] ← ¬ WORD[1]
fr D[3] ← ¬ WORD[1]
fr D[4] ← ¬ WORD[1]
fr D[5–63] ← WORD[2–31] || (29)0

Denormalized Operand
If WORD[1–8] = 0 and WORD[9–31] ≠0

sign ← WORD[0]
exp ← –126
frac[0–52] ← 0b0 || WORD[9–31] || (29)0
normalize the operand

Do while frac[0] = 0
frac ← frac[1–52] || 0b0

D-16 PowerPC Microprocessor 32-bit Family: The Programming Environments

D

exp ← exp – 1
End

fr D[0] ← sign
fr D[1–11] ← exp + 1023
fr D[12–63] ← frac[1–52]

Infinity / QNaN / SNaN / Zero
If WORD[1–8] = 255 or WORD[1–31] = 0

fr D[0–1] ← WORD[0–1]
fr D[2] ← WORD[1]
fr D[3] ← WORD[1]
fr D[4] ← WORD[1]
fr D[5–63] ← WORD[2–31] || (29)0

For double-precision floating-point load instructions, no conversion is required as the data
from memory is copied directly into the FPRs.

Many floating-point load instructions have an update form in which registerrA is updated
with the EA. For these forms, if operandrA≠0, the effective address (EA) is placed into
registerrA and the memory element (word or double word) addressed by the EA is loaded
into the floating-point register specified by operandfr D; if operandrA = 0, the instruction
form is invalid.

Recall thatrA, rB, andrD denote GPRs, whilefr A, fr B, fr C, fr S, andfr D denote FPRs.

Appendix D. Floating-Point Models D-17

D

D.7 Floating-Point Store Instructions
There are three basic forms of store instruction—single-precision, double-precision, and
integer. The integer form is provided by the optionalstfiwx instruction. Because the FPRs
support only floating-point double format for floating-point data, single-precision store
floating-point instructions convert double-precision data to single-precision format prior to
storing the operands into memory. The conversion steps follow:

Let WORD[0–31] be the word written to in memory.

No Denormalization Required (includes Zero/Infinity/NaN)
if fr S[1–11] > 896 or fr S[1–63] = 0 then

WORD[0–1] ← fr S[0–1]
WORD[2–31] ← fr S[5–34]

Denormalization Required
if 874 ≤ fr S[1–11] ≤ 896 then

sign ← fr S[0]
exp ← fr S[1–11] – 1023
frac ← 0b1 || fr S[12–63]
Denormalize operand

Do while exp < –126
frac ← 0b0 || frac[0–62]
exp ← exp + 1

End
WORD[0] ← sign
WORD[1–8] ← 0x00
WORD[9–31] ← frac[1–23]

else WORD ← undefined

Notice that if the value to be stored by a single-precision store floating-point instruction is
larger in magnitude than the maximum number representable in single format, the first case
mentioned, “No Denormalization Required,” applies. The result stored in WORD is then a
well-defined value, but is not numerically equal to the value in the source register (that is,
the result of a single-precision load floating-point from WORD will not compare equal to
the contents of the original source register).

Note that the description of conversion steps presented here is only a model. The actual
implementation may vary from this description but must produce results equivalent to what
this model would produce.

It is important to note that for double-precision store floating-point instructions and for the
store floating-point as integer word instruction no conversion is required as the data from
the FPR is copied directly into memory.

D-18 PowerPC Microprocessor 32-bit Family: The Programming Environments

D

Appendix E. Synchronization Programming Examples E-1

E

Appendix E. Synchronization
Programming Examples
E0
E0

The examples in this appendix show how synchronization instructions can be used to
emulate various synchronization primitives and how to provide more complex forms of
synchronization.

For each of these examples, it is assumed that a similar sequence of instructions is used by
all processes requiring synchronization of the accessed data.

E.1 General Information
The following points provide general information about thelwarx andstwcx. instructions:

• In general,lwarx andstwcx. instructions should be paired, with the same effective
address (EA) used for both. The only exception is that an unpairedstwcx.instruction
to any (scratch) effective address can be used to clear any reservation held by the
processor.

• It is acceptable to execute alwarx instruction for which nostwcx. instruction is
executed. Such a danglinglwarx instruction occurs in the example shown in
Section E.2.5, “Test and Set,” if the value loaded is not zero.

• To increase the likelihood that forward progress is made, it is important that looping
on lwarx /stwcx. pairs be minimized. For example, in the sequence shown in
Section E.2.5, “Test and Set,” this is achieved by testing the old value before
attempting the store—were the order reversed, morestwcx. instructions might be
executed, and reservations might more often be lost between thelwarx and the
stwcx. instructions.

• The manner in whichlwarx andstwcx. are communicated to other processors and
mechanisms, and between levels of the memory subsystem within a given processor,
is implementation-dependent. In some implementations, performance may be
improved by minimizing looping on anlwarx instruction that fails to return a
desired value. For example, in the example provided in Section E.2.5, “Test and
Set,” if the program stays in the loop until the word loaded is zero, the programmer
can change the “bne- $+12” to “bne- loop.”

In some implementations, better performance may be obtained by using an ordinary
load instruction to do the initial checking of the value, as follows:

loop: lwz r 5,0(r 3) #load the word

E-2 PowerPC Microprocessor 32-bit Family: The Programming Environments

E

cmpwi r 5,0 #loop back if word
bne- loop #not equal to 0
lwarx r 5,0, r 3 #try again, reserving
cmpwi r 5,0 #(likely to succeed)
bne loop #try to store nonzero
stwcx. r 4,0, r 3 #
bne- loop #loop if lost reservation

• In a multiprocessor, livelock (a state in which processors interact in a way such that
no processor makes progress) is possible if a loop containing anlwarx /stwcx. pair
also contains an ordinary store instruction for which any byte of the affected
memory area is in the reservation granule of the reservation. For example, the first
code sequence shown in Section E.5, “List Insertion,” can cause livelock if two list
elements have next element pointers in the same reservation granule.

E.2 Synchronization Primitives
The following examples show how thelwarx and stwcx. instructions can be used to
emulate various synchronization primitives. The sequences used to emulate the various
primitives consist primarily of a loop using thelwarx andstwcx. instructions. Additional
synchronization is unnecessary, because thestwcx.will fail, clearing the EQ bit, if the word
loaded bylwarx has changed before thestwcx. is executed.

E.2.1 Fetch and No-Op
The fetch and no-op primitive atomically loads the current value in a word in memory. In
this example, it is assumed that the address of the word to be loaded is in GPR3 and the data
loaded are returned in GPR4.

loop: lwarx r 4,0, r 3 #load and reserve
stwcx. r 4,0, r 3 #store old value if still reserved
bne- loop #loop if lost reservation

Thestwcx., if it succeeds, stores to the destination location the same value that was loaded
by the precedinglwarx . While the store is redundant with respect to the value in the
location, its success ensures that the value loaded by thelwarx was the current value (that
is, the source of the value loaded by thelwarx was the last store to the location that
preceded thestwcx. in the coherence order for the location).

Appendix E. Synchronization Programming Examples E-3

E

E.2.2 Fetch and Store
The fetch and store primitive atomically loads and replaces a word in memory.

In this example, it is assumed that the address of the word to be loaded and replaced is in
GPR3, the new value is in GPR4, and the old value is returned in GPR5.

loop: lwarx r 5,0, r 3 #load and reserve
stwcx. r 4,0, r 3 #store new value if still reserved
bne- loop #loop if lost reservation

E.2.3 Fetch and Add
The fetch and add primitive atomically increments a word in memory.

In this example, it is assumed that the address of the word to be incremented is in GPR3,
the increment is in GPR4, and the old value is returned in GPR5.

loop: lwarx r 5,0, r 3 #load and reserve
add r 0, r 4, r 5 #increment word
stwcx. r 0,0, r 3 #store new value if still reserved
bne- loop #loop if lost reservation

E.2.4 Fetch and AND
The fetch and AND primitive atomically ANDs a value into a word in memory.

In this example, it is assumed that the address of the word to be ANDed is in GPR3, the
value to AND into it is in GPR4, and the old value is returned in GPR5.

loop: lwarx r 5,0, r 3 #load and reserve
and r 0, r 4, r 5 #AND word
stwcx. r 0,0, r 3 #store new value if still reserved
bne- loop #loop if lost reservation

This sequence can be changed to perform another Boolean operation atomically on a word
in memory, simply by changing the AND instruction to the desired Boolean instruction
(OR, XOR, etc.).

E.2.5 Test and Set
This version of the test and set primitive atomically loads a word from memory, ensures that
the word in memory is a nonzero value, and sets CR0[EQ] according to whether the value
loaded is zero.

In this example, it is assumed that the address of the word to be tested is in GPR3, the new
value (nonzero) is in GPR4, and the old value is returned in GPR5.

loop: lwarx r 5,0, r 3 #load and reserve
cmpwi r 5, 0 #done if word
bne $+12 #not equal to 0
stwcx. r 4,0, r 3 #try to store non-zero
bne- loop #loop if lost reservation

E-4 PowerPC Microprocessor 32-bit Family: The Programming Environments

E

E.3 Compare and Swap
The compare and swap primitive atomically compares a value in a register with a word in
memory. If they are equal, it stores the value from a second register into the word in
memory. If they are unequal, it loads the word from memory into the first register, and sets
the EQ bit of the CR0 field to indicate the result of the comparison.

In this example, it is assumed that the address of the word to be tested is in GPR3, the word
that is compared is in GPR4, the new value is in GPR5, and the old value is returned in
GPR4.

loop: lwarx r 6,0, r 3 #load and reserve
cmpw r4, r 6 #first 2 operands equal?
bne- exit #skip if not
stwcx. r 5,0, r 3 #store new value if still reserved
bne- loop #loop if lost reservation

exit: mr r 4, r 6 #return value from memory

Notes:

1. The semantics in this example are based on the IBM System/370™ compare and
swap instruction. Other architectures may define this instruction differently.

2. Compare and swap is shown primarily for pedagogical reasons. It is useful on
machines that lack the better synchronization facilities provided by thelwarx and
stwcx. instructions. Although the instruction is atomic, it checks only for whether
the current value matches the old value. An error can occur if the value had been
changed and restored before being tested.

3. In some applications, the secondbne- instruction and/or themr instruction can be
omitted. The firstbne- is needed only if the application requires that if the EQ bit of
CR0 field on exit indicates not equal, then the original compared value inr4 andr6
are in fact not equal. Themr is needed only if the application requires that if the
compared values are not equal, then the word from memory is loaded into the
register with which it was compared (rather than into a third register). If either, or
both, of these instructions is omitted, the resulting compare and swap does not obey
the IBM System/370 semantics.

Appendix E. Synchronization Programming Examples E-5

E

E.4 Lock Acquisition and Release
This example provides an algorithm for locking that demonstrates the use of
synchronization with an atomic read/modify/write operation. GPR3 provides a shared
memory location, the address of which is an argument of the lock and unlock procedures.
This argument is used as a lock to control access to some shared resource such as a data
structure. The lock is open when its value is zero and locked when it is one. Before
accessing the shared resource, a processor sets the lock by having the lock procedure call
TEST_AND_SET, which executes the code sequence in Section E.2.5, “Test and Set.” This
atomically sets the old value of the lock, and writes the new value (1) given to it in GPR4,
returning the old value in GPR5 (not used in the following example) and setting the EQ bit
in CR0 according to whether the value loaded is zero. The lock procedure repeats the test
and set procedure until it successfully changes the value in the lock from zero to one.

The processor must not access the shared resource until it sets the lock. After thebne-
instruction that checks for the successful test and set operation, the processor executes the
isync instruction. This delays all subsequent instructions until all previous instructions have
completed to the extent required by context synchronization. Thesyncinstruction could be
used but performance would be degraded because thesync instruction waits for all
outstanding memory accesses to complete with respect to other processors. This is not
necessary here.

lock: li r 4,1 #obtain lock
loop: bl test_and_set #test and set

bne- loop #retry until old = 0
#delay subsequent instructions until
#previous ones complete

isync
blr #return

The unlock procedure writes a zero to the lock location. If the access to the shared resource
includes write operations, most applications that use locking require the processor to
execute asyncinstruction to make its modification visible to all processors before releasing
the lock. For this reason, the unlock procedure in the following example begins with async.

unlock: sync #delay until prior stores finish
li r 1,0
stw r 1,0(r 3) #store zero to lock location
blr #return

E-6 PowerPC Microprocessor 32-bit Family: The Programming Environments

E

E.5 List Insertion
The following example shows how thelwarx and stwcx. instructions can be used to
implement simple LIFO (last-in-first-out) insertion into a singly-linked list. (Complicated
list insertion, in which multiple values must be changed atomically, or in which the correct
order of insertion depends on the contents of the elements, cannot be implemented in the
manner shown below, and requires a more complicated strategy such as using locks.)

The next element pointer from the list element after which the new element is to be inserted,
here called the parent element, is stored into the new element, so that the new element
points to the next element in the list—this store is performed unconditionally. Then the
address of the new element is conditionally stored into the parent element, thereby adding
the new element to the list.

In this example, it is assumed that the address of the parent element is in GPR3, the address
of the new element is in GPR4, and the next element pointer is at offset zero from the start
of the element. It is also assumed that the next element pointer of each list element is in a
reservation granule separate from that of the next element pointer of all other list elements.

loop: lwarx r 2,0, r 3 #get next pointer
stw r 2,0(r 4)#store in new element
sync #let store settle (can omit if not MP)
stwcx. r 4,0, r 3 #add new element to list
bne- loop #loop if stwcx. failed

In the preceding example, if two list elements have next element pointers in the same
reservation granule in a multiprocessor system, livelock can occur.

If it is not possible to allocate list elements such that each element’s next element pointer
is in a different reservation granule, livelock can be avoided by using the following
sequence:

lwz r 2,0(r 3)#get next pointer
loopl: mr r 5, r 2 #keep a copy

stw r 2,0(r 4)#store in new element
sync #let store settle

loop2: lwarx r 2,0, r 3 #get it again
cmpw r2, r 5 #loop if changed (someone
bne- loopl #else progressed)
stwcx. r 4,0, r 3 #add new element to list
bne- loop2 #loop if failed

Appendix F.Simplified Mnemonics F-1

F

Appendix F. Simplified Mnemonics
F0
F0

This appendix is provided in order to simplify the writing and comprehension of assembler
language programs. Included are a set of simplified mnemonics and symbols that define the
simple shorthand used for the most frequently-used forms of branch conditional, compare,
trap, rotate and shift, and certain other instructions.

NOTE: The architecture specification refers to simplified mnemonics as extended
mnemonics.

F.1 Symbols
The symbols in Table F-1 are defined for use in instructions (basic or simplified
mnemonics) that specify a condition register (CR) field or a bit in the CR.

Table F-1. Condition Register Bit and Identification Symbol Descriptions

Symbol Value
Bit Field
Range

Description

lt 0 — Less than. Identifies a bit number within a CR field.

gt 1 — Greater than. Identifies a bit number within a CR field.

eq 2 — Equal. Identifies a bit number within a CR field.

so 3 — Summary overflow. Identifies a bit number within a CR field.

un 3 — Unordered (after floating-point comparison). Identifies a bit number in a CR field.

cr0 0 0–3 CR0 field

cr1 1 4–7 CR1 field

cr2 2 8–11 CR2 field

cr3 3 12–15 CR3 field

cr4 4 16–19 CR4 field

cr5 5 20–23 CR5 field

cr6 6 24–27 CR6 field

cr7 7 28–31 CR7 field

Note: To identify a CR bit, an expression in which a CR field symbol is multiplied by 4 and then added to a bit-number-
within-CR-field symbol can be used.

F-2 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

The simplified mnemonics in Section F.5.2, “Basic Branch Mnemonics,” and Section F.6,
“Simplified Mnemonics for Condition Register Logical Instructions,” require identification
of a CR bit—if one of the CR field symbols is used, it must be multiplied by 4 and added
to a bit-number-within-CR-field (value in the range of 0–3, explicit or symbolic).

The simplified mnemonics in Section F.5.3, “Branch Mnemonics Incorporating
Conditions,” and Section F.3, “Simplified Mnemonics for Compare Instructions,” require
identification of a CR field—if one of the CR field symbols is used, it must not be multiplied
by 4.

Also, for the simplified mnemonics in Section F.5.3, “Branch Mnemonics Incorporating
Conditions,” the bit number within the CR field is part of the simplified mnemonic. The CR
field is identified, and the assembler does the multiplication and addition required to
produce a CR bit number for the BI field of the underlying basic mnemonic.

F.2 Simplified Mnemonics for Subtract Instructions
This section discusses simplified mnemonics for the subtract instructions.

F.2.1 Subtract Immediate
Although there is no subtract immediate instruction, its effect can be achieved by using an
add immediate instruction with the immediate operand negated. Simplified mnemonics are
provided that include this negation, making the intent of the computation more clear.

subi rD,rA,value (equivalent to addi rD,rA,–value)

subis rD,rA,value (equivalent to addis rD,rA,–value)

subic rD,rA,value (equivalent to addic rD,rA,–value)

subic. rD,rA,value (equivalent to addic. rD,rA,–value)

F.2.2 Subtract
The subtract from instructions subtract the second operand (rA) from the third (rB).
Simplified mnemonics are provided that use the more normal order in which the third
operand is subtracted from the second. Both these mnemonics can be coded with ano suffix
and/or dot (.) suffix to cause the OE and/or Rc bit to be set in the underlying instruction.

sub rD,rA,rB (equivalent to subf rD,rB,rA)

subc rD,rA,rB (equivalent to subfc rD,rB,rA)

Appendix F.Simplified Mnemonics F-3

F

F.3 Simplified Mnemonics for Compare Instructions
ThecrfD field can be omitted if the result of the comparison is to be placed into the CR0
field. Otherwise, the target CR field must be specified as the first operand. One of the CR
field symbols defined in Section F.1, “Symbols,” can be used for this operand.

NOTE: The basic compare mnemonics of PowerPC are the same as those of POWER,
but the POWER instructions have three operands whereas the PowerPC
instructions have four.
The assembler recognizes a basic compare mnemonic with the three operands as
the POWER form, and generates the instruction with L = 0. ThecrfD field can
normally be omitted when the CR0 field is the target.

F.3.1 Word Comparisons
The instructions listed in Table F-2 are simplified mnemonics that should be supported by
assemblers for all PowerPC implementations.

Following are examples using the word compare mnemonics.

1. ComparerA with immediate value 100 as signed 32-bit integers and place result in
CR0.
cmpwi rA,100 (equivalent to cmpi 0,0,rA,100)

2. Same as (1), but place results in CR4.
cmpwi cr4,rA,100 (equivalent to cmpi 4,0,rA,100)

3. ComparerA andrB as unsigned 32-bit integers and place result in CR0.
cmplw rA,rB (equivalent to cmpl 0,0,rA,rB)

Table F-2. Simplified Mnemonics for Word Compare Instructions

Operation Simplified Mnemonic Equivalent to:

Compare Word Immediate cmpwi crf D,rA,SIMM cmpi crf D,0,rA,SIMM

Compare Word cmpw crf D,rA,rB cmp crf D,0,rA,rB

Compare Logical Word Immediate cmplwi crf D,rA,UIMM cmpli crf D,0,rA,UIMM

Compare Logical Word cmplw crf D,rA,rB cmpl crf D,0,rA,rB

F-4 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

F.4 Simplified Mnemonics for Rotate and Shift
Instructions

The rotate and shift instructions provide powerful and general ways to manipulate register
contents, but can be difficult to understand. Simplified mnemonics that allow some of the
simpler operations to be coded easily are provided for the following types of operations:

• Extract—Select a field ofn bits starting at bit positionb in the source register; left
or right justify this field in the target register; clear all other bits of the target register.

• Insert—Select a left-justified or right-justified field ofn bits in the source register;
insert this field starting at bit positionb of the target register; leave other bits of the
target register unchanged. (No simplified mnemonic is provided for insertion of a
left-justified field, when operating on double words, because such an insertion
requires more than one instruction.)

• Rotate—Rotate the contents of a register right or leftn bits without masking.

• Shift—Shift the contents of a register right or leftn bits, clearing vacated bits
(logical shift).

• Clear—Clear the leftmost or rightmostn bits of a register.

• Clear left and shift left—Clear the leftmostb bits of a register, then shift the register
left bynbits. This operation can be used to scale a (known non-negative) array index
by the width of an element.

Appendix F.Simplified Mnemonics F-5

F

F.4.1 Operations on Words
The operations shown in Table F-3 are available in all implementations. All these
mnemonics can be coded with a dot (.) suffix to cause the Rc bit to be set in the underlying
instruction.

Examples using word mnemonics follow:

1. Extract the sign bit (bit 0) ofrS and place the result right-justified intorA.
extrwi r A,rS,1,0 (equivalent to rlwinm r A,rS,1,31,31)

2. Insert the bit extracted in (1) into the sign bit (bit 0) ofrB.
insrwi r B,rA,1,0 (equivalent to rlwimi r B,rA,31,0,0)

3. Shift the contents ofrA left 8 bits.
slwi rA,rA,8 (equivalent to rlwinm r A,rA,8,0,23)

4. Clear the high-order 16 bits ofrS and place the result intorA.
clrlwi r A,rS,16 (equivalent to rlwinm r A,rS,0,16,31)

F.5 Simplified Mnemonics for Branch Instructions
Mnemonics are provided so that branch conditional instructions can be coded with the
condition as part of the instruction mnemonic rather than as a numeric operand. Some of
these are shown as examples with the branch instructions.

The mnemonics discussed in this section are variations of the branch conditional
instructions.

Table F-3. Word Rotate and Shift Instructions

Operation Simplified Mnemonic Equivalent to:

Extract and left justify immediate extlwi r A,rS,n,b (n > 0) rlwinm r A,rS,b,0,n – 1

Extract and right justify immediate extrwi r A,rS,n,b (n > 0) rlwinm r A,rS,b + n, 32 – n,31

Insert from left immediate inslwi r A,rS,n,b (n > 0) rlwimi r A,rS,32 – b,b,(b + n) – 1

Insert from right immediate insrwi r A,rS,n,b (n > 0) rlwimi r A,rS,32 – (b + n),b,(b + n) – 1

Rotate left immediate rotlwi r A,rS,n rlwinm r A,rS,n,0,31

Rotate right immediate rotrwi r A,rS,n rlwinm r A,rS,32 – n,0,31

Rotate left rotlw r A,rS,rB rlwnm r A,rS,rB,0,31

Shift left immediate slwi r A,rS,n (n < 32) rlwinm r A,rS,n,0,31 – n

Shift right immediate srwi r A,rS,n (n < 32) rlwinm r A,rS,32 – n,n,31

Clear left immediate clrlwi r A,rS,n (n < 32) rlwinm r A,rS,0,n,31

Clear right immediate clrrwi r A,rS,n (n < 32) rlwinm r A,rS,0,0,31 – n

Clear left and shift left immediate clrlslwi r A,rS,b,n (n ≤ b ≤ 31) rlwinm r A,rS,n,b – n,31 – n

F-6 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

F.5.1 BO and BI Fields
The 5-bit BO field in branch conditional instructions encodes the following operations.

• Decrement count register (CTR)
• Test CTR equal to zero
• Test CTR not equal to zero
• Test condition true
• Test condition false
• Branch prediction (taken, fall through)

The 5-bit BI field in branch conditional instructions specifies which of the 32 bits in the CR
represents the condition to test.

To provide a simplified mnemonic for every possible combination of BO and BI fields
would require 210= 1024 mnemonics and most of these would be only marginally useful.
The abbreviated set found in Section F.5.2, “Basic Branch Mnemonics,” is intended to
cover the most useful cases. Unusual cases can be coded using a basic branch conditional
mnemonic (bc, bclr, bcctr) with the condition to be tested specified as a numeric operand.

F.5.2 Basic Branch Mnemonics
The mnemonics in Table F-4 allow all the commonBO operand encodings to be specified
as part of the mnemonic, along with the absolute address (AA), and set link register (LR)
bits.

Notice that there are no simplified mnemonics for relative and absolute unconditional
branches. For these, the basic mnemonicsb, ba, bl, andbla are used.

Table F-4 provides the abbreviated set of simplified mnemonics for the most commonly
performed conditional branches.

Appendix F.Simplified Mnemonics F-7

F

The simplified mnemonics shown in Table F-4 that test a condition require a corresponding
CR bit as the first operand of the instruction. The symbols defined in Section F.1,
“Symbols,” can be used in the operand in place of a numeric value.

The simplified mnemonics found in Table F-4 are used in the following examples:

1. Decrement CTR and branch if it is still nonzero (closure of a loop controlled by a
count loaded into CTR).
bdnz target (equivalent to bc 16,0,target)

2. Same as (1) but branch only if CTR is non-zero and condition in CR0 is “equal.”
bdnzt eq,target (equivalent to bc 8,2,target)

3. Same as (2), but “equal” condition is in CR5.
bdnzt 4 * cr5 + eq,target (equivalent to bc 8,22,target)

4. Branch if bit 27 of CR is false.
bf 27,target (equivalent to bc 4,27,target)

5. Same as (4), but set the link register. This is a form of conditional call.
bfl 27,target (equivalent to bcl 4,27,target)

Table F-4. Simplified Branch Mnemonics

Branch Semantics

LR Update Not Enabled LR Update Enabled

bc
Relative

bca
Absolute

bclr
to LR

bcctr
to CTR

bcl
Relative

bcla
Absolute

bclrl
to LR

bcctrl
to CTR

Branch unconditionally — — blr bctr — — blrl bctrl

Branch if condition true bt bta btlr btctr btl btla btlrl btctrl

Branch if condition
false

bf bfa bflr bfctr bfl bfla bflrl bfctrl

Decrement CTR,
branch if CTR non-zero

bdnz bdnza bdnzlr — bdnzl bdnzla bdnzlrl —

Decrement CTR,
branch if CTR non-zero
AND condition true

bdnzt bdnzta bdnztlr — bdnztl bdnztla bdnztlrl —

Decrement CTR,
branch if CTR non-zero
AND condition false

bdnzf bdnzfa bdnzflr — bdnzfl bdnzfla bdnzflrl —

Decrement CTR,
branch if CTR zero

bdz bdza bdzlr — bdzl bdzla bdzlrl —

Decrement CTR,
branch if CTR zero
AND condition true

bdzt bdzta bdztlr — bdztl bdztla bdztlrl —

Decrement CTR,
branch if CTR zero
AND condition false

bdzf bdzfa bdzflr — bdzfl bdzfla bdzflrl —

F-8 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

Table F-5 provides the simplified mnemonics for thebc andbca instructions without link
register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

Table F-5. Simplified Branch Mnemonics for bc and bca Instructions without Link
Register Update

Branch Semantics

LR Update Not Enabled

bc
 Relative

Simplified
Mnemonic

bca
Absolute

Simplified
Mnemonic

Branch unconditionally — — — —

Branch if condition true bc 12,0,target bt 0,target bca 12,0,target bta 0,target

Branch if condition false bc 4,0,target bf 0,target bca 4,0,target bfa 0,target

Decrement CTR, branch if CTR nonzero bc16,0,target bdnz target bca 16,0,target bdnza target

Decrement CTR, branch if CTR nonzero
AND condition true

bc 8,0,target bdnzt 0,target bca 8,0,target bdnzta 0,target

Decrement CTR, branch if CTR nonzero
AND condition false

bc 0,0,target bdnzf 0,target bca 0,0,target bdnzfa 0,target

Decrement CTR, branch if CTR zero bc18,0,target bdz target bca 18,0,target bdza target

Decrement CTR, branch if CTR zero
AND condition true

bc10,0,target bdzt 0,target bca 10,0,target bdzta 0,target

Decrement CTR, branch if CTR zero
AND condition false

bc 2,0,target bdzf 0,target bca 2,0,target bdzfa 0,target

Appendix F.Simplified Mnemonics F-9

F

Table F-6 provides the simplified mnemonics for thebclr andbcclr instructions without
link register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

Table F-6. Simplified Branch Mnemonics for bclr and bcclr Instructions without
Link Register Update

Branch Semantics

LR Update Not Enabled

bclr
to LR

Simplified
Mnemonic

bcctr to CTR
Simplified
Mnemonic

Branch unconditionally bclr 20,0 blr bcctr 20,0 bctr

Branch if condition true bclr 12,0 btlr 0 bcctr 12,0 btctr 0

Branch if condition false bclr 4,0 bflr 0 bcctr 4,0 bfctr 0

Decrement CTR, branch if CTR
nonzero

bclr 16,0 bdnzlr — —

Decrement CTR, branch if CTR
nonzero AND condition true

bclr 10,0 bdztlr 0 — —

Decrement CTR, branch if CTR
nonzero AND condition false

bclr 0,0 bdnzflr 0 — —

Decrement CTR, branch if CTR
zero

bclr 18,0 bdzlr — —

Decrement CTR, branch if CTR
zero AND condition true

bclr 10,0 bdztlr 0 — —

Decrement CTR, branch if CTR
zero AND condition false

bcctr 0,0 bdzflr 0 — —

F-10 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

Table F-7 provides the simplified mnemonics for thebcl andbcla instructions with link
register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

Table F-7. Simplified Branch Mnemonics for bcl and bcla Instructions with Link
Register Update

Branch Semantics

LR Update Enabled

bcl Relative
Simplified
Mnemonic

bcla Absolute
Simplified
Mnemonic

Branch unconditionally — — — —

Branch if condition true bcl1 2,0,target btl 0,target bcla 12,0,target btla 0,target

Branch if condition false bcl 4,0,target bfl 0,target bcla 4,0,target bfla 0,target

Decrement CTR, branch if CTR
nonzero

bcl 16,0,target bdnzl target bcla 16,0,target bdnzla target

Decrement CTR, branch if CTR
nonzero AND condition true

bcl 8,0,target bdnztl 0,target bcla 8,0,target bdnztla 0,target

Decrement CTR, branch if CTR
nonzero AND condition false

bcl 0,0,target bdnzfl 0,target bcla 0,0,target bdnzfla 0,target

Decrement CTR, branch if CTR
zero

bcl 18,0,target bdzl target bcla 18,0,target bdzla target

Decrement CTR, branch if CTR
zero AND condition true

bcl 10,0,target bdztl 0,target bcla 10,0,target bdztla 0,target

Decrement CTR, branch if CTR
zero AND condition false

bcl 2,0,target bdzfl 0,target bcla 2,0,target bdzfla 0,target

Appendix F.Simplified Mnemonics F-11

F

Table F-8 provides the simplified mnemonics for thebclrl andbcctrl instructions with link
register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

Table F-8. Simplified Branch Mnemonics for bclrl and bcctrl Instructions with Link
Register Update

Branch Semantics

LR Update Enabled

bclrl
to LR

Simplified
Mnemonic

bcctrl
to CTR

Simplified
Mnemonic

Branch unconditionally bclrl 20,0 blrl bcctrl 20,0 bctrl

Branch if condition true bclrl 12,0 btlrl 0 bcctrl 12,0 btctrl 0

Branch if condition false bclrl 4,0 bflrl 0 bcctrl 4,0 bfctrl 0

Decrement CTR, branch if CTR
nonzero

bclrl 16,0 bdnzlrl — —

Decrement CTR, branch if CTR
nonzero AND condition true

bclrl 8,0 bdnztlrl 0 — —

Decrement CTR, branch if CTR
nonzero AND condition false

bclrl 0,0 bdnzflrl 0 — —

Decrement CTR, branch if CTR zero bclrl 18,0 bdzlrl — —

Decrement CTR, branch if CTR zero
AND condition true

bdztlrl 0 bdztlrl 0 — —

Decrement CTR, branch if CTR zero
AND condition false

bclrl 4,0 bflrl 0 — —

F-12 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

F.5.3 Branch Mnemonics Incorporating Conditions
The mnemonics defined in Table F-4 are variations of the branch if condition true and
branch if condition false BO encodings, with the most useful values of BI represented in
the mnemonic rather than specified as a numeric operand.

A standard set of codes (shown in Table F-9) has been adopted for the most common
combinations of branch conditions.

Table F-9. Standard Coding for Branch Conditions

Code Description

lt Less than

le Less than or equal

eq Equal

ge Greater than or equal

gt Greater than

nl Not less than

ne Not equal

ng Not greater than

so Summary overflow

ns Not summary overflow

un Unordered (after floating-point comparison)

nu Not unordered (after floating-point comparison)

Appendix F.Simplified Mnemonics F-13

F

Table F-10 shows the simplified branch mnemonics incorporating conditions.

Instructions using the mnemonics in Table F-10 specify the condition register field in an
optional first operand. If the CR field being tested is CR0, this operand need not be
specified. One of the CR field symbols defined in Section F.1, “Symbols,” can be used for
this operand.

The simplified mnemonics found in Table F-10 are used in the following examples:

1. Branch if CR0 reflects condition “not equal.”
bne target (equivalent to bc 4,2,target)

2. Same as (1) but condition is in CR3.
bne cr3,target (equivalent to bc 4,14,target)

3. Branch to an absolute target if CR4 specifies “greater than,” setting the link register.
This is a form of conditional “call.”
bgtla cr4,target (equivalent to bcla 12,17,target)

4. Same as (3), but target address is in the CTR.
bgtctrl cr4 (equivalent to bcctrl 12,17)

Table F-10. Simplified Branch Mnemonics with Comparison Conditions

Branch Semantics

LR Update Not Enabled LR Update Enabled

bc
Relative

bca
Absolute

bclr
to LR

bcctr
to CTR

bcl
Relative

bcla
Absolute

bclrl
to LR

bcctrl
to CTR

Branch if less than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or
equal

ble blea blelr blectr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than
or equal

bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater
than

bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if summary
overflow

bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Branch if not summary
overflow

bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Branch if unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl

F-14 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

Table F-11 shows the simplified branch mnemonics for thebc andbca instructions without
link register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

Table F-11. Simplified Branch Mnemonics for bc and bca Instructions without
Comparison Conditions and Link Register Updating

Branch Semantics

LR Update Not Enabled

bc Relative
Simplified
Mnemonic

bca Absolute
Simplified
Mnemonic

Branch if less than bc 12,0,target blt target bca 12,0,target blta target

Branch if less than or equal bc 4,1,target ble target bca 4,1,target blea target

Branch if equal bc 12,2,target beq target bca 12,2,target beqa target

Branch if greater than or equal bc 4,0,target bge target bca 4,0,target bgea target

Branch if greater than bc 12,1,target bgt target bca 12,1,target bgta target

Branch if not less than bc 4,0,target bnl target bca 4,0,target bnla target

Branch if not equal bc 4,2,target bne target bca 4,2,target bnea target

Branch if not greater than bc 4,1,target bng target bca 4,1,target bnga target

Branch if summary overflow bc 12,3,target bso target bca 12,3,target bsoa target

Branch if not summary overflow bc 4,3,target bns target bca 4,3,target bnsa target

Branch if unordered bc 12,3,target bun target bca 12,3,target buna target

Branch if not unordered bc 4,3,target bnu target bca 4,3,target bnua target

Appendix F.Simplified Mnemonics F-15

F

Table F-12 shows the simplified branch mnemonics for thebclr and bcctr instructions
without link register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

Table F-12. Simplified Branch Mnemonics for bclr and bcctr Instructions without
Comparison Conditions and Link Register Updating

Branch Semantics

LR Update Not Enabled

bclr to LR
Simplified
Mnemonic

bcctr to CTR
Simplified
Mnemonic

Branch if less than bclr 12,0 bltlr bcctr 12,0 bltctr

Branch if less than or equal bclr 4,1 blelr bcctr 4,1 blectr

Branch if equal bclr 12,2 beqlr bcctr 12,2 beqctr

Branch if greater than or equal bclr 4,0 bgelr bcctr 4,0 bgectr

Branch if greater than bclr 12,1 bgtlr bcctr 12,1 bgtctr

Branch if not less than bclr 4,0 bnllr bcctr 4,0 bnlctr

Branch if not equal bclr 4,2 bnelr bcctr 4,2 bnectr

Branch if not greater than bclr 4,1 bnglr bcctr 4,1 bngctr

Branch if summary overflow bclr 12,3 bsolr bcctr 12,3 bsoctr

Branch if not summary overflow bclr 4,3 bnslr bcctr 4,3 bnsctr

Branch if unordered bclr 12,3 bunlr bcctr 12,3 bunctr

Branch if not unordered bclr 4,3 bnulr bcctr 4,3 bnuctr

F-16 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

Table F-13 shows the simplified branch mnemonics for thebcl andbcla instructions with
link register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

Table F-13. Simplified Branch Mnemonics for bcl and bcla Instructions with
Comparison Conditions and Link Register Update

Branch Semantics

LR Update Enabled

bcl Relative
Simplified
Mnemonic

bcla Absolute
Simplified
Mnemonic

Branch if less than bcl 12,0,target bltl target bcla 12,0,target bltla target

Branch if less than or equal bcl 4,1,target blel target bcla 4,1,target blela target

Branch if equal beql target beql target bcla 12,2,target beqla target

Branch if greater than or equal bcl 4,0,target bgel target bcla 4,0,target bgela target

Branch if greater than bcl 12,1,target bgtl target bcla 12,1,target bgtla target

Branch if not less than bcl 4,0,target bnll target bcla 4,0,target bnlla target

Branch if not equal bcl 4,2,target bnel target bcla 4,2,target bnela target

Branch if not greater than bcl 4,1,target bngl target bcla 4,1,target bngla target

Branch if summary overflow bcl 12,3,target bsol target bcla 12,3,target bsola target

Branch if not summary overflow bcl 4,3,target bnsl target bcla 4,3,target bnsla target

Branch if unordered bcl 12,3,target bunl target bcla 12,3,target bunla target

Branch if not unordered bcl 4,3,target bnul target bcla 4,3,target bnula target

Appendix F.Simplified Mnemonics F-17

F

Table F-14 shows the simplified branch mnemonics for thebclrl andbcctl instructions with
link register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

F.5.4 Branch Prediction
In branch conditional instructions that are not always taken, the low-order bit (y bit) of the
BO field provides a hint about whether the branch is likely to be taken. See Section 4.2.4.2,
“Conditional Branch Control,” for more information on they bit.

Assemblers should clear this bit unless otherwise directed. This default action indicates the
following:

• A branch conditional with a negative displacement field is predicted to be taken.

• A branch conditional with a non-negative displacement field is predicted not to be
taken (fall through).

• A branch conditional to an address in the LR or CTR is predicted not to be taken (fall
through).

Table F-14. Simplified Branch Mnemonics for bclrl and bcctl Instructions with
Comparison Conditions and Link Register Update

Branch Semantics

LR Update Enabled

bclrl to LR
Simplified
Mnemonic

bcctrl to CTR
Simplified
Mnemonic

Branch if less than bclrl 12,0 bltlrl 0 bcctrl 12,0 bltctrl 0

Branch if less than or equal bclrl 4,1 blelrl 0 bcctrl 4,1 blectrl 0

Branch if equal bclrl 12,2 beqlrl 0 bcctrl 12,2 beqctrl 0

Branch if greater than or equal bclrl 4,0 bgelrl 0 bcctrl 4,0 bgectrl 0

Branch if greater than bclrl 12,1 bgtlrl 0 bcctrl 12,1 bgtctrl 0

Branch if not less than bclrl 4,0 bnllrl 0 bcctrl 4,0 bnlctrl 0

Branch if not equal bclrl 4,2 bnelrl 0 bcctrl 4,2 bnectrl 0

Branch if not greater than bclrl 4,1 bnglrl 0 bcctrl 4,1 bngctrl 0

Branch if summary overflow bclrl 12,3 bsolrl 0 bcctrl 12,3 bsoctrl 0

Branch if not summary overflow bclrl 4,3 bnslrl 0 bcctrl 4,3 bnsctrl 0

Branch if unordered bclrl 12,3 bunlrl 0 bcctrl 12,3 bunctrl 0

Branch if not unordered bclrl 4,3 bnulrl 0 bcctrl 4,3 bnuctrl 0

F-18 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

If the likely outcome (branch or fall through) of a given branch conditional instruction is
known, a suffix can be added to the mnemonic that tells the assembler how to set they bit.
That is, ‘+’ indicates that the branch is to be taken and ‘–’ indicates that the branch is not
to be taken. Such a suffix can be added to any branch conditional mnemonic, either basic
or simplified.

For relative and absolute branches (bc[l][a]), the setting of they bit depends on whether the
displacement field is negative or non-negative. For negative displacement fields, coding the
suffix ‘+’ causes the bit to be cleared, and coding the suffix ‘–’ causes the bit to be set. For
non-negative displacement fields, coding the suffix ‘+’ causes the bit to be set, and coding
the suffix ‘–’ causes the bit to be cleared.

For branches to an address in the LR or CTR (bcclr[l] or bcctr[l]), coding the suffix ‘+’
causes they bit to be set, and coding the suffix ‘–’ causes the bit to be cleared.

Examples of branch prediction follow:

1. Branch if CR0 reflects condition “less than,” specifying that the branch should be
predicted to be taken.
blt+ target

2. Same as (1), but target address is in the LR and the branch should be predicted not
to be taken.
bltlr –

F.6 Simplified Mnemonics for Condition Register
Logical Instructions

The condition register logical instructions, shown in Table F-15, can be used to set, clear,
copy, or invert a given condition register bit. Simplified mnemonics are provided that allow
these operations to be coded easily.

NOTE: The symbols defined in Section F.1, “Symbols,” can be used to identify the
condition register bit.

Table F-15. Condition Register Logical Mnemonics

Operation Simplified Mnemonic Equivalent to

Condition register set crset bx creqv bx,bx,bx

Condition register clear crclr bx crxor bx,bx,bx

Condition register move crmove bx,by cror bx,by,by

Condition register not crnot bx,by crnor bx,by,by

Appendix F.Simplified Mnemonics F-19

F

Examples using the condition register logical mnemonics follow:

1. Set CR bit 25.
crset 25 (equivalent to creqv 25,25,25)

2. Clear the SO bit of CR0.
crclr so (equivalent to crxor 3,3,3)

3. Same as (2), but SO bit to be cleared is in CR3.
crclr 4 * cr3 + so (equivalent to crxor 15,15,15)

4. Invert the EQ bit.
crnot eq,eq (equivalent to crnor 2,2,2)

5. Same as (4), but EQ bit to be inverted is in CR4, and the result is to be placed into
the EQ bit of CR5.
crnot 4 * cr5 + eq, 4 * cr4 + eq (equivalent to crnor 22,18,18)

F.7 Simplified Mnemonics for Trap Instructions
A standard set of codes, shown in Table F-16, has been adopted for the most common
combinations of trap conditions.

Table F-16. Standard Codes for Trap Instructions

Code Description TO Encoding < > = <U >U

lt Less than 16 1 0 0 0 0

le Less than or equal 20 1 0 1 0 0

eq Equal 4 0 0 1 0 0

ge Greater than or equal 12 0 1 1 0 0

gt Greater than 8 0 1 0 0 0

nl Not less than 12 0 1 1 0 0

ne Not equal 24 1 1 0 0 0

ng Not greater than 20 1 0 1 0 0

llt Logically less than 2 0 0 0 1 0

lle Logically less than or equal 6 0 0 1 1 0

lge Logically greater than or equal 5 0 0 1 0 1

lgt Logically greater than 1 0 0 0 0 1

lnl Logically not less than 5 0 0 1 0 1

lng Logically not greater than 6 0 0 1 1 0

— Unconditional 31 1 1 1 1 1

Note : The symbol “<U” indicates an unsigned less than evaluation will be performed. The symbol “>U” indi-
cates an unsigned greater than evaluation will be performed.

F-20 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

The mnemonics defined in Table F-17 are variations of trap instructions, with the most
useful values of TO represented in the mnemonic rather than specified as a numeric
operand.

Examples of the uses of trap mnemonics, shown in Table F-17, follow:

1. Trap if registerrA is not zero.
twnei rA,0 (equivalent to twi 24,rA,0)

2. Trap if registerrA is not equal torB.
twne rA, rB (equivalent to tw 24,rA,rB)

3. Trap ifrA is logically greater than 0x7FF.
twlgti r A, 0x7FF (equivalent to twi 1,rA, 0x7FF)

4. Trap unconditionally.
trap (equivalent totw 31,0,0)

Trap instructions evaluate a trap condition as follows:

• The contents of registerrA are compared with either the sign-extended SIMM field
or the contents of registerrB, depending on the trap instruction.

Table F-17. Trap Mnemonics

Trap Semantics
32-Bit Comparison

twi Immediate tw Register

Trap unconditionally — trap

Trap if less than twlti twlt

Trap if less than or equal twlei twle

Trap if equal tweqi tweq

Trap if greater than or equal twgei twge

Trap if greater than twgti twgt

Trap if not less than twnli twnl

Trap if not equal twnei twne

Trap if not greater than twngi twng

Trap if logically less than twllti twllt

Trap if logically less than or equal twllei twlle

Trap if logically greater than or equal twlgei twlge

Trap if logically greater than twlgti twlgt

Trap if logically not less than twlnli twlnl

Trap if logically not greater than twlngi twlng

Appendix F.Simplified Mnemonics F-21

F

The comparison results in five conditions which are ANDed with operand TO. If the result
is not 0, the trap exception handler is invoked.

NOTE: Exceptions are referred to as interrupts in the architecture specification.See
Table F-18 for these conditions.

F.8 Simplified Mnemonics for Special-Purpose
Registers

Themtspr andmfspr instructions specify a special-purpose register (SPR) as a numeric
operand. Simplified mnemonics are provided that represent the SPR in the mnemonic rather
than requiring it to be coded as a numeric operand. Table F-19 provides a list of the
simplified mnemonics that should be provided by assemblers for SPR operations.

Table F-18. TO Operand Bit Encoding

TO Bit ANDed with Condition

0 Less than, using signed comparison

1 Greater than, using signed comparison

2 Equal

3 Less than, using unsigned comparison

4 Greater than, using unsigned comparison

Table F-19. Simplified Mnemonics for SPRs

Special-Purpose Register

Move to SPR Move from SPR

Simplified
Mnemonic

Equivalent to
Simplified
Mnemonic

Equivalent to

XER mtxer r S mtspr 1,rS mfxer r D mfspr r D,1

Link register mtlr r S mtspr 8,r S mflr r D mfspr r D,8

Count register mtctr r S mtspr 9,r S mfctr r D mfspr r D,9

DSISR mtdsisr r S mtspr 18,r S mfdsisr r D mfspr r D,18

Data address register mtdar r S mtspr 19,r S mfdar r D mfspr r D,19

Decrementer mtdec r S mtspr 22,r S mfdec r D mfspr r D,22

SDR1 mtsdr1 r S mtspr 25,r S mfsdr1 r D mfspr r D,25

Save and restore register 0 mtsrr0 r S mtspr 26,r S mfsrr0 r D mfspr r D,26

Save and restore register 1 mtsrr1 r S mtspr 27,r S mfsrr1 r D mfspr r D,27

SPRG0–SPRG3 mtspr n, rS mtspr 272 + n,rS mfsprg r D, n mfspr r D,272 + n

External access register mtear r S mtspr 282,r S mfear r D mfspr r D,282

F-22 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

Following are examples using the SPR simplified mnemonics found in Table F-19:

1. Copy the contents ofrS to the XER.
mtxer rS (equivalent to mtspr 1,rS)

2. Copy the contents of the LR torS.
mflr r S (equivalent to mfspr rS,8)

3. Copy the contents ofrS to the CTR.
mtctr r S (equivalent to mtspr 9,rS)

F.9 Recommended Simplified Mnemonics
This section describes some of the most commonly-used operations (such as no-op, load
immediate, load address, move register, and complement register).

F.9.1 No-Op (nop)
Many PowerPC instructions can be coded in a way that, effectively, no operation is
performed. An additional mnemonic is provided for the preferred form of no-op. If an
implementation performs any type of run-time optimization related to no-ops, the preferred
form is the no-op that triggers the following:

nop (equivalent to ori 0,0,0)

F.9.2 Load Immediate (li)
The addi andaddis instructions can be used to load an immediate value into a register.
Additional mnemonics are provided to convey the idea that no addition is being performed
but that data is being moved from the immediate operand of the instruction to a register.

1. Load a 16-bit signed immediate value intorD.
li r D,value (equivalent to addi rD,0,value)

Time base lower mttbl r S mtspr 284,r S mftb r D mftb r D,268

Time base upper mttbu r S mtspr 285,r S mftbu r D mftb r D,269

Processor version register — — mfpvr r D mfspr r D,287

IBAT register, upper mtibatu n, rS mtspr 528 + (2 * n),rS mfibatu r D, n mfspr r D,528 + (2 * n)

IBAT register, lower mtibatl n, rS mtspr 529 + (2 * n),rS mfibatl r D, n mfspr r D,529 + (2 * n)

DBAT register, upper mtdbatu n, rS mtspr 536 + (2 *n),rS mfdbatu r D, n mfspr r D,536 + (2 *n)

DBAT register, lower mtdbatl n, rS mtspr 537 + (2 * n),rS mfdbatl r D, n mfspr r D,537 + (2 * n)

Table F-19. Simplified Mnemonics for SPRs (Continued)

Special-Purpose Register

Move to SPR Move from SPR

Simplified
Mnemonic

Equivalent to
Simplified
Mnemonic

Equivalent to

Appendix F.Simplified Mnemonics F-23

F

2. Load a 16-bit signed immediate value, shifted left by 16 bits, intorD.
lis rD,value (equivalent to addis rD,0,value)

F.9.3 Load Address (la)
This mnemonic permits computing the value of a base-displacement operand, using the
addi instruction which normally requires a separate register and immediate operands.

la rD,d(rA) (equivalent to addi rD,rA,d)

The la mnemonic is useful for obtaining the address of a variable specified by name,
allowing the assembler to supply the base register number and compute the displacement.
If the variablev is located at offset dv bytes from the address in registerr v, and the
assembler has been told to use registerr v as a base for references to the data structure
containingv, the following line causes the address ofv to be loaded into registerrD:

la rD,v (equivalent to addi rD,rv,dv

F.9.4 Move Register (mr)
Several PowerPC instructions can be coded to copy the contents of one register to another.
A simplified mnemonic is provided that signifies that no computation is being performed,
but merely that data is being moved from one register to another.

The following instruction copies the contents ofrS intorA. This mnemonic can be coded
with a dot (.) suffix to cause the Rc bit to be set in the underlying instruction.

mr r A,rS (equivalent to or rA,rS,rS)

F.9.5 Complement Register (not)
Several PowerPC instructions can be coded in a way that they complement the contents of
one register and place the result into another register. A simplified mnemonic is provided
that allows this operation to be coded easily.

The following instruction complements the contents ofrS and places the result intorA.
This mnemonic can be coded with a dot (.) suffix to cause the Rc bit to be set in the
underlying instruction.

not rA,rS (equivalent to nor rA,rS,rS)

F.9.6 Move to Condition Register (mtcr)
This mnemonic permits copying the contents of a GPR to the condition register, using the
same syntax as themfcr instruction.

mtcr r S (equivalent to mtcrf 0xFF,rS)

F-24 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

Glossary of Terms and Abbreviations Glossary-1

G

Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and definitions included in the glossary are reprinted fromIEEE
Std. 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

NOTE: Some terms are defined in the context of how they are used in this book.

Architecture. A detailed specification of requirements for a processor or
computer system. It does not specify details of how the processor or
computer system must be implemented; instead it provides a
template for a family of compatibleimplementations.

Asynchronous exception. Exceptionsthat are caused by events external to
the processor’s execution. Additionally, this exception is not
associated with any of the instructions currently in execution. In this
document, the term ‘asynchronous exception’ is used
interchangeably with the wordinterrupt.

Atomic access. A bus access that attempts to be part of a read-write operation
to the same address uninterrupted by any other access to that address
(the term refers to the fact that the transactions are indivisible). The
PowerPC architecture implements atomic accesses through the
lwarx /stwcx. instruction pair.

BAT (block address translation) mechanism. A software-controlled array
that stores the available block address translations on-chip.

Biased exponent. An exponentwhose range of values is shifted by a constant
(bias). Typically a bias is provided to allow a range of positive values
to express a range that includes both positive and negative values.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to themost-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most-significant byte.See Little-endian.

A

B

Glossary-2 PowerPC Microprocessor 32-bit Family: The Programming Environments

G

Block. An area of memory that ranges from 128 Kbyte to 256 Mbyte, whose
size, address translation, and protection attributes are controlled by
theBAT mechanism.

Boundedly undefined. A characteristic of results of certain operations that
are not rigidly prescribed by the PowerPC architecture. Boundedly-
undefined results for a given operation may vary among
implementations, and between execution attempts in the same
implementation.

If a sequence of one or more instructions is executed in a manner not
prescribed by the architecture or in a mode, method or context not
specified by the architecture the resulting error conditions may not
be known or defined but of course are finite. Therefore the term
boundedly undefined is used to defined the unknown state of the
machine.

Cache. High-speed memory component containing recently-accessed data
and/or instructions (subset of main memory).

Cache block. A small region of contiguous memory that is transferred
between cache and memory. The size of a cache block may vary
among processors; the maximum block size is onepage. In PowerPC
processors,cache coherencyis maintained on a cache-block basis.
Note: The term ‘cache block’ is often used interchangeably with
‘cache line’.

Cache coherency. An attribute wherein an accurate and common view of
memory is provided to all devices that share the same memory
system. Caches are coherent if a processor performing a read from
its cache is supplied with data corresponding to the most recent value
written to memory or to another processor’s cache.

Cache flush. An operation that removes from a cache a block(s) of data from
a specified address range. This operation ensures that any modified
data within the specified address range is written back to main
memory. This operation is generated typically by a Data Cache
Block Flush (dcbf) instruction.

Caching-inhibited. A memory update policy in which thecacheis bypassed
and the load or store is performed from or to main memory.

Cast-outs. Cache blocksthat must be removed from the cache when a cache
miss causes a cache block to be replaced. The block being replaced
in the cache is written to memory if it has been modified. (see MESI)

C

Glossary of Terms and Abbreviations Glossary-3

G

Changed bit. One of twopage history bitsfound in eachpage table entry
(PTE). The processor sets the changed bit if any store is performed
into thepage. See alsoPage access history bits and Referenced bit.

Clear. To cause a bit or bit field to record a value of zero.See alsoSet.

Context synchronization. An operation that ensures that all instructions in
execution complete past the point where they can produce an
exception, that all instructions in execution complete in the context
in which they began execution, and that all subsequent instructions
are fetchedand executed in the same or new context. Context
synchronization may result from executing specific instructions
(such asisync or rfi) or when certain events occur (such as an
exception).

Copy-back. An operation in which modified data in acache blockis copied
back to memory. A mode in which store instructions place data into
the cache and rely upon cast-out, cache-flush or cache-block-store
instructions to move the modified data to memory.

Denormalized number. A nonzero floating-point number whoseexponent
has a zero value, and whose implicit bit is zero. (see alsotiny
number)

Direct-mapped cache. A cache in which each main memory address can
appear in only one location within the cache, operates more quickly
when the memory request is a cache hit.

Direct-store. Interface available on PowerPC processors only to support
direct-store devices from the POWER architecture. When the T bit
of a segment descriptoris set, the descriptor defines the region of
memory that is to be used as a direct-store segment.
Note: This facility is being phased out of the architecture and will
not likely be supported in future devices. Therefore, software should
not depend on it and new software should not use it.

Effective address (EA). The 32-bit address specified for a load, store, or an
instruction fetch. This address is then submitted to the MMU for
translation to either aphysical memory address or an I/O address.

Exception. A condition encountered by the processor that requires special,
supervisor-level processing. (a.k.a. interrupts)

Exception handler. A software routine that executes when an exception is
taken. Normally, the exception handler reacts to the condition that

D

E

Glossary-4 PowerPC Microprocessor 32-bit Family: The Programming Environments

G

caused the exception, or performs some other meaningful task (that
may include aborting the program that caused the exception). The
address for each exception handler is identified by an exception
vector offset defined by the architecture and a prefix selected via the
MSR.

Extended opcode. A secondary opcode field generally located in instruction
bits 21–30, that further defines the instruction. All PowerPC
instructions are one word in length. The most significant 6 bits of the
instruction are theprimary opcode, identifying the instruction.
However, many PowerPC instructions have the same primary opcode
and rely on the extended opcode to uniquely identify the instruction.
See alsoPrimary opcode.

Execution synchronization. A mechanism by which all instructions in
execution are architecturally complete before beginning execution
(appearing to begin execution) of the next instruction. Similar to
context synchronization but doesn't force the contents of the
instruction buffers to be deleted and refetched.

Exponent. In the binary representation of a floating-point number, the
exponent is the component that normally specifies the position of the
binary point of the represented number.See alsoBiased exponent.

Fetch. Retrieving instructions or data from either the cache or main memory
and placing them into the instruction queue or GPR, respectively.

Floating-point register (FPR). Any of the 32 registers in the floating-point
register file. These registers provide the source operands and
destination results for floating-point instructions. Load instructions
move data from memory to FPRs and store instructions move data
from FPRs to memory. The FPRs are 64 bits wide and record
floating-point values in double-precision format.

Fraction. In the binary representation of a floating-point number, the field of
thesignificand that lies to the right of its implied binary point.

Fully-associative. Addressing scheme where every storage location (every
byte) can have any possible address.

General-purpose register (GPR). Any of the 32 registers in the general-
purpose register file. These registers provide the source operands and
destination results for all integer data manipulation instructions.
Also, address operands for all instructions that require an address are
found in GPRs. Integer load instructions move data from memory to

F

G

Glossary of Terms and Abbreviations Glossary-5

G

GPRs and integer store instructions move data from GPRs to
memory.

Guarded. The guarded attribute pertains to out-of-order execution. When a
page is designated as guarded, instructions and data cannot be
accessed out-of-order.

Harvard architecture . An architectural model featuring separate caches for
instruction and data.

Hashing. An algorithm to generate an address which is used to help search
for an item more quickly in a memory structure. In PowerPC hashing
is used to locate a PTE in thepage table.

IEEE 754. A standard written by the Institute of Electrical and Electronics
Engineers that defines operations and representations of binary
floating-point arithmetic.

Illegal instructions. Any instruction using an undefined operation code in
the PowerPC architecture.

Implementation. A particular processor that conforms to the PowerPC
architecture, but may differ from other architecture-compliant
implementations for example in design, feature set, and
implementation ofoptional features. The PowerPC architecture has
many different implementations.

Implementation-dependent. An aspect of a feature in a processor’s design
that is defined by a processor’s design specifications rather than by
the PowerPC architecture.

Implementation-specific. An aspect of a feature in a processor’s design that
is not required by the PowerPC architecture, but for which the
PowerPC architecture may provide concessions to ensure that
processors that implement the feature do so consistently.

Imprecise exception. A type ofsynchronous exceptionthat is allowed not to
adhere to the precise exception model (seePrecise exception). The
PowerPC architecture allows only floating-point exceptions to be
handled imprecisely.

Inexact. Loss of accuracy in an arithmetic operation when the rounded result
differs from the infinitely precise value with unbounded range.

In-order. An aspect of an operation that adheres to a sequential model. An
operation is said to be performed in-order if, at the time that it is

H

HI

Glossary-6 PowerPC Microprocessor 32-bit Family: The Programming Environments

G

performed, it is known to be required by the sequential execution
model.See Out-of-order.

Instruction latency. The number of clock cycles between the execution of an
instruction and when the results of that instruction are available to
the next sequential instruction.

Instruction parallelism . A feature of PowerPC processors that allows
instructions to be processed in parallel.

Interrupt . An asynchronous exception. On PowerPC processors, interrupts
are a special case of exceptions.See also asynchronous exception.

Invalid state. State of a cache entry that does not currently contain a valid
copy of a cache block from memory.

Key bits. A set of key bits referred to as Ks and Kp in each segment register
and each BAT register. The key bits determine whether supervisor or
user programs can access apage within thatsegment or block.

Kill . An operation that causes acache block to be invalidated.

L2 cache. A cache between the L1 cache and main memory.SeeSecondary
cache.

Least-significant bit (lsb). The bit of least value in an address, register, data
element, or instruction encoding. A bit to the farthest right in a bit
field.

Least-significant byte (LSB). The byte of least value in an address, register,
data element, or instruction encoding. A byte to the farthest right in
a byte field.

Little-endian . A byte-ordering method in memory where the addressn of a
word corresponds to theleast-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being themost-significant byte. See Big-endian.

MESI (modified/exclusive/shared/invalid). Cache coherencyprotocol used
to manage caches on different devices that share a memory system.
Note: The PowerPC architecture does not specify the
implementation of a MESI protocol to ensure cache coherency.

K

L

M

Glossary of Terms and Abbreviations Glossary-7

G

Memory access ordering. The specific order in which the processor
performs load and store memory accesses and the order in which
those accesses complete.

Memory-mapped accesses. Accesses whose addresses use the page or block
address translation mechanisms provided by the MMU and that
occur externally with the bus protocol defined for memory.

Memory coherency. An aspect of caching in which it is ensured that an
accurate view of memory is provided to all devices that share system
memory.

Memory consistency. Refers to agreement of levels of memory with respect
to a single processor and system memory (for example, on-chip
cache, secondary cache, and system memory) and between multiple
processors and input/output devices. Regardless of where a data item
is stored it is visible to all processors and devices. See coherency.

Memory management unit (MMU). The functional unit that is capable of
translating aneffective (logical) address to a physical address,
providing protection mechanisms, and defining caching methods.

Microarchitecture . The hardware implementation details of a
microprocessor’s design. Such details are not defined by the
PowerPC architecture.

Mnemonic. The abbreviated name of an instruction.

Modified state. When a cache block is in the modified state, it has been
modified by the processor since it was copied from memory.See
MESI.

Munging. A modification performed on the three low-order bits of an
effective addressthat allows it to appear to the processor that
individual aligned scalars are stored aslittle-endianvalues, when in
fact it is stored inbig-endianorder, but at different byte addresses
within double words.
Note: Munging affects only the effective address and not the byte
order; also that this term is not used in the PowerPC architecture
document.

Multiprocessing. The capability of software, especially operating systems,
to support execution on more than one processor at the same time.

Most-significant bit (msb). The highest-order bit in an address, registers,
data element, or instruction encoding. The bit to the farthest left in a
bit field.

Glossary-8 PowerPC Microprocessor 32-bit Family: The Programming Environments

G

Most-significant byte (MSB). The highest-order byte in an address,
registers, data element, or instruction encoding. The byte to the
farthest left in a byte field.

NaN. An abbreviation for ‘Not a Number’; a symbolic entity encoded in
floating-point format. There are two types of NaNs—signaling NaNs
(SNaNs) and quiet NaNs (QNaNs).

No-op. No-operation. An operation that does not change anything in registers
or generate any bus activity.

Normalization. A process by which a floating-point value is manipulated
such that it can be represented in the format for the appropriate
precision (single- or double-precision). For a floating-point value to
be representable in the single- or double-precision format, the
leading implied bit must be a 1 and the exponent must be greater than
zero.

OEA (operating environment architecture). The level of the architecture
that describes PowerPC memory management model, supervisor-
level registers, synchronization requirements, and the exception
model. It also defines the time-base feature from a supervisor-level
perspective. Implementations that conform to the PowerPC OEA
also conform to the PowerPC UISA and VEA.

Optional. A feature, such as an instruction, a register, or an exception, that is
defined by the PowerPC architecture but not required to be
implemented.

Out-of-order. An aspect of an operation that allows it to be performed ahead
of one that may have preceded it in the sequential model, for
example, speculative operations. An operation is said to be
performed out-of-order if, at the time that it is performed, it is not
known to be required by the sequential execution model.See
In-order.

Out-of-order execution. A technique that allows instructions to be issued
and completed in an order that differs from their sequence in the
instruction stream.

Overflow. An error condition that occurs during arithmetic operations when
the result cannot be stored accurately in the destination register(s).
For example, if two 32-bit numbers are multiplied, the result may not

N

O

Glossary of Terms and Abbreviations Glossary-9

G

be representable in 32 bits. In an integer add operation if the carry
into the sign bit is not equal to the carry out of the sign bit the
overflow is set.

Page. A region in memory. The OEA defines a page as a 4-Kbyte area of
memory, aligned on a 4-Kbyte boundary.

Page access history bits. Thechangedandreferencedbits in the PTE keep
track of the access history within the page. The referenced bit is set
by the MMU whenever the page is accessed for a read operation. The
changed bit is set when the page is stored into.SeeChanged bit and
Referenced bit.

Page fault. A page fault is a condition that occurs when the processor
attempts to access a virtual address that does not reside within apage
currently resident inphysical memory. On PowerPC processors, a
page fault exception condition occurs when a matching, validpage
table entry(PTE[V] = 1) cannot be located in the page table.

Page table. A table in memory is comprised ofpage table entries, or PTEs.
It is further organized into eight PTEs per PTEG (page table entry
group). The number of PTEGs in the page table depends on the size
of the page table (as specified in the SDR1 register).

Page table entry (PTE). Data structures containing information used to
translatevirtual addressto physical address on a 4-Kbyte page basis.
A PTE consists of 8 bytes of information.

Physical memory. The actual memory that can be accessed through the
system’s memory bus.

Pipelining. A technique that breaks operations, such as instruction
processing or bus transactions, into smaller distinct stages or tenures
(respectively) so that a subsequent operation can begin before the
previous one has completed.

Precise exceptions. A category of exception for which the instruction
causing the exception can be precisely located.See Imprecise
exceptions.

Primary opcode. The most-significant 6 bits (bits 0–5) of the instruction
encoding that identifies the instruction or instruction type. See
Secondary opcode.

Protection boundary. A boundary betweenprotection domains.

P

Glossary-10 PowerPC Microprocessor 32-bit Family: The Programming Environments

G

Protection domain. A protection domain is a segment, a virtual page, a BAT
area, or a range of unmapped effective addresses. It is defined only
when the appropriate relocate bit in the MSR (IR or DR) is 1.

Quad word. A group of 16 contiguous locations starting at an address
divisible by 16.

Quiet NaN. A type of NaN that can propagate through most arithmetic
operations without signaling exceptions. A quiet NaN is used to
represent the results of certain invalid operations, such as division by
zero, invalid arithmetic operations on infinities or on NaNs, when
invalid. SeeSignaling NaN.

rA . TherA instruction field is used to specify a GPR to be used as a source
or destination register. Generally, if the instruction requires an
address as one of the input operands this register is used.

rB . TherB instruction field is used to specify a GPR to be used as a source
register.

rD . The rD instruction field is used to specify a GPR to be used as a
destination register.

rS. TherS instruction field is used to specify a GPR to be used as a source
register.

Real address mode. An MMU mode when no address translation is
performed and theeffective addressspecified is the same as the
physical address. The processor’s MMU is operating in real address
mode if its ability to perform address translation has been disabled
through the MSR registers IR and/or DR bits.

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set,
updates the condition register (CR) to reflect the result of the
operation.

Referenced bit. One of twopage history bitsfound in eachpage table entry
(PTE). The processor sets thereferenced bitwhenever the page is
accessed for a read.See alsoPage access history bits.

Register indirect addressing. A form of addressing that specifies one GPR
that contains the address for the load or store.

Register indirect with immediate index addressing. A form of addressing
that specifies an immediate value to be added to the contents of a
specified GPR to form the target address for the load or store.

Q

R

Glossary of Terms and Abbreviations Glossary-11

G

Register indirect with index addressing. A form of addressing that specifies
that the contents of two GPRs be added together to yield the target
address for the load or store.

Reservation. The processor establishes a reservation on acache blockof
memory space when it executes alwarx instruction to read a
memory semaphore into a GPR when an atomic update of memory
is necessary.

Reserved field.In an instruction or register, a reserved field is one that is not
assigned a function. A reserved field may be a single bit. The
handling of reserved bits isimplementation-dependent. In registers
software is permitted to write any value to such a bit. A subsequent
reading of the bit returns 0 if the value last written to the bit was 0
and returns an undefined value (0 or 1) otherwise.

RISC (reduced instruction set computing). An architecturecharacterized
by fixed-length instructions with nonoverlapping functionality and
by a separate set of load and store instructions that perform memory
accesses.

Scalability. The capability of an architecture to generateimplementations
specific for a wide range of purposes, and in particular
implementations of significantly greater performance and/or
functionality than at present, while maintaining compatibility with
current implementations.

Secondary cache. A cache memory that is typically larger and has a longer
access time than the primary cache. A secondary cache may be
shared by multiple devices. Also referred to as L2, or level-2, cache.

Segment. A 256-Mbyte area ofvirtual memorythat is the most basic memory
space defined by the PowerPC architecture. Each segment is
configured through a uniquesegment descriptor.

Segment descriptors. Information used to generate the high-order bits of the
virtual addressplus three additional control bits. The segment
descriptors reside in 16 on-chip segment registers.

Set(v). To write a nonzero value to a bit or bit field; the opposite ofclear. The
term ‘set’ may also be used to generally describe the updating of a
bit or bit field.

Set (n). A subdivision of acache. Cacheable data can be stored in a given
location in any one of the sets, typically corresponding to its lower-
order address bits. Because several memory locations can map to the

S

Glossary-12 PowerPC Microprocessor 32-bit Family: The Programming Environments

G

same location, cached data is typically placed in the set whosecache
blockcorresponding to that address was used least recently.SeeSet-
associative.

Set-associative. Aspect of cache organization in which the cache space is
divided into sections, calledsets. The cache controller associates a
particular main memory address with the contents of a particular set,
or region, within the cache.

Signaling NaN. A type of NaN that generates an invalid operation program
exception when it is specified as arithmetic operands.SeeQuiet
NaN.

Significand. The component of a binary floating-point number that consists
of an explicit or implicit leading bit to the left of its implied binary
point and a fraction field to the right.

Simplified mnemonics. Assembler mnemonics that represent a more
complex form of a common operation.

Static branch prediction. Mechanism by which software (for example,
compilers) can give a hint to the machine hardware about the
direction a branch is likely to take.

Sticky bit. A bit that whenset must be cleared explicitly.

Strong ordering. A memory access model that requires exclusive access to
an address before making an update, to prevent another device from
using stale data.

Superscalar machine. A machine that can processes multiple instructions
concurrently from a conventional linear instruction stream.

Supervisor mode. The privileged operation state of a processor. In
supervisor mode, software, typically the operating system, can
access all control registers and can access the supervisor memory
space, among other privileged operations.

Synchronization. A process used to ensure that operations occur strictlyin
order. SeeContext synchronization and Execution synchronization.

Synchronous exception.An exceptionthat is generated by the execution of
a particular instruction or instruction sequence. There are two
meanings of this concept.

Synchronous meaning “at the same time as other exceptions”.
Exceptions that occur at the same time are processed in a specific
order. For example if a machine check, an invalid instruction and a

Glossary of Terms and Abbreviations Glossary-13

G

decrementer exception occur at the same time, the machine check
has priority over the invalid instruction, and invalid instruction has
priority over the Decrementer exception.

Synchronous meaning “at the same time as the instruction in
execution causing the exception”. Exceptions that occur as the result
of an instruction execution are called synchronous exceptions. There
are many examples: The execution of an invalid instruction, thesc
and trap instructions, alignment, privilege instruction in user or
problem mode, etc. These are also called precise exceptions.

System memory.The physical memory available to a processor.

TLB (translation lookaside buffer) A cache that holds recently-usedpage
table entries.

Throughput . A measure of the number of instructions that are processed per
unit of time.

Tiny. A floating-point value that is too small to be represented as a
normalized value. A floating-point number not equal to zero where
the exponent is zero and the mantissa is none zero.

UISA (user instruction set architecture). The level of the architecture to
which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types,
floating-point memory conventions and exception model as seen by
user programs, and the memory and programming models.

Underflow. An error condition that occurs during arithmetic operations when
the result cannot be represented accurately in the destination register.
For example, underflow can happen if two floating-point fractions
are multiplied and the result requires a smallerexponentand/or
mantissa than the single-precision format can provide. In other
words, the result is too small to be represented accurately.

Unified cache. Combined data and instruction cache.

User mode. The unprivileged operating state of a processor used typically by
application software. In user mode, software can only access certain
control registers and can access only user memory space. No
privileged operations can be performed. Also referred to as problem
state.

T

U

Glossary-14 PowerPC Microprocessor 32-bit Family: The Programming Environments

G

VEA (virtual environment architecture) . The level of thearchitecturethat
describes the memory model for an environment in which multiple
devices can access memory, defines aspects of the cache model,
defines cache control instructions, and defines the time-base facility
from a user-level perspective.Implementationsthat conform to the
PowerPC VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

Virtual address. An intermediate address used in the translation of an
effective address to a physical address.

Virtual memory . The address space created using the memory management
facilities of the processor. Program access to virtual memory is
possible only when it’spage is resident inphysical memory.

Weak ordering. A memory access model that allows bus operations to be
reordered dynamically, which improves overall performance and in
particular reduces the effect of memory latency on instruction
throughput.

Word . A 32-bit data element.

Write-back . A cache memory update policy in which processor write cycles
are directly written only to the cache. External memory is updated
only indirectly, for example, when a modified cache block iscast out
to make room for newer data.

Write-through . A cache memory update policy in which all processor write
cycles are written to both the cache and memory.

V

VW

Index-1

IND

Index

Numerics
64-bit bridge

instructions
optional instructions, 4-4

SR manipulation instructions, 4-67

A
Accesses

access order, 5-2
atomic accesses (guaranteed), 5-4
atomic accesses (not guaranteed), 5-4
misaligned accesses, 3-1

Acronyms and abbreviated terms, list, xxxii
add, 4-11, 8-9
addc, 4-11, 8-10
adde, 4-12, 8-11
addi, 4-11, 8-12, F-22
addic, 4-11, 8-13
addic., 4-11, 8-14
addis, 4-11, 8-15, F-22
addme, 4-12, 8-16
Address calculation

branch instructions, 4-41
load and store instructions, 4-28

Address mapping examples, PTEG, 7-58
Address translation,see Memory management unit
Addressing conventions

alignment, 3-1
byte ordering, 3-2, 3-6
I/O data transfer, 3-11
instruction memory addressing, 3-10
mapping examples, 3-3
memory operands, 3-1

Addressing modes
branch conditional to absolute, 4-44
branch conditional to count register, 4-46, B-4
branch conditional to link register, 4-45
branch conditional to relative, 4-42
branch relative, 4-42
branch to absolute, 4-43
register indirect

integer, 4-30
with immediate index, floating-point, 4-37
with immediate index, integer, 4-29
with index, floating-point, 4-37
with index, integer, 4-29

addze, 4-13, 8-17
Aligned data transfer, 1-10, 3-1
Aligned scalars, LE mode, 3-6
Alignment

AL bit in MSR, POWER, B-2
alignment exception

description, 6-28
integer alignment exception, 6-31
interpreting the DSISR settings, 6-32
LE mode alignment exception, 6-31
MMU-related exception, 7-15
overview, 6-4
partially executed instructions, 6-11
register settings, 6-29

alignment for load/store multiple, B-5
rules, 3-1, 3-6

and, 4-16, 8-18
andc, 4-17, 8-19
andi., 4-16, 8-20
andis., 4-16, 8-21
Arithmetic instructions

floating-point, 4-21, A-16
integer, 4-2, 4-10, A-14

Asynchronous exceptions
causes, 6-3
classifications, 6-3
decrementer exception, 6-5, 6-9, 6-36
external interrupt, 6-4, 6-9, 6-27
machine check exception, 6-4, 6-8, 6-22
system reset, 6-4, 6-8, 6-21
types, 6-8

Atomic memory references
atomicity, 5-4
ldarx/stdcx., 4-54, 5-4, E-1
lwarx/stwcx., 4-54, 5-4, E-1

B
b, 4-50, 8-22
BAT registers,see Block address translation
bc, 4-50, 8-23
bcctr, 4-50, 8-25
bclr, 4-50, 8-27
Biased exponent format, 3-17
Big-endian mode

blocks, 7-3
byte ordering, 1-9, 3-2
concept, 3-2
mapping, 3-4
memory operand placement, 3-13

Block address translation
BAT array

access protection summary, 7-29
address recognition, 7-22
BAT register implementation, 7-24
fully-associative BAT arrays, 7-20
organization, 7-20

BAT registers
access translation, 2-29

Index-2 PowerPC Microprocessor 32-bit Family: The Programming Environments

INDEX (Continued)

IND

BAT area lengths
bit description, 2-25
general information, 2-24
implementation of BAT array, 7-24
WIMG bits, 2-25, 5-13, 7-26

block address translation flow, 7-11, 7-32
block memory protection, 7-27–7-30, 7-42
block size options, 7-26
definition, 2-24, 7-6
selection of block address translation, 7-7, 7-22
summary, 7-32

BO operand encodings, 2-13, 4-47, B-3
Boundedly undefined, definition, 4-3
Branch instructions

address calculation, 4-41
BO operand encodings, 2-13, 4-47
branch conditional

absolute addressing mode, 4-44
CTR addressing mode, 4-46, B-4
LR addressing mode, 4-45
relative addressing mode, 4-42

branch instructions, 4-50, A-20, F-6
branch, relative addressing mode, 4-42
condition register logical, 4-51, A-21, F-18
conditional branch control, 4-47
description, 4-50, A-20
simplified mnemonics, F-6
system linkage, 4-52, 4-64, A-21
trap, 4-52, A-21

branch instructions
BO operand encodings, B-3

Byte ordering
aligned scalars, LE mode, 3-6
big-endian mode, default, 3-2, 3-2, 3-6
concept, 3-2
default, 1-9, 4-6
LE and ILE bits in MSR, 1-9, 3-6
least-significant bit (lsb), 3-26
least-significant byte (LSB), 3-2
little-endian mode

description, 3-2
instruction addressing, 3-10

misaligned scalars, LE mode, 3-9
most-significant byte (MSB), 3-2
nonscalars, 3-10

C
Cache

atomic access, 5-4
block, definition, 5-1
cache coherency maintenance, 5-1
cache model, 5-1, 5-5
clearing a cache block, 5-9
Harvard cache model, 5-5

synchronization, 5-3
unified cache, 5-5

Cache block, definition, 5-1
Cache coherency

copy-back operation, 5-14
memory/cache access modes, 5-6
WIMG bits, 5-13, 7-64
write-back mode, 5-14

Cache implementation, 1-12
Cache management instructions

dcbf, 4-61, 5-10, 8-44
dcbi, 4-67, 5-19, 8-45
dcbst, 4-61, 5-9, 8-46, 8-47
dcbt, 4-59, 5-8
dcbtst, 4-59, 5-8, 8-48
dcbz, 4-60, 4-60, 5-9, 8-49
eieio, 4-58, 5-2
icbi, 4-62, 5-11, 8-93
isync, 4-58, 5-12, 8-94
list of instructions, 4-59, 4-67, A-22

Cache model, Harvard, 5-5
Caching-inhibited attribute (I)

caching-inhibited/-allowed operation, 5-6, 5-14
Changed (C) bit maintenance

page history information, 7-10
recording, 7-10, 7-38, 7-40, 7-40
updates, 7-63

Classes of instructions, 4-3, 4-3
Classifications, exception, 6-3
cmp, 4-15, 8-29
cmpi, 4-15, 8-30
cmpl, 4-15, 8-31
cmpli, 4-15, 8-32
cntlzw, 4-17, 8-33
Coherence block, definition, 5-1
Compare and swap primitive, E-4
Compare instructions

floating-point, 4-25, A-17
integer, 4-14, A-15
simplified mnemonics, F-3

Computation modes
PowerPC architecture, 1-4, 4-3

Conditional branch control, 4-47
Context synchronization

data access, 2-37
description, 6-6
exception, 2-36
instruction access, 2-38
requirements, 2-36
return from exception handler, 6-19

Context-altering instruction, definition, 2-36
Context-synchronizing instructions, 2-36, 4-7
Conventions

instruction set

Index-3

INDEX (Continued)

IND

classes of instructions, 4-3
computation modes, 4-3
memory addressing, 4-6
sequential execution model, 4-2

operand conventions
architecture levels represented, 3-1
biased exponent values, 3-19
significand value, 3-17
tiny, definition, 3-18
underflow/overflow, 3-16

terminology, xxxv
CR (condition register)

bit fields, 2-5
CR bit and identification symbols, F-1
CR logical instructions, 4-51, A-21
CR settings, 4-25, B-2
CR0/CR1 field definitions, 2-6–2-6
CRn field, compare instructions, 2-7
move to/from CR instructions, 4-53
simplified mnemonics, F-18

CR logical instructions, 4-51, A-21, F-18
crand, 4-51, 8-34
crandc, 4-51, 8-35
creqv, 4-51, 8-36
crnand, 4-51, 8-37
crnor, 4-51, 8-38
cror, 4-51, 8-39
crorc, 4-51, 8-40, 8-41
crxor, 4-51
CTR (count register)

BO operand encodings, 2-13
branch conditional to count register, 4-46, B-4

D
DABR (data address breakpoint register), 2-34, 6-24
DAR (data address register)

alignment exception register settings, 6-30
description, 2-29
DSI exception register settings, 6-26

Data cache
clearing bytes, B-7
instructions, 5-8

Data handling and precision, 3-24
Data organization, memory, 3-1
Data transfer

aligned data transfer, 1-10, 3-1
I/O data transfer addressing, LE mode, 3-11

Data types
aligned scalars, 3-6
misaligned scalars, 3-9
nonscalars, 3-10

dcbf, 4-61, 5-10, 8-44
dcbi, 4-67, 5-19, 8-45
dcbst, 4-61, 5-9, 8-46, 8-47

dcbt, 4-59, 5-8
dcbtst, 4-59, 5-8, 8-48
dcbz, 4-60, 4-60, 5-9, 8-49, B-7
DEC (decrementer register)

decrementer operation, 2-33
POWER and PowerPC, B-9
writing and reading the DEC, 2-34

Decrementer exception, 6-5, 6-9, 6-36
Defined instruction class, 4-3
Denormalization, definition, 3-23
Denormalized numbers, 3-20
Direct-store facility,see Direct-store segment
Direct-store segment

description, 7-67
direct-store address translation

definition, 7-6
selection, 7-7, 7-13, 7-34, 7-67

direct-store facility, 7-6
I/O interface considerations, 5-19
instructions not supported, 7-68
integer alignment exception, 6-31
key bit description, 7-10
key/PP combinations, conditions, 7-44
no-op instructions, 7-69
protection, 7-10
segment accesses, 7-68
translation summary flow, 7-69

divw, 4-14, 8-50
divwu, 4-14, 8-51
DSI exception

description, 6-4
partially executed instructions, 6-11, 6-23

DSISR register
settings for alignment exception, 6-30
settings for DSI exception, 6-25
settings for misaligned instruction, 6-32

E
EAR (external access register)

bit format, 2-36
eciwx, 4-63, 8-52
ecowx, 4-63, 8-54, 8-56
Effective address calculation

address translation, 2-29, 7-1
branches, 4-6, 4-41
EA modifications, 3-7
loads and stores, 4-6, 4-28, 4-36

eieio, 4-58, 5-2
eqv, 4-17, 8-58
Exceptions

alignment exception, 6-4, 6-28
asynchronous exceptions, 6-3, 6-8
classes of exceptions, 6-3, 6-12
conditions for key/PP combinations, 7-44

Index-4 PowerPC Microprocessor 32-bit Family: The Programming Environments

INDEX (Continued)

IND

context synchronizing exception, 2-36
decrementer exception, 6-5, 6-9, 6-36
DSI exception, 6-4, 6-11, 6-23
enabling/disabling exceptions, 6-17
exception classes, 6-3, 6-12
exception conditions

inexact, 3-43
invalid operation, 3-37
MMU exception conditions, 7-16
overflow, 3-41
overview, 6-4
program exception conditions, 6-5, 6-34, 6-34
recognizing/handling, 6-1
underflow, 3-42
zero divide, 3-38

exception definitions, 6-20
exception model, overview, 1-13
exception priorities, 6-12
exception processing

description, 6-14
stages, 6-2
steps, 6-18

exceptions, effects on FPSCR, B-6
external interrupt, 6-4, 6-9, 6-27
FP assist exception, 6-5, 6-40
FP exceptions, B-8
FP program exceptions, 3-28, 6-5, 6-34, 6-34
FP unavailable exception, 6-5, 6-35
IEEE FP enabled program exception

condition, 6-5, 6-34
illegal instruction program exception

condition, 6-5, 6-34
imprecise exceptions, 6-9
instruction causing conditions, 4-9
integer alignment exception, 6-31
ISI exception, 6-4, 6-26
LE mode alignment exception, 6-31
machine check exception, 6-4, 6-8, 6-22
MMU-related exceptions, 7-15
overview, 1-13
precise exceptions, 6-6
privileged instruction type program exception

condition, 6-5, 6-34
program exception

conditions, 6-5, 6-34, 6-34
register settings

FPSCR, 3-28
MSR, 6-20
SRR0/SRR1, 6-14

reset exception, 6-4, 6-8, 6-21, 6-21
return from exception handler, 6-19
summary, 4-9, 6-4
synchronous/precise exceptions, 6-3, 6-7
system call exception, 6-5, 6-37

terminology, 6-2
trace exception, 6-5, 6-38
translation exception conditions, 7-15
trap program exception condition, 6-5, 6-35
vector offset table, 6-4

Exclusive OR (XOR), 3-6
Execution model

floating-point, 3-15
IEEE operations, D-1
in-order execution, 5-16
multiply-add instructions, D-4
out-of-order execution, 5-16
sequential execution, 4-2

Execution synchronization, 4-8, 6-7
Extended mnemonics,see Simplified mnemonics
Extended/primary opcodes, 4-3
External control instructions,

4-63, 8-52–8-54, ??–8-56, A-23
External interrupt, 6-4, 6-9, 6-27
extsb, 4-17, 8-59
extsh, 4-17, 8-60

F
fabs, 4-28, 8-61
fadd, 4-21, 8-62
fadds, 4-21, 8-63
fcmpo, 4-26, 8-64
fcmpu, 4-26, 8-65
fctiw, 4-25, 8-66
fctiwz, 4-25, 8-67
fdiv, 4-22, 8-68
fdivs, 4-22, 8-69
Floating-point model

biased exponent format, 3-17
binary FP numbers, 3-19
data handling, 3-24
denormailized numbers, 3-20
execution model

floating-point, 3-15
IEEE operations, D-1
multiply-add instructions, D-4

FE0/FE1 bits, 2-22
FP arithmetic instructions, 4-21, A-16
FP assist exceptions, 6-5
FP compare instructions, 4-25, A-17
FP data formats, 3-16
FP execution model, 3-15
FP load instructions, 4-38, A-19, D-15
FP move instructions, 4-27, A-20
FP multiply-add instructions, 4-23, A-16
FP program exceptions

description, 3-28, 6-34
exception conditions, 6-5
FE0/FE1 bits, 6-10

Index-5

INDEX (Continued)

IND

POWER/PowerPC, MSR bit 20, B-8
FP rounding/conversion instructions, 4-24, A-17
FP store instructions, 4-40, A-20, B-7, D-17
FP unavailable exception, 6-5, 6-35
FPR0–FPR31, 2-4
FPSCR instructions, 4-26, A-17
IEEE floating-point fields, 3-17
IEEE-754 compatibility, 1-10, 3-17
infinities, 3-21
models for FP instructions, D-6
NaNs, 3-21
normalization/denormalization, 3-23
normalized numbers, 3-19
precision handling, 3-24
program exceptions, 3-28
recognized FP numbers, 3-18
rounding, 3-25
sign of result, 3-22
single-precision representation in FPR, 3-25
value representation, FP model, 3-18
zero values, 3-20

Flow control instructions
branch instruction address calculation, 4-41
condition register logical, 4-51
system linkage, 4-52, 4-64
trap, 4-52

fmadd, 4-23, 8-70
fmadds, 4-23, 8-71, 8-71
fmr, 4-27, 8-72
fmsub, 4-23, 8-73
fmsubs, 4-23, 8-74
fmul, 4-21, 8-75
fmuls, 4-21, 8-76, 8-76
fnabs, 4-28, 8-77
fneg, 4-28, 8-78
fnmadd, 4-24, 8-79
fnmadds, 4-24, 8-80, 8-80
fnmsub, 4-24, 8-81
fnmsubs, 4-24, 8-82, 8-82
FP assist exception, 6-40
FP exceptions, 6-35, 6-40
FPCC (floating-point condition code), 4-25
FPECR (floating-point exception cause register), 2-32
FPR0–FPR31 (floating-point registers), 2-4
FPSCR (floating-point status and control register)

bit settings, 2-8, 3-29
FP result flags in FPSCR, 3-31
FPCC, 4-25
FPSCR instructions, 4-26, A-17
FR and FI bits, effects of exceptions, B-6
move from FPSCR, B-7
RN field, 3-26

fres, 4-22, 8-83
frsp, 3-24, 4-25, 8-85
frsqrte, 4-22, 8-86, 8-89, 8-90

fsel, 4-22, 8-88, D-5
fsqrt, 4-22
fsqrts, 4-22
fsub, 4-21, 8-91, 8-92
fsubs, 4-21, 8-92

G
GPR0–GPR31 (general purpose registers), 2-3
Graphics instructions

fres, 4-22, 8-83
frsqrte, 4-22, 8-86, 8-89, 8-90
fsel, 4-22, 8-88
stfiwx, 4-41, 8-179

Guarded attribute (G)
G-bit operation, 5-7, 5-16
guarded memory, 5-17
out-of-order execution, 5-16

H
Harvard cache model, 5-5
Hashed page tables, 7-48
Hashing functions

page table
primary PTEG, 7-52, 7-59
secondary PTEG, 7-52, 7-60

I
I/O data transfer addressing, LE mode, 3-11
I/O interface considerations

direct-store operations, 5-19
memory-mapped I/O interface operations, 5-19

icbi, 4-62, 5-11, 8-93
IEEE 64-bit execution model, D-1
IEEE FP enabled program exception

condition, 6-5, 6-34
Illegal instruction class, 4-5
Illegal instruction program exception

condition, 6-5, 6-34
Imprecise exceptions, 6-9
Inexact exception condition, 3-43
In-order execution, 5-16
Instruction addressing

LE mode examples, 3-11
Instruction cache instructions, 5-10
Instruction restart, 3-14
Instruction set conventions

classes of instructions, 4-3
computation modes, 4-3
memory addressing, 4-6
sequential execution model, 4-2

Instructions
64-bit bridge instructions

optional instructions, 4-4

Index-6 PowerPC Microprocessor 32-bit Family: The Programming Environments

INDEX (Continued)

IND

boundedly undefined, definition, 4-3
branch instructions

branch address calculation, 4-41
branch conditional

absolute addressing mode, 4-44
CTR addressing mode, 4-46
LR addressing mode, 4-45
relative addressing mode, 4-42

branch instructions, 4-50, A-20, F-5
condition register logical, 4-51
conditional branch control, 4-47
description, 4-50, A-20
effective address calculation, 4-41
system linkage, 4-52, 4-64
trap, 4-52

cache management instructions
dcbf, 4-61, 5-10, 8-44
dcbi, 4-67, 5-19, 8-45
dcbst, 4-61, 5-9, 8-46, 8-47
dcbt, 4-59, 5-8
dcbtst, 4-59, 5-8, 8-48
dcbz, 4-60, 4-60, 5-9, 8-49
eieio, 4-58, 5-2
icbi, 4-62, 5-11, 8-93
isync, 4-58, 5-12, 8-94
list of instructions, 4-59, 4-67, A-22

classes of instructions, 4-3
condition register logical, 4-51, A-21
conditional branch control, 4-47
context-altering instructions, 2-36
context-synchronizing instructions, 2-36, 4-7
defined instruction class, 4-3
execution synchronization, 3-35
external control instructions, 4-4, 4-63, A-23
floating-point

arithmetic, 4-21, 8-68, A-16
compare, 4-25, 8-64, A-17, F-3
computational instructions, 3-15
FP conversions, D-5
FP load instructions, 4-38, A-19, D-15
FP move instructions, 4-27, A-20
FP store instructions, A-20, B-7, D-17
FPSCR instructions, 4-26, A-17
models for FP instructions, D-6
multiply-add, 4-23, A-16, D-4
noncomputational instructions, 3-15
rounding/conversion, 4-24, ??–8-67, A-17

flow control instructions
branch address calculation, 4-41
CR logical, 4-51
system linkage, 4-52, 4-64
trap, 4-52

graphics instructions
fres, 4-22, 8-83

frsqrte, 4-22, 8-86, 8-89, 8-90
fsel, 4-22, 8-88
stfiwx, 4-41, 8-179

illegal instruction class, 4-5
instruction fetching

branch/flow control instructions, 4-41
direct-store segment, 7-15
exception processing steps, 6-18
exception synchronization steps, 6-6
instruction cache instructions, 5-10
integer store instructions, 4-33
multiprocessor systems, 5-11
precise exceptions, 6-6
uniprocessor systems, 5-10

instruction field conventions, xxxv
instructions not supported, direct-store, 7-68
integer

arithmetic, 4-2, 4-10, A-14
compare, 4-14, A-15, F-3
load, 4-31, A-17, A-17
load/store multiple, 4-35, A-19, B-5
load/store string, 4-36, A-19, B-5
load/store with byte reverse, 4-34, A-18
logical, 4-2, 4-15, A-15
rotate/shift, 4-17–4-19, A-15–A-16, F-4
store, 4-33, A-18

invalid instruction forms, 4-4
load and store

address generation, floating-point, 4-36
address generation, integer, 4-28
byte reverse instructions, 4-34, A-18
floating-point load, 4-38, A-19
floating-point move, 4-27, A-20
floating-point store, 4-39, B-7
integer load, 4-31, A-17, A-17
integer store, 4-33, A-18
memory synchronization, 4-54, 4-55, 4-57, A-19
multiple instructions, 4-35, A-19, B-5
string instructions, 4-36, A-19, B-5

lookaside buffer management instructions,
4-66, 4-68, A-23

memory control instructions, 4-58, 4-66
memory synchronization instructions

eieio, 4-58, 5-2
isync, 4-58, 5-12, 8-94
list of instructions, 4-55, 4-57, A-19
lwarx, 4-55, 8-120
stwcx., 4-55, 8-194
sync, 4-56, 5-3, 8-205, B-5

new instructions
mtmsrd, 7-64

no-op, 4-4, F-22
optional instructions, 4-4
partially executed instructions, 6-11

Index-7

INDEX (Continued)

IND

POWER instructions
deleted in PowerPC, B-9
supported in PowerPC, B-11

PowerPC instructions, list, A-1, A-8, A-14
preferred instruction forms, 4-4
processor control

instructions, 4-53, 4-56, 4-64, A-22
reserved bits, POWER and PowerPC, B-2
reserved instructions, 4-5
segment register manipulation

instructions, 4-67, A-23
SLB management instructions, 4-68
supervisor-level cache management

instructions, 4-66
supervisor-level instructions, 4-9
system linkage instructions, 4-52, 4-64, A-21
TLB management instructions, 4-68, A-23
trap instructions, 4-52, A-21

Integer alignment exception, 6-31
Integer arithmetic instructions, 4-2, 4-10, A-14
Integer compare instructions, 4-14, A-15, F-3
Integer load instructions, 4-31, A-17, A-17
Integer logical instructions, 4-2, 4-15, A-15
Integer rotate and shift instructions, F-4
Integer rotate/shift

instructions, 4-17–4-19, A-15–A-16, F-4
Integer store instructions

description, 4-33
instruction fetching, 4-33
list, A-18

Interrupts,see Exceptions
Invalid instruction forms, 4-4
Invalid operation exception condition, 3-37
ISI exception, 6-4, 6-26
isync, 4-58, 5-12, 8-94

K
Key (Ks, Kp) protection bits, 7-42

L
lbz, 4-32, 8-95
lbzu, 4-32, 8-96
lbzux, 4-32, 8-97
lbzx, 4-32, 8-98
ldarx/stdcx.

general information, 5-4, E-1
lfd, 4-39, 8-99
lfdu, 4-39, 8-100
lfdux, 4-39, 8-101
lfdx, 4-39, 8-102
lfs, 4-39, 8-103
lfsu, 4-39, 8-104
lfsux, 4-39, 8-105

lfsx, 4-39, 8-106
lha, 4-32, 8-107
lhau, 4-32, 8-108
lhaux, 4-32, 8-109
lhax, 4-32, 8-110
lhbrx, 4-35, 8-111
lhz, 4-32, 8-112
lhzu, 4-32, 8-113
lhzux, 4-32, 8-114
lhzx, 4-32, 8-115
Little-endian mode

alignment exception, 6-31
byte ordering, 3-2, 3-6
description, 3-2
I/O data transfer addressing, 3-11
instruction addressing, 3-10
LE and ILE bits, 3-6
mapping, 3-5
misaligned scalars, 3-9
munged structureS, 3-7–3-8

LK bit, inappropriate use, B-3
lmw, 4-36, 8-116, B-5
Load/store

address generation, floating-point, 4-37
address generation, integer, 4-28
byte reverse instructions, 4-34, A-18
floating-point load instructions, 4-38, A-19
floating-point move instructions, 4-27, A-20
floating-point store instructions, 4-39, A-20, B-7
integer load instructions, 4-31, A-17, A-17
integer store instructions, 4-33, A-18
load/store multiple instructions, 4-35, A-19, B-5
memory synchronization instructions, 4-54, A-19
string instructions, 4-36, A-19, B-5

Logical addresses
translation into physical addresses, 7-1

Logical instructions, integer, 4-2, 4-15, A-15
Lookaside buffer management

instructions, 4-66, 4-68, A-23
lswi, 4-36, 8-117, B-5
lswx, 4-36, 8-118, B-5
lwarx, 4-54, 4-55, 8-120
lwarx/stwcx.

general information, 5-4, E-1
list insertion, E-6
lwarx, 4-55, 8-120
semaphores, 4-54
stwcx., 4-55, 8-194
synchronization primitive examples, E-2

lwbrx, 4-35, 8-121
lwz, 4-32, 8-122
lwzu, 4-33, 8-123
lwzux, 4-33, 8-124
lwzx, 4-33, 8-125

Index-8 PowerPC Microprocessor 32-bit Family: The Programming Environments

INDEX (Continued)

IND

M
Machine check exception

causing conditions, 6-4, 6-8, 6-22
non-recoverable, causes, 6-22
register settings, 6-23

mcrf, 4-51, 8-126
mcrfs, 4-26, 8-127
mcrxr, 4-53, 8-128
Memory access

ordering, 5-2
update forms, B-4

Memory addressing, 4-6
Memory coherency

coherency controls, 5-5
coherency precautions, 5-7
M-bit operation, 5-7, 5-7, 5-15
memory access modes, 5-6
sync instruction, 5-3

Memory control instructions
segment register manipulation, 4-67, A-23
SLB management, 4-68
supervisor-level cache management, 4-66
TLB management, 4-68
user-level cache, 4-58

Memory management unit
address translation flow, 7-11
address translation mechanisms, 7-6, 7-10
address translation types, 7-8
block address translation, 7-7, 7-11, 7-19
conceptual block diagram, 7-5
direct-store address translation, 7-13, 7-67
exceptions summary, 7-14
hashing functions, 7-52
instruction summary, 7-17
memory addressing, 7-3
memory protection, 7-8, 7-30, 7-42
MMU exception conditions, 7-16
MMU organization, 7-4
MMU registers, 7-18
MMU-related exceptions, 7-14
overview, 1-13, 7-2
page address translation, 7-6, 7-13, 7-46
page history status, 7-10, 7-38, 7-40
page table search operation, 7-48
real addressing mode translation, 7-11, 7-18, 7-33
register summary, 7-18
segment model, 7-32

Memory operands, 3-1, 4-6
Memory segment model

description, 7-32
memory segment selection, 7-33
page address translation

overview, 7-34
PTE definitions, 7-37

summary, 7-46
page history recording

changed (C) bit, 7-40
description, 7-38
referenced (R) bit, 7-39
table search operations, update history, 7-39

page memory protection, 7-42
recognition of addresses, 7-33
referenced/changed bits

changed (C) bit, 7-40
guaranteed bit settings, model, 7-41
recording scenarios, 7-40
referenced (R) bit, 7-39
synchronization of updates, 7-42
table search operations, update history, 7-39
updates to page tables, 7-63

Memory synchronization
eieio, 4-58, 5-2
isync, 4-58, 5-12, 8-94
list of instructions, 4-55, 4-57, A-19
lwarx, 4-54, 4-55, 8-120
stwcx., 4-54, 4-55, 8-194
sync, 4-56, 5-3, 8-205, B-5

Memory, data organization, 3-1
Memory/cache access modes,see WIMG bits
mfcr, 4-53, 8-129
mffs, 4-26, 8-130
mfmsr, 4-65, 8-131, B-1
mfspr, 4-53, 4-65, 8-132, B-6
mfsr (64-bit bridge), 4-68, B-1
mfsrin (64-bit bridge), 4-68, 8-136
mftb, 4-57, 8-137
Migration to PowerPC, B-1
Misaligned accesses and alignment, 3-1
Mnemonics

recommended mnemonics, F-22
simplified mnemonics, F-1

Move to/from CR instructions, 4-53
MSR (machine state register)

bit settings, 2-21
EE bit, 6-17
FE0/FE1 bits, 2-22, 6-10
FE0/FE1 bits and FP exceptions, 3-34
LE and ILE bits, 1-9, 3-6
optional bits (SE and BE), 2-21
RI bit, 6-19
settings due to exception, 6-20

mtcrf, 4-53, 8-139
mtfsb0, 4-27, 8-140
mtfsb1, 4-27, 8-141
mtfsf, 4-27, 8-142
mtfsfi, 4-27, 8-143
mtmsr (64-bit bridge), 4-65, 8-144
mtmsrd, 7-64

Index-9

INDEX (Continued)

IND

mtspr, 4-53, 4-65, 8-145, B-6
mtsr (64-bit bridge), 4-68, 8-135, 8-148
mtsrin (64-bit bridge), 4-68, 8-149
mulhw, 4-14, 8-150
mulhwu, 4-14, 8-151
mulli, 4-13, 8-152
mullw, 4-13, 8-153
Multiple register loads, B-5
Multiple-precision shift examples, C-1
Multiply-add

execution model, D-4
instructions, floating-point, 4-23, A-16

Multiprocessor, usage, 5-1
Munging

description, 3-6
LE mapping, 3-7–3-8

N
nand, 4-16, 8-154
NaNs (Not a Numbers), 3-21
neg, 4-13, 8-155
No-execute protection, 7-8, 7-12
Nonscalars, 3-10
No-op, 4-4, F-22
nor, 4-16, 8-156
Normalization, definition, 3-23
Normalized numbers, 3-19

O
OEA (operating environment architecture)

cache model and memory coherency, 5-1
definition, xxvi, 1-5
general changes to the architecture, 1-16, 1-17
implementing exceptions, 6-1
memory management specifications, 7-1
programming model, 2-18
register set, 2-17

Opcodes, primary/extended, 4-3
Operands

BO operand encodings, 2-13, 4-47, B-3
conventions, description, 1-9, 3-1
memory operands, 4-6
placement

effect on performance, summary, 3-12
instruction restart, 3-14

Operating environment architecture,see OEA
Optional instructions, 4-4, A-30
or, 4-16, 8-157
orc, 4-17, 8-158
ori, 4-16, 8-159
oris, 4-16, 8-160
Out-of-order execution, 5-16
Overflow exception condition, 3-41

P
Page address translation

definition, 7-6
integer alignment exception, 6-31
overview, 7-34
page address translation flow, 7-46
page memory protection, 7-28, 7-42
page size, 7-32
page tables in memory, 7-48
PTE definitions, 7-37
segment descriptors, 7-33
selection of page address translation, 7-6, 7-13
summary, 7-46

Page history status
making R and C bit updates to page tables, 7-63
R and C bit recording, 7-10, 7-38, 7-40
R and C bit updates, 7-63

Page memory protection,see Protection of memory
areas

Page tables
allocation of PTEs, 7-56
definition, 7-49
example table structures, ??–7-58
hashed page tables, 7-48
hashing functions, 7-52, 7-60
organized as PTEGs, 7-49
page table size, 7-51
page table structure summary, 7-56
page table updates, 7-63
PTEG addresses, 7-58
table search flow, 7-62

Page, definition, 5-6
Performance

effect of operand placement, summary, 3-12
instruction restart, 3-14

Physical address generation
generation of PTEG addresses, 7-58
memory management unit, 7-1

Physical memory
physical vs. virtual memory, 5-1
predefined locations, 7-3

PIR (processor identification register), 2-36
POWER architecture

AL bit in MSR, B-2
alignment for load/store multiple, B-5
branch conditional to CTR, B-4
differences in implementations, B-4
FP exceptions, B-8
instructions

dclz/dcbz instructions, differences, B-7
deleted in PowerPC, B-9
load/store multiple, alignment, B-5
load/store string instructions, B-5
move from FPSCR, B-7

Index-10 PowerPC Microprocessor 32-bit Family: The Programming Environments

INDEX (Continued)

IND

move to/from SPR, B-6
reserved bits, POWER and PowerPC, B-2
SR instructions, differences from PowerPC, B-7
supported in PowerPC, B-11
svcx/sc instructions, differences, B-4

memory access update forms, B-4
migration to PowerPC, B-1
POWER/PowerPC incompatibilities, B-1
registers

CR settings, B-2
decrementer register, B-9
multiple register loads, B-5
reserved bits, POWER and PowerPC, B-2

RTC (real-time clock), B-8
synchronization, B-5
timing facilities, POWER and PowerPC, B-8
TLB entry invalidation, B-8

PowerPC architecture
alignment for load/store multiple, B-5
byte ordering, 3-6
cache model, Harvard, 5-5
computation modes, 1-4, 4-3
differences in implementations, B-4
features summary

defined features, 1-3, 1-6
features not defined, 1-6

I/O data transfer addressing, 3-11
instruction addressing, 3-10
instruction list, A-1, A-8, A-14
instructions

dcbz/dclz instructions, differences, B-7
deleted in POWER, B-9
load/store multiple, alignment, B-5
load/store string instructions, B-5
move from FPSCR, B-7
move to/from SPR, B-6
reserved bits, POWER and PowerPC, B-2
SR instructions, differences from POWER, B-7
supported in POWER, B-11
svcx/sc instructions, differences, B-4

levels of the PowerPC architecture, 1-4–1-6
memory access update forms, B-4
operating environment architecture, xxvi, 1-5
overview, 1-2
POWER/PowerPC, incompatibilities, B-1
registers

CR settings, B-2
decrementer register, B-9
multiple register loads, B-5
programming model, 1-7, 2-2, 2-14, 2-18
reserved bits, POWER and PowerPC, B-2

synchronization, B-5
timing facilities, POWER and PowerPC, B-8
TLB entry invalidation, B-8

user instruction set architecture, xxv, 1-4
virtual environment architecture, xxv, 1-4

PP protection bits, 7-42
Precise exceptions, 6-3, 6-6, 6-7
Preferred instruction forms, 4-4
Primary/extended opcodes, 4-3
Priorities, exception, 6-12
Privilege levels

external control instructions, 4-63
supervisor/user mode, 1-8
supervisor-level cache control instruction, 4-66
TBR encodings, 4-57
user-level cache control instructions, 4-58

Privileged instruction type program exception
condition, 6-5, 6-34

Privileged state,see Supervisor mode
Problem state,see User mode
Process switching, 6-19
Processor control instructions, 4-53, 4-56, 4-64, A-22
Program exception

description, 3-28, 6-5, 6-34, 6-34
five (5) program exception conditions, 6-5, 6-34
move to/from SPR, B-6

Programming model
all registers (OEA), 2-18
user-level plus time base (VEA), 2-14
user-level registers (UISA), 2-2

Protection of memory areas
block access protection, 7-27, 7-28, 7-30, 7-42
direct-store segment protection, 7-10, 7-68
no-execute protection, 7-8, 7-12
options available, 7-8, 7-42
page access protection, 7-28, 7-30, 7-42
programming protection bits, 7-42
protection violations, 7-15, 7-30, 7-43

PTEGs (PTE groups)
definition, 7-49
example primary and secondary PTEGs, 7-58

PTEs (page table entries)
adding a PTE, 7-64
modifying a PTE, 7-65
page table definition, 7-49
page table updates, 7-63
PTE bit definitions, 7-38

PVR (processor version register), 2-23

Q
Quiet NaNs (QNaNs)

description, 3-21
representation, 3-22

R
Real address (RA),see Physical address generation

Index-11

INDEX (Continued)

IND

Real addressing mode address translation (translation
disabled)

data/instruction accesses, 7-11, 7-18, 7-33
definition, 7-6

Real numbers, approximation, 3-18
Record bit (Rc)

description, 8-3
inappropriate use, B-3

Referenced (R) bit maintenance
page history information, 7-10
recording, 7-10, 7-38, 7-39, 7-40
updates, 7-63

Registers
configuration registers

MSR, 2-20
PVR, 2-23

exception handling registers
DAR, 2-29
DSISR, 2-30
FPECR (optional), 2-32
list, 2-19
SPRG0–SPRG3, 2-30
SRR0/SRR1, 2-31

memory management registers
BATs, 2-24
list, 2-19
SDR1, 2-27
SRs, 2-28

miscellaneous registers
DABR (optional), 2-34
DEC, 2-33
EAR (optional), 2-35
list, 2-20
PIR (optional), 2-36
TBL/TBU, 2-15

MMU registers, 7-18
multiple register loads, B-5
OEA register set, 2-17
optional registers

DABR, 2-34
EAR, 2-35
FPECR, 2-32
PIR, 2-36

reserved bits, POWER and PowerPC, B-2
supervisor-level

BATs, 2-24, 7-25
DABR, 6-24
DABR (optional), 2-34
DAR, 2-29
DEC, 2-33, B-9
DSISR, 2-30
EAR (optional), 2-35
FPECR (optional), 2-32
MSR, 2-20
PIR (optional), 2-36

PVR, 2-23
SDR1, 2-27
SPRG0–SPRG3, 2-30
SRR0/SRR1, 2-31
SRs, 2-28
TBL/TBU, 2-15

UISA register set, 2-1
user-level

CR, 2-5
CTR, 2-12
FPR0–FPR31, 2-4
FPSCR, 2-7
GPR0–GPR31, 2-3
LR, 2-12
TBL/TBU, 2-32
XER, 2-11, B-4

VEA register set, 2-13
Reserved instruction class, 4-5
Reset exception, 6-4, 6-8, 6-21
Return from exception handler, 6-19
rfi (64-bit bridge), 4-64, 8-161
rlwimi, 4-19, 8-162
rlwinm, 4-18, 8-163
rlwnm, 4-19, 8-165
Rotate/shift instructions, 4-17–4-19, A-15–A-16, F-4
Rounding, floating-point operations, 3-25
Rounding/conversion instructions, FP, 4-24
RTC (real time clock), B-8

S
sc

differences in implementation, POWER and
PowerPC, B-4

for context synchronization, 4-7
occurrence of system call exception, 6-37
user-level function, 4-52, 4-64, 8-166

Scalars
aligned, LE mode, 3-6
big-endian, 3-2
description, 3-2
little-endian, 3-2

SDR1 register
definitions, 7-50
format, 7-50
generation of PTEG addresses, 7-58

Segment registers
instructions

32-bit implementations only, 7-36
POWER/PowerPC, differences, B-7

segment descriptor
format, 7-35

SR manipulation instructions, 4-67, 4-67, A-23
T = 1 format (direct-store), 7-67
T-bit, 2-28, 7-33

Index-12 PowerPC Microprocessor 32-bit Family: The Programming Environments

INDEX (Continued)

IND

Segmented memory model,seeMemory management
unit

Sequential execution model, 4-2
Shift/rotate instructions, 4-17–4-19, A-15–A-16, F-4
Signaling NaNs (SNaNs), 3-21
Simplified mnemonics

branch instructions, F-5
compare instructions, F-3
CR logical instructions, F-18
recommended mnemonics, 4-56, F-22
rotate and shift, F-4
special-purpose registers (SPRs), F-21
subtract instructions, F-2
trap instructions, F-19

SLB management instructions, 4-68
slw, 4-19, 8-167
SNaNs (signaling NaNs), 3-21
Special-purpose registers (SPRs), F-21
SPRG0–SPRG3, conventional uses, 2-30
sraw, 4-20, 8-168
srawi, 4-20, 8-169
SRR0/SRR1 (status save/restore registers)

format, 2-31, 2-31
machine check exception, register settings, 6-23

srw, 4-19, 8-170
stb, 4-33, 8-171
stbu, 4-33, 8-172
stbux, 4-34, 8-173
stbx, 4-33, 8-174
stdcx./ldarx

general information, 5-4, E-1
stfd, 4-40, 8-175
stfdu, 4-40, 8-176
stfdux, 4-41, 8-177
stfdx, 4-40, 8-178
stfiwx, 4-41, 8-179, D-17
stfs, 4-40, 8-180
stfsu, 4-40, 8-181
stfsux, 4-40, 8-182
stfsx, 4-40, 8-183
sth, 4-34, 8-184
sthbrx, 4-35, 8-185
sthu, 4-34, 8-186
sthux, 4-34, 8-187
sthx, 4-34, 8-188
stmw, 4-36, 8-189
Structure mapping examples, 3-3
stswi, 4-36, 8-190
stswx, 4-36, 8-191
stw, 4-34, 8-192
stwbrx, 4-35, 8-193
stwcx., 4-54, 4-55, 8-194
stwcx./lwarx

general information, 5-4, E-1

lwarx, 4-55, 8-120
semaphores, 4-54
stwcx., 4-55, 8-194
synchronization primitive examples, E-2

stwu, 4-34, 8-196
stwux, 4-34, 8-197
stwx, 4-34, 8-198
subf, 4-11, 8-199
subfc, 4-12, 8-200
subfe, 4-12, 8-201
subfic, 4-11, 8-202
subfme, 4-12, 8-203
subfze, 4-13, 8-204
Subtract instructions, F-2
Supervisor mode,see Privilege levels
sync, 4-56, 5-3, 8-205, B-5
Synchronization

compare and swap, E-4
context/execution synchronization, 2-36, 4-7, 6-6
context-altering instruction, 2-36
context-synchronizing exception, 2-36
context-synchronizing instruction, 2-36
data access synchronization, 2-37
execution of rfi, 6-19
implementation-dependent

requirements, 2-38, 2-39
instruction access synchronization, 2-38
list insertion, E-6
lock acquisition and release, E-5
memory synchronization instructions, 4-54, A-19
overview, 6-6
requirements for lookaside buffers, 2-36
requirements for special registers, 2-36
rfi/rfid, 2-37
synchronization primitives, E-2
synchronization programming examples, E-1
synchronizing instructions, 1-11, 2-37

Synchronous exceptions
causes, 6-3
classifications, 6-3
exception conditions, 6-7

System call exception, 6-5, 6-37
System IEEE FP enabled program exception

condition, 6-5, 6-34
System linkage instructions

list of instructions, A-21
rfi, 8-161
sc, 4-52, 4-64, 8-166

System reset exception, 6-4, 6-8, 6-21

T
Table search operations

hashing functions, 7-52
page table definition, 7-49

Index-13

INDEX (Continued)

IND

SDR1 register, 7-50
table search flow (primary and secondary), 7-62

Terminology conventions, xxxv
Time base

computing time of day, 2-16
reading the time base, 2-16
TBL/TBU, 2-15
timer facilities, POWER and PowerPC, B-8
writing to the time base, 2-32

Tiny values, definition, 3-18
TLB invalidate

TLB entry invalidation, B-8
TLB invalidate broadcast operations, 7-18, 7-63
TLB management instructions, A-23
tlbie instruction, 7-18, 7-63

TLB management instructions, 4-68
tlbia, 4-69
tlbie, 4-69, 8-207, B-8
tlbsync, 4-69, 8-208
tlbsync instruction emulation, 7-63
TO operand, F-21
Trace exception, 6-5, 6-38
Trap instructions, 4-52, F-19
Trap program exception condition, 6-5, 6-35
tw, 4-52, 8-209
twi, 4-52, 8-210

U
UISA (user instruction set architecture)

definition, xxv, 1-4
general changes to the architecture, 1-15
programming model, 2-2
register set, 2-1

Underflow exception condition, 3-42
User instruction set architecture,see UISA
User mode,see Privilege levels
User-level registers, list, 2-2, 2-14

V
VEA (virtual environment architecture)

cache model and memory coherency, 5-1
definition, xxv, 1-4
general changes to the architecture, 1-16, 1-16
programming model, 2-14
register set, 2-13
time base, 2-15

Vector offset table, exception, 6-4
Virtual address

formation, 2-29
Virtual environment architecture,see VEA
Virtual memory

implementation, 7-2
virtual vs. physical memory, 5-1

W
WIMG bits, 5-6, 7-64

description, 5-13
G-bit, 5-16
in BAT register, 7-26
in BAT registers, 2-25, 5-13
WIM combinations, 5-15

Write-back mode, 5-14
Write-through attribute (W)

write-through/write-back operation, 5-6, 5-14

X
XER register

bit definitions, 2-11
difference from POWER architecture, B-4

xor, 4-16, 8-211
XOR (exclusive OR), 3-6
xori, 4-16, 8-212
xoris, 4-16, 8-213

Z
Zero divide exception condition, 3-38
Zero numbers, format, 3-20
Zero values, 3-20

	Table of Contents
	List of Tables
	List of Figures
	About This Book
	Audience
	Organization
	Suggested Reading
	General Information
	PowerPC Documentation

	Conventions
	Acronyms and Abbreviations
	Table�i . Acronyms and Abbreviated Terms (Continued)

	Terminology Conventions
	Table�ii . Terminology Conventions�
	Table�iii . Instruction Field Conventions�

	Chapter�1. Overview
	1.1 PowerPC Architecture Overview
	1.1.1 The 64-Bit PowerPC Architecture and the 32-Bit Subset
	1.1.2 The Levels of the PowerPC Architecture
	1.1.3 Latitude Within the Levels of the PowerPC Architecture
	1.1.4 Features Not Defined by the PowerPC Architecture

	1.2 The PowerPC Architectural Models
	1.2.1 PowerPC Registers and Programming Model
	Figure�1�1 . Programming Model—PowerPC Registers

	1.2.2 Operand Conventions
	1.2.2.1 Byte Ordering
	Figure�1�2 . Big-Endian Byte and Bit Ordering

	1.2.2.2 Data Organization in Memory and Data Transfers
	1.2.2.3 Floating-Point Conventions

	1.2.3 PowerPC Instruction Set and Addressing Modes
	1.2.3.1 PowerPC Instruction Set
	1.2.3.2 Calculating Effective Addresses

	1.2.4 PowerPC Cache Model
	1.2.5 PowerPC Exception Model
	1.2.6 PowerPC Memory Management Model

	1.3 Changes to this Document
	1.3.1 The Phasing Out of the Direct-store Function
	1.3.2 General Additions to and Refinements of the Architecture
	Table�1�1 . UISA Changes—Rev. 0 to Rev. 0.1�
	Table�1�2 . UISA Changes—Rev. 0.1 to Rev. 1.0�
	Table�1�3 . VEA Changes—Rev. 0 to Rev. 0.1�
	Table�1�4 . VEA Changes—Rev. 0.1 to Rev. 1.0�
	Table�1�5 . OEA Changes—Rev. 0 to Rev. 0.1 (Continued)
	Table�1�6 . OEA Changes—Rev. 0.1 to Rev. 1.0�

	Chapter�2. PowerPC Register Set
	2.1 PowerPC UISA Register Set
	Figure�2�1 . UISA Programming Model—User-Level Registers
	2.1.1 General-Purpose Registers (GPRs)
	2.1.2 Floating-Point Registers (FPRs)
	Figure�2�2 . Floating-Point Registers (FPRs)

	2.1.3 Condition Register (CR)
	Figure�2�3 . Condition Register (CR)
	2.1.3.1 Condition Register CR0 Field Definition
	Table�2�1 . Bit Settings for CR0 Field of CR

	2.1.3.2 Condition Register CR1 Field Definition
	Table�2�2 . Bit Settings for CR1 Field of CR�

	2.1.3.3 Condition Register CRn Field—Compare Instruction
	Table�2�3 . CRn Field Bit Settings for Compare Instructions �

	2.1.4 Floating-Point Status and Control Register (FPSCR)
	Figure�2�4 . Floating-Point Status and Control Register (FPSCR)
	Table�2�4 . FPSCR Bit Settings (Continued)
	Table�2�5 . Floating-Point Result Flags in FPSCR �

	2.1.5 XER Register (XER)
	Figure�2�5 . XER Register
	Table�2�6 . XER Bit Definitions �

	2.1.6 Link Register (LR)
	Figure�2�6 . Link Register (LR)

	2.1.7 Count Register (CTR)
	Figure�2�7 . Count Register (CTR)
	Table�2�7 . BO Operand Encodings�

	2.2 PowerPC VEA Register Set—Time Base
	Figure�2�8 . VEA Programming Model—User-Level Registers Plus Time Base
	Figure�2�9 . Time Base (TB)
	2.2.1 Reading the Time Base
	2.2.2 Computing Time of Day from the Time Base

	2.3 PowerPC OEA Register Set
	Figure�2�10 . OEA Programming Model—All Registers
	2.3.1 Machine State Register (MSR)
	Figure�2�11 . Machine State Register (MSR)
	Table�2�8 . MSR Bit Settings (Continued)
	Table�2�9 . Floating-Point Exception Mode Bits�
	Table�2�10 . State of MSR at Power Up

	2.3.2 Processor Version Register (PVR)
	Figure�2�12 . Processor Version Register (PVR)

	2.3.3 BAT Registers
	Figure�2�13 . Upper BAT Register
	Figure�2�14 . Lower BAT Register
	Table�2�11 . BAT Registers—Field and Bit Descriptions �
	Table�2�12 . BAT Area Lengths (Continued)

	2.3.4 SDR1
	Figure�2�15 . SDR1
	Table�2�13 . SDR1 Bit Settings

	2.3.5 Segment Registers
	Figure�2�16 . Segment Register Format (T = 0)
	Table�2�14 . Segment Register Bit Settings (T = 0)�
	Figure�2�17 . Segment Register Format (T = 1)
	Table�2�15 . Segment Register Bit Settings (T = 1)

	2.3.6 Data Address Register (DAR)
	Figure�2�18 . Data Address Register (DAR)

	2.3.7 SPRG0–SPRG3
	Figure�2�19 . SPRG0–SPRG3
	Table�2�16 . Conventional Uses of SPRG0–SPRG3

	2.3.8 DSISR
	Figure�2�20 . DSISR

	2.3.9 Machine Status Save/Restore Register 0 (SRR0)
	Figure�2�21 . Machine Status Save/Restore Register 0 (SRR0)

	2.3.10 Machine Status Save/Restore Register 1 (SRR1)
	Figure�2�22 . Machine Status Save/Restore Register 1 (SRR1)

	2.3.11 Floating-Point Exception Cause Register (FPECR)
	2.3.12 Time Base Facility (TB)—OEA
	2.3.12.1 Writing to the Time Base

	2.3.13 Decrementer Register (DEC)
	Figure�2�23 . Decrementer Register (DEC)
	2.3.13.1 Decrementer Operation
	2.3.13.2 Writing and Reading the DEC

	2.3.14 Data Address Breakpoint Register (DABR)
	Figure�2�24 . Data Address Breakpoint Register (DABR)
	Table�2�17 . DABR—Bit Settings

	2.3.15 External Access Register (EAR)
	Figure�2�25 . External Access Register (EAR)
	Table�2�18 . External Access Register (EAR) Bit Settings�

	2.3.16 Processor Identification Register (PIR)
	2.3.17 Synchronization Requirements for Special Registers and for Lookaside Buffers
	Table�2�19 . Data Access Synchronization (Continued)
	Table�2�20 . Instruction Access Synchronization (Continued)

	Chapter�3. Operand Conventions
	3.1 Data Organization in Memory and Data Transfers
	3.1.1 Aligned and Misaligned Accesses
	Table�3�1 . Memory Operand Alignment (Continued)

	3.1.2 Byte Ordering
	3.1.2.1 Big-Endian Byte Ordering
	3.1.2.2 Little-Endian Byte Ordering

	3.1.3 Structure Mapping Examples
	Figure�3�1 . C Program Example—Data Structure S
	3.1.3.1 Big-Endian Mapping
	Figure�3�2 . Big-Endian Mapping of Structure S

	3.1.3.2 Little-Endian Mapping
	Figure�3�3 . Little-Endian Mapping of Structure S
	Figure�3�4 . Little-Endian Mapping of Structure S —Alternate View

	3.1.4 PowerPC Byte Ordering
	3.1.4.1 Aligned Scalars in Little-Endian Mode
	Table�3�2 . EA Modifications�
	Figure�3�5 . Munged Little-Endian Structure S as Seen by the Memory Subsystem
	Figure�3�6 . Munged Little-Endian Structure S as Seen by Processor

	3.1.4.2 Misaligned Scalars in Little-Endian Mode
	Figure�3�7 . True Little-Endian Mapping, Word Stored at Address 05
	Figure�3�8 . Word Stored at Little-Endian Address 05 as Seen by the Memory Subsystem

	3.1.4.3 Nonscalars
	3.1.4.4 PowerPC Instruction Addressing in Little-Endian Mode
	3.1.4.5 PowerPC Input/Output Data Transfer Addressing in Little- Endian Mode

	3.2 Effect of Operand Placement on Performance—VEA
	3.2.1 Summary of Performance Effects
	Table�3�3 . Performance Effects of Memory Operand Placement, Big-Endian Mode
	Table�3�4. Performance Effects of Memory Operand Placement, Little-Endian Mode

	3.2.2 Instruction Restart

	3.3 Floating-Point Execution Models—UISA
	3.3.1 Floating-Point Data Format
	Figure�3�9 . Floating-Point Single-Precision Format
	Figure�3�10 . Floating-Point Double-Precision Format
	Table�3�5 . IEEE Floating-Point Fields�
	Table�3�6 . Biased Exponent Format (Continued)
	3.3.1.1 Value Representation
	Figure�3�11 . Approximation to Real Numbers
	Table�3�7 . Recognized Floating-Point Numbers (Continued)

	3.3.1.2 Binary Floating-Point Numbers
	3.3.1.3 Normalized Numbers (±NORM)
	Figure�3�12 . Format for Normalized Numbers

	3.3.1.4 Zero Values (±0)
	Figure�3�13 . Format for Zero Numbers

	3.3.1.5 Denormalized Numbers (±DENORM)
	Figure�3�14 . Format for Denormalized Numbers

	3.3.1.6 Infinities (±°±•)
	Figure�3�15 . Format for Positive and Negative Infinities

	3.3.1.7 Not a Numbers (NaNs)
	Figure�3�16 . Format for NaNs
	Figure�3�17 . Representation of Generated QNaN

	3.3.2 Sign of Result
	3.3.3 Normalization and Denormalization
	3.3.4 Data Handling and Precision
	Figure�3�18 . Single-Precision Representation in an FPR

	3.3.5 Rounding
	Figure�3�19 . Relation of Z1 and Z2
	Table�3�8 . FPSCR Bit Settings—RN Field�
	Figure�3�20 . Selection of Z1 and Z2 for the Four Rounding Modes
	Figure�3�21 . Rounding Flags in FPSCR

	3.3.6 Floating-Point Program Exceptions
	Figure�3�22 . Floating-Point Status and Control Register (FPSCR)
	Table�3�9 . FPSCR Bit Settings (Continued)
	Table�3�10 . Floating-Point Result Flags — FPSCR[FPRF] �
	Table�3�11 . MSR[FE0] and MSR[FE1] Bit Settings for FP Exceptions�
	3.3.6.1 Invalid Operation and Zero Divide Exception Conditions
	Figure�3�23 . Initial Flow for Floating-Point Exception Conditions
	3.3.6.1.1 Invalid Operation Exception Condition
	Table�3�12 . Additional Actions Performed for Invalid FP Operations

	3.3.6.1.2 Zero Divide Exception Condition
	Table�3�13 . Additional Actions Performed for Zero Divide

	3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions
	Figure�3�24 . Checking of Remaining Floating-Point Exception Conditions
	3.3.6.2.1 Overflow Exception Condition
	Table�3�14 . Additional Actions Performed for Overflow Exception Condition
	Table�3�15 . Target Result for Overflow Exception Disabled Case

	3.3.6.2.2 Underflow Exception Condition
	Table�3�16 . Actions Performed for Underflow Conditions�

	3.3.6.2.3 Inexact Exception Condition

	Chapter�4. Addressing Modes and Instruction Set Summary
	4.1 Conventions
	4.1.1 Sequential Execution Model
	4.1.2 Computation Modes
	4.1.3 Classes of Instructions
	4.1.3.1 Definition of Boundedly Undefined
	4.1.3.2 Defined Instruction Class
	4.1.3.2.1 Preferred Instruction Forms
	4.1.3.2.2 Invalid Instruction Forms
	4.1.3.2.3 Optional Instructions

	4.1.3.3 Illegal Instruction Class
	4.1.3.4 Reserved Instructions

	4.1.4 Memory Addressing
	4.1.4.1 Memory Operands
	4.1.4.2 Effective Address Calculation

	4.1.5 Synchronizing Instructions
	4.1.5.1 Context Synchronizing Instructions
	4.1.5.2 Execution Synchronizing Instructions

	4.1.6 Exception Summary

	4.2 PowerPC UISA Instructions
	4.2.1 Integer Instructions
	4.2.1.1 Integer Arithmetic Instructions
	Table�4�1 . Integer Arithmetic Instructions (Continued)

	4.2.1.2 Integer Compare Instructions
	Table�4�2 . Integer Compare Instructions�

	4.2.1.3 Integer Logical Instructions
	Table�4�3 . Integer Logical Instructions (Continued)

	4.2.1.4 Integer Rotate and Shift Instructions
	4.2.1.4.1 Integer Rotate Instructions
	Table�4�4 . Integer Rotate Instructions (Continued)

	4.2.1.4.2 Integer Shift Instructions
	Table�4�5 . Integer Shift Instructions (Continued)

	4.2.2 Floating-Point Instructions
	4.2.2.1 Floating-Point Arithmetic Instructions
	Table�4�6 . Floating-Point Arithmetic Instructions (Continued)

	4.2.2.2 Floating-Point Multiply-Add Instructions
	Table�4�7 . Floating-Point Multiply-Add Instructions (Continued)

	4.2.2.3 Floating-Point Rounding and Conversion Instructions
	Table�4�8 . Floating-Point Rounding and Conversion Instructions�

	4.2.2.4 Floating-Point Compare Instructions
	Table�4�9 . CR Bit Settings�
	Table�4�10 . Floating-Point Compare Instructions

	4.2.2.5 Floating-Point Status and Control Register Instructions
	Table�4�11 . Floating-Point Status and Control Register Instructions (Continued)

	4.2.2.6 Floating-Point Move Instructions
	Table�4�12 . Floating-Point Move Instructions (Continued)

	4.2.3 Load and Store Instructions
	4.2.3.1 Integer Load and Store Address Generation
	4.2.3.1.1 Register Indirect with Immediate Index Addressing for Integer Loads and Stores
	Figure�4�1 . Register Indirect with Immediate Index Addressing for Integer Loads/Stores

	4.2.3.1.2 Register Indirect with Index Addressing for Integer Loads and Stores
	Figure�4�2 . Register Indirect with Index Addressing for Integer Loads/Stores

	4.2.3.1.3 Register Indirect Addressing for Integer Loads and Stores
	Figure�4�3 . Register Indirect Addressing for Integer Loads/Stores

	4.2.3.2 Integer Load Instructions
	Table�4�13 . Integer Load Instructions (Continued)

	4.2.3.3 Integer Store Instructions
	Table�4�14 . Integer Store Instructions (Continued)

	4.2.3.4 Integer Load and Store with Byte-Reverse Instructions
	Table�4�15 . Integer Load and Store with Byte-Reverse Instructions�

	4.2.3.5 Integer Load and Store Multiple Instructions
	Table�4�16 . Integer Load and Store Multiple Instructions�

	4.2.3.6 Integer Load and Store String Instructions
	Table�4�17 . Integer Load and Store String Instructions�

	4.2.3.7 Floating-Point Load and Store Address Generation
	4.2.3.7.1 Register Indirect (contents) with Immediate Index Addressing for Floating-Point Loads a...
	Figure�4�4 . Register Indirect with Immediate Index Addressing for Floating-Point Loads/Stores

	4.2.3.7.2 Register Indirect (contents) with Index Addressing for Floating- Point Loads and Stores
	Figure�4�5 . Register Indirect with Index Addressing for Floating-Point Loads/Stores

	4.2.3.8 Floating-Point Load Instructions
	Table�4�18 . Floating-Point Load Instructions�

	4.2.3.9 Floating-Point Store Instructions
	Table�4�19 . Floating-Point Store Instructions (Continued)

	4.2.4 Branch and Flow Control Instructions
	4.2.4.1 Branch Instruction Address Calculation
	4.2.4.1.1 Branch Relative Addressing Mode
	Figure�4�6 . Branch Relative Addressing

	4.2.4.1.2 Branch Conditional to Relative Addressing Mode
	Figure�4�7 . Branch Conditional Relative Addressing

	4.2.4.1.3 Branch to Absolute Addressing Mode
	Figure�4�8 . Branch to Absolute Addressing

	4.2.4.1.4 Branch Conditional to Absolute Addressing Mode
	Figure�4�9 . Branch Conditional to Absolute Addressing

	4.2.4.1.5 Branch Conditional to Link Register Addressing Mode
	Figure�4�10 . Branch Conditional to Link Register Addressing

	4.2.4.1.6 Branch Conditional to Count Register Addressing Mode
	Figure�4�11 . Branch Conditional to Count Register Addressing

	4.2.4.2 Conditional Branch Control
	Table�4�20 . BO Operand Encodings (Continued)

	4.2.4.3 Branch Instructions
	Table�4�21 . Branch Instructions�

	4.2.4.4 Simplified Mnemonics for Branch Processor Instructions
	4.2.4.5 Condition Register Logical Instructions
	Table�4�22 . Condition Register Logical Instructions�

	4.2.4.6 Trap Instructions
	Table�4�23 . Trap Instructions�

	4.2.4.7 System Linkage Instruction—UISA
	Table�4�24 . System Linkage Instruction—UISA�

	4.2.5 Processor Control Instructions—UISA
	4.2.5.1 Move to/from Condition Register Instructions
	Table�4�25 . Move to/from Condition Register Instructions�

	4.2.5.2 Move to/from Special-Purpose Register Instructions (UISA)
	Table�4�26 . Move to/from Special-Purpose Register Instructions (UISA)

	4.2.6 Memory Synchronization Instructions—UISA
	Table�4�27 . Memory Synchronization Instructions—UISA (Continued)

	4.2.7 Recommended Simplified Mnemonics

	4.3 PowerPC VEA Instructions
	4.3.1 Processor Control Instructions—VEA
	Table�4�28 . Move from Time Base Instruction
	Table�4�29 . User-Level TBR Encodings (VEA)
	Table�4�30 . Supervisor-Level TBR Encodings (VEA)�

	4.3.2 Memory Synchronization Instructions—VEA
	Table�4�31 Memory Synchronization Instructions—VEA

	4.3.3 Memory Control Instructions—VEA
	4.3.3.1 User-Level Cache Instructions—VEA
	Table�4�32 . User-Level Cache Instructions (Continued)

	4.3.4 External Control Instructions
	Table�4�33 . External Control Instructions

	4.4 PowerPC OEA Instructions
	4.4.1 System Linkage Instructions—OEA
	Table�4�34 . System Linkage Instructions—OEA�

	4.4.2 Processor Control Instructions—OEA
	4.4.2.1 Move to/from Machine State Register Instructions
	Table�4�35 . Move to/from Machine State Register Instructions

	4.4.2.2 Move to/from Special-Purpose Register Instructions (OEA)
	Table�4�36 . Move to/from Special-Purpose Register Instructions (OEA)�

	4.4.3 Memory Control Instructions—OEA
	4.4.3.1 Supervisor-Level Cache Management Instruction
	Table�4�37 . Cache Management Supervisor-Level Instruction�

	4.4.3.2 Segment Register Manipulation Instructions
	Table�4�38 . Segment Register Manipulation Instructions�

	4.4.3.3 Translation Lookaside Buffer Management Instructions
	Table�4�39 . Translation Lookaside Buffer Management Instructions�

	Chapter�5. Cache Model and Memory Coherency
	5.1 The Virtual Environment
	5.1.1 Memory Access Ordering
	5.1.1.1 Enforce In-Order Execution of I/O Instruction
	5.1.1.2 Synchronize Instruction

	5.1.2 Atomicity
	5.1.3 Cache Model
	5.1.4 Memory Coherency
	5.1.4.1 Memory/Cache Access Modes
	5.1.4.1.1 Pages Designated as Write-Through
	5.1.4.1.2 Pages Designated as Caching-Inhibited
	5.1.4.1.3 Pages Designated as Memory Coherency Required
	5.1.4.1.4 Pages Designated as Memory Coherency Not Required
	5.1.4.1.5 Pages Designated as Guarded

	5.1.4.2 Coherency Precautions

	5.1.5 VEA Cache Management Instructions
	5.1.5.1 Data Cache Instructions
	5.1.5.1.1 Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst) Instructions
	5.1.5.1.2 Data Cache Block Set to Zero (dcbz) Instruction
	5.1.5.1.3 Data Cache Block Store (dcbst) Instruction
	5.1.5.1.4 Data Cache Block Flush (dcbf) Instruction

	5.1.5.2 Instruction-Cache Instructions
	5.1.5.2.1 Instruction Cache Block Invalidate (icbi) Instruction
	5.1.5.2.2 Instruction Synchronize (isync) Instruction

	5.2 The Operating Environment
	5.2.1 Memory/Cache Access Attributes
	5.2.1.1 Write-Through Attribute (W)
	5.2.1.2 Caching-Inhibited Attribute (I)
	5.2.1.3 Memory Coherency Attribute (M)
	5.2.1.4 W, I, and M Bit Combinations
	Table�5�1 . Combinations of W, I, and M Bits (Continued)

	5.2.1.5 The Guarded Attribute (G)
	5.2.1.5.1 Performing Operations Out of Order
	5.2.1.5.2 Guarded Memory
	5.2.1.5.3 Out-of-Order Accesses to Guarded Memory

	5.2.2 I/O Interface Considerations
	5.2.3 OEA Cache Management Instruction— Data Cache Block Invalidate (dcbi)

	Chapter�6. Exceptions
	6.1 Exception Classes
	Table�6�1 . PowerPC Exception Classifications�
	Table�6�2 . Exceptions and Conditions—Overview (Continued)
	6.1.1 Precise Exceptions
	6.1.2 Synchronization
	6.1.2.1 Context Synchronization
	6.1.2.2 Execution Synchronization
	6.1.2.3 Synchronous/Precise Exceptions
	6.1.2.4 Asynchronous Exceptions
	6.1.2.4.1 System Reset and Machine Check Exceptions
	6.1.2.4.2 External Interrupt and Decrementer Exceptions

	6.1.3 Imprecise Exceptions
	6.1.3.1 Imprecise Exception Status Description
	6.1.3.2 Recoverability of Imprecise Floating-Point Exceptions
	Table�6�3 . IEEE Floating-Point Program Exception Mode Bits�

	6.1.4 Partially Executed Instructions
	6.1.5 Exception Priorities
	Table�6�4 . Exception Priorities (Continued)

	6.2 Exception Processing
	Figure�6�1 . Machine Status Save/Restore Register 0
	Figure�6�2 . Machine Status Save/Restore Register 1
	Figure�6�3 . Machine State Register (MSR)
	Table�6�5 . MSR Bit Settings (Continued)
	6.2.1 Enabling and Disabling Exceptions
	6.2.2 Steps for Exception Processing
	6.2.3 Returning from an Exception Handler

	6.3 Process Switching
	6.4 Exception Definitions
	Table�6�6 . MSR Setting Due to Exception�
	6.4.1 System Reset Exception (0x00100)
	Table�6�7 . System Reset Exception—Register Settings�

	6.4.2 Machine Check Exception (0x00200)
	Table�6�8 . Machine Check Exception—Register Settings �

	6.4.3 DSI Exception (0x00300)
	Table�6�9 . DSI Exception—Register Settings (Continued)

	6.4.4 ISI Exception (0x00400)
	Table�6�10 . ISI Exception—Register Settings�

	6.4.5 External Interrupt (0x00500)
	Table�6�11 . External Interrupt—Register Settings�

	6.4.6 Alignment Exception (0x00600)
	Table�6�12 . Alignment Exception—Register Settings (Continued)
	6.4.6.1 Integer Alignment Exceptions
	6.4.6.1.1 Page Address Translation Access Considerations
	6.4.6.1.2 Direct-Store Interface Access Considerations

	6.4.6.2 Little-Endian Mode Alignment Exceptions
	6.4.6.3 Interpretation of the DSISR as Set by an Alignment Exception
	Table�6�13 . DSISR(15–21) Settings to Determine Misaligned Instruction (Continued)

	6.4.7 Program Exception (0x00700)
	Table�6�14 . Program Exception—Register Settings�

	6.4.8 Floating-Point Unavailable Exception (0x00800)
	Table�6�15 . Floating-Point Unavailable Exception—Register Settings�

	6.4.9 Decrementer Exception (0x00900)
	Table�6�16 . Decrementer Exception—Register Settings�

	6.4.10 System Call Exception (0x00C00)
	Table�6�17 . System Call Exception—Register Settings�

	6.4.11 Trace Exception (0x00D00)
	Table�6�18 . Trace Exception—Register Settings�

	6.4.12 Floating-Point Assist Exception (0x00E00)
	Table�6�19 . Floating-Point Assist Exception—Register Settings

	Chapter�7. Memory Management
	7.1 MMU Features
	7.2 MMU Overview
	7.2.1 Memory Addressing
	7.2.1.1 Predefined Physical Memory Locations
	Table�7�1 . Predefined Physical Memory Locations�
	Table�7�2 . Value of Base for Predefined Memory Use

	7.2.2 MMU Organization
	Figure�7�1 . MMU Conceptual Block Diagram

	7.2.3 Address Translation Mechanisms
	Figure�7�2 . Address Translation Types

	7.2.4 Memory Protection Facilities
	Table�7�3 . Access Protection Options for Pages�

	7.2.5 Page History Information
	7.2.6 General Flow of MMU Address Translation
	7.2.6.1 Real Addressing Mode and Block Address Translation Selection
	Figure�7�3 . General Flow of Address Translation

	7.2.6.2 Page and Direct-Store Address Translation Selection
	Figure�7�4 . General Flow of Page and Direct-Store Address Translation
	7.2.6.2.1 Selection of Page Address Translation
	7.2.6.2.2 Selection of Direct-Store Address Translation

	7.2.7 MMU Exceptions Summary
	Table�7�4 . Translation Exception Conditions
	Table�7�5 . Other MMU Exception Conditions �

	7.2.8 MMU Instructions and Register Summary
	Table�7�6 . Instruction Summary—Control MMU (Continued)
	Table�7�7 MMU Registers�

	7.2.9 TLB Entry Invalidation

	7.3 Real Addressing Mode
	7.4 Block Address Translation
	7.4.1 BAT Array Organization
	Figure�7�5 . BAT Array Organization

	7.4.2 Recognition of Addresses in BAT Arrays
	Figure�7�6 . BAT Array Hit/Miss Flow

	7.4.3 BAT Register Implementation of BAT Array
	Figure�7�7 . Format of Upper BAT Registers
	Figure�7�8 . Format of Lower BAT Registers
	Table�7�8 . BAT Registers—Field and Bit Descriptions for 32-Bit Implementations
	Table�7�9 . Upper BAT Register Block Size Mask Encodings (Continued)

	7.4.4 Block Memory Protection
	Table�7�10 . Access Protection Control for Blocks
	Table�7�11 . Access Protection Summary for BAT Array�
	Figure�7�9 . Memory Protection Violation Flow for Blocks

	7.4.5 Block Physical Address Generation
	Figure�7�10 . Block Physical Address Generation

	7.4.6 Block Address Translation Summary
	Figure�7�11 . Block Address Translation Flow

	7.5 Memory Segment Model
	7.5.1 Address Translation via Segment Descriptors
	Table�7�12 . Segment Descriptor Types
	7.5.1.1 Selection of Memory Segments
	7.5.1.2 Selection of Direct-Store Segments

	7.5.2 Page Address Translation Overview
	Figure�7�12 . Page Address Translation Overview
	7.5.2.1 Segment Descriptor Definitions
	7.5.2.1.1 Segment Descriptor Format
	Figure�7�13 . Segment Register Format for Page Address Translation.
	Table�7�13 . Segment Register Bit Definition for Page Address Translation
	Table�7�14 . Segment Register Instructions

	7.5.2.2 Page Table Entry (PTE) Definitions
	7.5.2.2.1 PTE Format
	Figure�7�14 . Page Table Entry Format
	Table�7�15 . PTE Bit Definitions�

	7.5.3 Page History Recording
	Table�7�16 . Table Search Operations to Update History Bits
	7.5.3.1 Referenced Bit
	7.5.3.2 Changed Bit
	7.5.3.3 Scenarios for Referenced and Changed Bit Recording
	Table�7�17 . Model for Guaranteed R and C Bit Settings

	7.5.3.4 Synchronization of Memory Accesses and Referenced and Changed Bit Updates

	7.5.4 Page Memory Protection
	Table�7�18 . Access Protection Control with Key�
	Table�7�19 .� Exception Conditions for Key and PP Combinations�
	Table�7�20 . Access Protection Encoding of PP Bits for Ks = 0 and Kp = 1�
	Figure�7�15 . Memory Protection Violation Flow for Pages

	7.5.5 Page Address Translation Summary
	Figure�7�16 . Page Address Translation Flow—TLB Hit
	Figure�7�17 . Page Memory Protection Violation Conditions for Page Address Translation

	7.6 Hashed Page Tables
	7.6.1 Page Table Definition
	Figure�7�18 . Page Table Definitions
	7.6.1.1 SDR1 Register Definitions
	Figure�7�19 . SDR1 Register Format
	Table�7�21 . SDR1 Register Bit Settings

	7.6.1.2 Page Table Size
	Table�7�22 . Minimum Recommended Page Table Sizes

	7.6.1.3 Page Table Hashing Functions
	Figure�7�20 . Hashing Functions for Page Tables

	7.6.1.4 Page Table Addresses
	Figure�7�21 . Generation of Addresses for Page Tables

	7.6.1.5 Page Table Structure Summary
	7.6.1.6 Page Table Structure Example
	Figure�7�22 . Example Page Table Structure

	7.6.1.7 PTEG Address Mapping Examples
	Figure�7�23 . Example Primary PTEG Address Generation
	Figure�7�24 . Example Secondary PTEG Address Generation

	7.6.2 Page Table Search Process
	7.6.2.1 Flow for Page Table Search Operation
	Figure�7�25 . Page Table Search Flow

	7.6.3 Page Table Updates
	7.6.3.1 Adding a Page Table Entry
	7.6.3.2 Modifying a Page Table Entry
	7.6.3.2.1 General Case
	7.6.3.2.2 Clearing the Referenced (R) Bit
	7.6.3.2.3 Modifying the Virtual Address

	7.6.3.3 Deleting a Page Table Entry

	7.6.4 Segment Register Updates

	7.7 Direct-Store Segment Address Translation
	7.7.1 Segment Descriptors for Direct-Store Segments
	Figure�7�26 . Segment Register Format for Direct-Store Segments
	Table�7�23 . Segment Register Bit Definitions for Direct-Store Segments

	7.7.2 Direct-Store Segment Accesses
	7.7.3 Direct-Store Segment Protection
	7.7.4 Instructions Not Supported in Direct-Store Segments
	7.7.5 Instructions with No Effect in Direct-Store Segments
	7.7.6 Direct-Store Segment Translation Summary Flow
	Figure�7�27 . Direct-Store Segment Translation Flow

	Chapter�8. Instruction Set
	8.1 Instruction Formats
	8.1.1 Split-Field Notation
	Table�8�1 . Split-Field Notation and Conventions

	8.1.2 Instruction Fields
	Table�8�2 . Instruction Syntax Conventions (Continued)

	8.1.3 Notation and Conventions
	Table�8�3 . Notation and Conventions (Continued)
	Table�8�4 . Instruction Field Conventions�
	Table�8�5 . Precedence Rules

	8.1.4 Computation Modes

	8.2 PowerPC Instruction Set
	Figure�8�1 . Instruction Description
	Table�8�6 . BO Operand Encodings
	Table�8�7 . BO Operand Encodings
	Table�8�8 . BO Operand Encodings
	Table�8�9 . PowerPC UISA SPR Encodings for mfspr�
	Table�8�10 . PowerPC OEA SPR Encodings for mfspr (Continued)
	Table�8�11 . TBR Encodings for mftb
	Table�8�12 . PowerPC UISA SPR Encodings for mtspr�
	Table�8�13 . PowerPC OEA SPR Encodings for mtspr (Continued)

	Appendix�A. PowerPC Instruction Set Listings
	A.1 Instructions Sorted by Mnemonic
	Table�A�1 . Complete Instruction List Sorted by Mnemonic

	A.2 Instructions Sorted by Opcode
	Table�A�2 . Complete Instruction List Sorted by Opcode

	A.3 Instructions Grouped by Functional Categories
	Table�A�3 . Integer Arithmetic Instructions
	Table�A�4 . Integer Compare Instructions
	Table�A�5 . Integer Logical Instructions
	Table�A�6 . Integer Rotate Instructions
	Table�A�7 . Integer Shift Instructions
	Table�A�8 . Floating-Point Arithmetic Instructions
	Table�A�9 . Floating-Point Multiply-Add Instructions
	Table�A�10 . Floating-Point Rounding and Conversion Instructions
	Table�A�11 . Floating-Point Compare Instructions
	Table�A�12 . Floating-Point Status and Control Register Instructions
	Table�A�13 . Integer Load Instructions
	Table�A�14 . Integer Store Instructions
	Table�A�15 . Integer Load and Store with Byte Reverse Instructions
	Table�A�16 . Integer Load and Store Multiple Instructions
	Table�A�17 . Integer Load and Store String Instructions
	Table�A�18 . Memory Synchronization Instructions
	Table�A�19 . Floating-Point Load Instructions
	Table�A�20 . Floating-Point Store Instructions
	Table�A�21 . Floating-Point Move Instructions
	Table�A�22 . Branch Instructions
	Table�A�23 . Condition Register Logical Instructions
	Table�A�24 . System Linkage Instructions
	Table�A�25 . Trap Instructions
	Table�A�26 . Processor Control Instructions
	Table�A�27 . Cache Management Instructions
	Table�A�28 . Segment Register Manipulation Instructions.
	Table�A�29 . Lookaside Buffer Management Instructions
	Table�A�30 . External Control Instructions

	A.4 Instructions Sorted by Form
	Table�A�31 . I-Form
	Table�A�32 . B-Form
	Table�A�33 . SC-Form
	Table�A�34 . D-Form
	Table�A�35 . X-Form

	A.5 Instruction Set Legend
	Table�A�36 . PowerPC Instruction Set Legend (Continued)

	Appendix�B. POWER Architecture Cross Reference
	B.1 New Instructions, Formerly Supervisor-Level Instructions
	B.2 New Supervisor-Level Instructions
	B.3 Reserved Bits in Instructions
	B.4 Reserved Bits in Registers
	B.5 Alignment Check
	B.6 Condition Register
	Table�B�1 . Condition Register Settings

	B.7 Inappropriate Use of LK and Rc bits
	B.8 BO Field
	B.9 Branch Conditional to Count Register
	B.10 System Call/Supervisor Call
	B.11 XER Register
	B.12 Update Forms of Memory Access
	B.13 Multiple Register Loads
	B.14 Alignment for Load/Store Multiple
	B.15 Load and Store String Instructions
	B.16 Synchronization
	B.17 Move to/from SPR
	B.18 Effects of Exceptions on FPSCR Bits FR and FI
	B.19 Floating-Point Store Single Instructions
	B.20 Move from FPSCR
	B.21 Clearing Bytes in the Data Cache
	B.22 Segment Register Instructions
	B.23 TLB Entry Invalidation
	B.24 Floating-Point Exceptions
	B.25 Timing Facilities
	B.25.1 Real-Time Clock
	B.25.2 Decrementer

	B.26 Deleted Instructions
	Table�B�2 . Deleted POWER Instructions (Continued)

	B.27 POWER Instructions Supported by the PowerPC Architecture
	Table�B�3 . POWER Instructions Implemented in PowerPC Architecture (Continued)

	Appendix�C. Multiple-Precision Shifts
	C.1 Multiple-Precision Shifts in 32-Bit Implementations

	Appendix�D. Floating-Point Models
	D.1 Execution Model for IEEE Operations
	Figure�D�1 . IEEE 64-Bit Execution Model
	Table�D�1 . Interpretation of G, R, and X Bits�
	Table�D�2 . Location of the Guard, Round, and Sticky Bits—IEEE Execution Model

	D.2 Execution Model for Multiply-Add Type Instructions
	Figure�D�2 . Multiply-Add 64-Bit Execution Model
	Table�D�3 . Location of the Guard, Round, and Sticky Bits—Multiply-Add Execution Model

	D.3 Floating-Point Conversions
	D.3.1 Conversion from Floating-Point Number to Signed Fixed-Point Integer Word
	D.3.2 Conversion from Floating-Point Number to Unsigned Fixed- Point Integer Word

	D.4 Floating-Point Models
	D.4.1 Floating-Point Round to Single-Precision Model
	D.4.2 Floating-Point Convert to Integer Model
	D.4.3 Floating-Point Convert from Integer Model

	D.5 Floating-Point Selection
	D.5.1 Comparison to Zero
	D.5.2 Minimum and Maximum
	D.5.3 Simple If-Then-Else Constructions
	D.5.4 Notes

	D.6 Floating-Point Load Instructions
	D.7 Floating-Point Store Instructions

	Appendix�E. Synchronization Programming Examples
	E.1 General Information
	E.2 Synchronization Primitives
	E.2.1 Fetch and No-Op
	E.2.2 Fetch and Store
	E.2.3 Fetch and Add
	E.2.4 Fetch and AND
	E.2.5 Test and Set

	E.3 Compare and Swap
	E.4 Lock Acquisition and Release
	E.5 List Insertion

	Appendix�F. Simplified Mnemonics
	F.1 Symbols
	Table�F�1 . Condition Register Bit and Identification Symbol Descriptions �

	F.2 Simplified Mnemonics for Subtract Instructions
	F.2.1 Subtract Immediate
	F.2.2 Subtract

	F.3 Simplified Mnemonics for Compare Instructions
	F.3.1 Word Comparisons
	Table�F�2 . Simplified Mnemonics for Word Compare Instructions�

	F.4 Simplified Mnemonics for Rotate and Shift Instructions
	F.4.1 Operations on Words
	Table�F�3 . Word Rotate and Shift Instructions

	F.5 Simplified Mnemonics for Branch Instructions
	F.5.1 BO and BI Fields
	F.5.2 Basic Branch Mnemonics
	Table�F�4 . Simplified Branch Mnemonics�
	Table�F�5 . �Simplified Branch Mnemonics for bc and bca Instructions without Link Register Update
	Table�F�6 . �Simplified Branch Mnemonics for bclr and bcclr Instructions without Link Register Up...
	Table�F�7 . �Simplified Branch Mnemonics for bcl and bcla Instructions with Link Register Update
	Table�F�8 . �Simplified Branch Mnemonics for bclrl and bcctrl Instructions with Link Register Update

	F.5.3 Branch Mnemonics Incorporating Conditions
	Table�F�9 . Standard Coding for Branch Conditions
	Table�F�10 . Simplified Branch Mnemonics with Comparison Conditions �
	Table�F�11 . Simplified Branch Mnemonics for bc and bca Instructions without Comparison Condition...
	Table�F�12 . Simplified Branch Mnemonics for bclr and bcctr Instructions without Comparison Condi...
	Table�F�13 . Simplified Branch Mnemonics for bcl and bcla Instructions with Comparison Conditions...
	Table�F�14 . Simplified Branch Mnemonics for bclrl and bcctl Instructions with Comparison Conditi...

	F.5.4 Branch Prediction

	F.6 Simplified Mnemonics for Condition Register Logical Instructions
	Table�F�15 . Condition Register Logical Mnemonics �

	F.7 Simplified Mnemonics for Trap Instructions
	Table�F�16 . Standard Codes for Trap Instructions �
	Table�F�17 . Trap Mnemonics
	Table�F�18 . TO Operand Bit Encoding

	F.8 Simplified Mnemonics for Special-Purpose Registers
	Table�F�19 . Simplified Mnemonics for SPRs (Continued)

	F.9 Recommended Simplified Mnemonics
	F.9.1 No-Op (nop)
	F.9.2 Load Immediate (li)
	F.9.3 Load Address (la)
	F.9.4 Move Register (mr)
	F.9.5 Complement Register (not)
	F.9.6 Move to Condition Register (mtcr)

	Glossary of Terms and Abbreviations
	Index

